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Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.
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An edge-weighted digraph and a shortest path

4->5  0.35 
5->4  0.35 
4->7  0.37 
5->7  0.28 
7->5  0.28 
5->1  0.32 
0->4  0.38
0->2  0.26 
7->3  0.39 
1->3  0.29 
2->7  0.34
6->2  0.40 
3->6  0.52
6->0  0.58
6->4  0.93 

0->2  0.26
2->7  0.34
7->3  0.39
3->6  0.52 

edge-weighted digraph

shortest path from 0 to 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52 )

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

edge-weighted digraph



Google maps
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see Assignment 6

・PERT/CPM. 

・Map routing. 

・Seam carving. 

・Texture mapping. 

・Robot navigation.  

・Typesetting in       . 

・Currency exchange. 

・Urban traffic planning. 

・Optimal pipelining of VLSI chip. 

・Telemarketer operator scheduling. 

・Routing of telecommunications messages. 

・Network routing protocols (OSPF, BGP, RIP). 

・Optimal truck routing through given traffic congestion pattern.

Shortest path applications

4

Reference:  Network Flows:  Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

https://en.wikipedia.org/wiki/Seam_carving

http://en.wikipedia.org/wiki/Seam_carving


Which vertices? 

・Single source:  from one vertex s to every other vertex. 

・Single sink:  from every vertex to one vertex t. 

・Source–sink:  from one vertex s to another t. 

・All pairs:  between all pairs of vertices. 

 

Restrictions on edge weights? 

・Non-negative weights. 

・Euclidean weights. 

・Arbitrary weights. 

 

Cycles? 

・No directed cycles. 

・No “negative cycles.” 

 

Simplifying assumption.  Each vertex is reachable from s.

Shortest path variants

5

we assume this in today’s lecture 
(except as noted)

implies that shortest path from s to v exists 
(and that E ≥ V − 1)



Shortest paths:  quiz 1

Which variant in car GPS?

A. Single source:  from one vertex s to every other vertex.

B. Single destination:  from every vertex to one vertex t. 

C. Source–destination:  from one vertex s to another t.  

D. All pairs:  between all pairs of vertices.

6
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Data structures for single-source shortest paths

Goal.  Find a shortest path from s to every other vertex. 

Observation 1.  There exists a shortest path from s to v that is simple. 

 

Observation 2.  A shortest-paths tree (SPT) solution exists. Why? 

 

Consequence.  Can represent a SPT with two vertex-indexed arrays: 

・ distTo[v] is length of a shortest path from s to v. 

・ edgeTo[v] is last edge on a shortest path from s to v.

8

shortest-paths tree from 0Shortest paths data structures

    edgeTo[]    distTo[]
 0    null        0
 1    5->1 0.32   1.05
 2    0->2 0.26   0.26
 3    7->3 0.37   0.97
 4    0->4 0.38   0.38
 5    4->5 0.35   0.73
 6    3->6 0.52   1.49
 7    2->7 0.34   0.60

Shortest paths data structures

    edgeTo[]    distTo[]
 0    null        0
 1    5->1 0.32   1.05
 2    0->2 0.26   0.26
 3    7->3 0.37   0.97
 4    0->4 0.38   0.38
 5    4->5 0.35   0.73
 6    3->6 0.52   1.49
 7    2->7 0.34   0.60

parent-link representationShortest paths data structures

    edgeTo[]    distTo[]
 0    null        0
 1    5->1 0.32   1.05
 2    0->2 0.26   0.26
 3    7->3 0.37   0.97
 4    0->4 0.38   0.38
 5    4->5 0.35   0.73
 6    3->6 0.52   1.49
 7    2->7 0.34   0.60

Shortest paths data structures

    edgeTo[]    distTo[]
 0    null        0
 1    5->1 0.32   1.05
 2    0->2 0.26   0.26
 3    7->3 0.37   0.97
 4    0->4 0.38   0.38
 5    4->5 0.35   0.73
 6    3->6 0.52   1.49
 7    2->7 0.34   0.60

no repeated vertices 
⇒  ≤ V − 1 edges



Edge relaxation

Relax edge e = v→w. 

・ distTo[v] is length of shortest known path from s to v. 

・ distTo[w] is length of shortest known path from s to w. 

・ edgeTo[w] is last edge on shortest known path from s to w. 

・If e = v→w yields shorter path from s to w, via v, update distTo[w] and edgeTo[w].

9

black edges 
are in edgeTo[]

s

3.1

7.2 4.4

relax edge e = v→w

1.3

v

w



Shortest paths:  quiz 2

What are the values of distTo[v] and distTo[w] after relaxing e = v→w ?  

A.  10.0 and 15.0 

B.  10.0 and 17.0 

C.  12.0 and 15.0

D.  12.0 and 17.0

10

distTo[v] = 10.0

distTo[w] = 17.0

s
5.0

v

w



Framework for shortest-paths algorithm

 

 

 

 

 

 

 

 

 

Key properties.   Throughout the generic algorithm, 

・ distTo[v] is either infinity or the length of a (simple) path from s to v. 

・ distTo[v] does not increase.

11

For each vertex v:  distTo[v] = ∞.

For each vertex v:  edgeTo[v] = null.

distTo[s] = 0.

Repeat until done: 
    -  Relax any edge.

Generic algorithm (to compute a SPT from s)



Framework for shortest-paths algorithm

 

 

 

 

 

 

 

 

 

Efficient implementations. 

・Which edge to relax next? 

・How many edge relaxations needed? 

 

Ex 1.  Bellman–Ford algorithm.  

Ex 2.  Dijkstra’s algorithm. 

Ex 3.  Topological sort algorithm.

12

For each vertex v:  distTo[v] = ∞.

For each vertex v:  edgeTo[v] = null.

distTo[s] = 0.

Repeat until done: 
    -  Relax any edge.

Generic algorithm (to compute a SPT from s)
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Weighted directed edge API

 

 

 

 

 

 

 

 

Relaxing an edge e = v→w.

14

  public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

 private void relax(DirectedEdge e) 
 { 
    int v = e.from(), w = e.to(); 
    if (distTo[w] > distTo[v] + e.weight()) 
    { 
        distTo[w] = distTo[v] + e.weight(); 
        edgeTo[w] = e; 
    }        
 }

v w



Weighted directed edge:  implementation in Java

API.  Similar to Edge for undirected graphs, but a bit simpler.

15

public class DirectedEdge 
{ 
   private final int v, w; 
   private final double weight; 

 

}

public DirectedEdge(int v, int w, double weight) 
{ 
  this.v = v; 
  this.w = w; 
  this.weight = weight; 
}

public int from() 
{  return v;  }

public int to() 
{  return w; }

public double weight() 
{  return weight;  }

from() and to() replace 
either() and other()



Edge-weighted digraph API

API.  Same as EdgeWeightedGraph except with DirectedEdge objects.

16

            public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges incident from v

int V() number of vertices

⋮ ⋮



Edge-weighted digraph:  adjacency-lists representation

17

Edge-weighted digraph representation

adj
0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5  0.35 
5 4  0.35 
4 7  0.37 
5 7  0.28 
7 5  0.28 
5 1  0.32 
0 4  0.38
0 2  0.26 
7 3  0.39 
1 3  0.29 
2 7  0.34
6 2  0.40 
3 6  0.52
6 0  0.58
6 4  0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E



Edge-weighted digraph:  adjacency-lists implementation in Java

Implementation.  Almost identical to EdgeWeightedGraph.

18

public class EdgeWeightedDigraph 
{ 
   private final int V;  
   private final Bag<DirectedEdge>[] adj; 

}

public EdgeWeightedDigraph(int V) 
{ 
  this.V = V; 
  adj = (Bag<Edge>[]) new Bag[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Bag<>(); 
}

public void addEdge(DirectedEdge e) 
{ 
  int v = e.from(), w = e.to(); 
  adj[v].add(e); 
}

public Iterable<DirectedEdge> adj(int v) 
{  return adj[v];  }

add edge e = v→w to 
only v's adjacency list



Single-source shortest paths API

Goal.  Find the shortest path from s to every other vertex.

19

             public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?



4.4  SHORTEST PATHS

‣ properties 

‣ APIs 

‣ Bellman–Ford algorithm  

‣ Dijkstra’s algorithm
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Bellman–Ford algorithm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Running time.  Algorithm takes Θ(E V) time in both best- and worst-case.

21

for (int i = 1; i < G.V(); i++) 
   for (int v = 0; v < G.V(); v++) 
      for (DirectedEdge e : G.adj(v)) 
         relax(e);

pass i (relax each edge)

For each vertex v:  distTo[v] = ∞.

For each vertex v:  edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times: 
    - Relax each edge.

Bellman–Ford algorithm



Bellman–Ford algorithm demo

Repeat V − 1 times:  relax all E edges.
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0
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1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0→1   5.0 

0→4   9.0 

0→7   8.0 

1→2  12.0 

1→3  15.0 

1→7   4.0 

2→3   3.0 

2→6  11.0 

3→6   9.0 

4→5   4.0 

4→6  20.0 

4→7   5.0 

5→2   1.0 

5→6  13.0 

7→5   6.0 

7→2   7.0



Bellman–Ford algorithm demo

Repeat V − 1 times:  relax all E edges.
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0

4

7

1

5

2

6

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    14.0       5→2  

3    17.0       2→3  

4     9.0       0→4  

5    13.0       4→5  

6    25.0       2→6  

7     8.0       0→7 

3

shortest-paths tree from vertex s

s



Bellman–Ford algorithm:  visualization

24

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes



Bellman–Ford algorithm:  correctness proof

Proposition.  Let s = v0 → v1  → … → vk = v be any path from s to v. 

Then, after pass k, distTo[vk] ≤ weight(e1) + weight(e2) + … + weight(ek). 

 

 

 

 

Pf.  [ by induction on number of passes i ] 

・Base case:  initially, distTo[v0]  ≤  0. 

・Inductive hypothesis:  after pass i, distTo[vi]  ≤  weight(e1) + weight(e2) + … + weight(ei). 

・This inequality continues to hold because distTo[vi] cannot increase. 

・Immediately after relaxing edge ei+1 in pass i+1, we have 

          distTo[vi+1] ≤  distTo[vi] + weight(ei+1)

                                          ≤  weight(e1) + weight(e2) + … + weight(ei) + weight(ei+1). 

・This inequality continues to hold because distTo[vi+1] does not increase.   !

25

v0 v1 vk…
s v

e1 e2 ek

edge relaxation

inductive hypothesis



Bellman–Ford algorithm:  correctness proof

Proposition.  Let s = v0 → v1  → … → vk = v be any path from s to v. 

Then, after pass k, distTo[vk] ≤ weight(e1) + weight(e2) + … + weight(ek). 

 

 

 

 

Corollary.  Bellman–Ford computes shortest path distances. 

Pf.  

・There exists a shortest path P* from s to v with at most V – 1 edges.  

・From Proposition, distTo[v] ≤  length(P*). 

・Since distTo[v] is the length of some path from s to v, distTo[v] = length(P*).   !

26

Bellman–Ford runs for V−1 passes

v0 v1 vk…
s v

e1 e2 ek



Shortest paths:  quiz 4

Suppose that distTo[v] does not change during pass i of Bellman–Ford.  
Which of the following are true? 

A. distTo[v] is the length of a shortest path from s to v.

B. Not necessary to relax any edges incident to v in pass i + 1. 

C. Not necessary to relax any edges incident from v in pass i + 1. 

D. All of the above.

27

4 3 2

s v

relax vertices in order 0, 1, 2, 3, 4

1 2

99

13

after pass 1, distTo[v] = 99

distTo[v] does not change during pass 2

so, no need to relax 1→0 during pass 3

04



Bellman–Ford algorithm:  practical improvement

Observation.  If distTo[v] does not change during pass i, 

not necessary to relax any edges incident from v in pass i + 1. 

 

Queue-based implementation of Bellman–Ford. 

・Perform vertex relaxations. 

・Maintain queue of vertices whose distTo[] values changed since it was last relaxed. 

 

 

 

 

 

 

 

Impact.   

・In the worst case, the running time is still Θ(E V). 

・But much faster in practice on typical inputs.

28

relax in pass irelax in pass i+1

Created by Gan Khoon Lay
from the Noun Project

relax vertex v

1 47 935
must ensure each vertex is on queue at most once 

(or exponential blowup!)

relax all edges incident from v



LONGEST PATH

Problem.  Given a digraph G with positive edge weights and vertex s, 

find a longest simple path from s to every other vertex. 

Goal.  Design algorithm that takes Θ(E V) time in the worst case. 

29

longest simple path from 0 to 4:  0→1→2→3→4

40 1

2 3

2

6

7

4

1

5

NP-com
ple te



Bellman–Ford algorithm:  negative weights

Remark.  The Bellman–Ford algorithm works even if some weights are negative, 

provided there are no negative cycles. 

 

Negative cycle.  A directed cycle whose length is negative. 

 

 

 

 

 

 

 

 

Negative cycles and shortest paths.  Length of path can be made arbitrarily negative 

by using negative cycle.

30

0 → 1 → 2 → 3 → 4 →  …  → 1 → 2 → 3 → 4 → 1 → 2 → 5

length of negative cycle = 1 + 2 +3 + -8 = -2

20 1

4

5

3

21

4 3

1

2

3

4 5

–8
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Edsger W. Dijkstra:  select quotes

32



Dijkstra’s algorithm demo

・Consider vertices in increasing order of distance from s 

(non-tree vertex with the lowest distTo[] value). 

・Add vertex to tree and relax all edges incident from that vertex.
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an edge-weighted digraph

0→1   5.0 

0→4   9.0 

0→7   8.0 

1→2  12.0 

1→3  15.0 

1→7   4.0 

2→3   3.0 

2→6  11.0 

3→6   9.0 

4→5   4.0 

4→6  20.0 

4→7   5.0 

5→2   1.0 

5→6  13.0 

7→5   6.0 

7→2   7.0



Dijkstra’s algorithm demo

・Consider vertices in increasing order of distance from s 

(non-tree vertex with the lowest distTo[] value). 

・Add vertex to tree and relax all edges incident from that vertex.

34

0

4

7

1

5

2

6

v   distTo[]  edgeTo[] 

0     0.0        - 

1     5.0       0→1  

2    14.0       5→2  

3    17.0       2→3  

4     9.0       0→4  

5    13.0       4→5  

6    25.0       2→6  

7     8.0       0→7 

3

shortest-paths tree from vertex s

s



Dijkstra’s algorithm visualization

35



Dijkstra’s algorithm visualization

36



Dijkstra’s algorithm:  correctness proof

Invariant. For each vertex v in T, distTo[v] = d*(v). 

 

Pf.  [ by induction on | T | ] 

・Let w be next vertex added to T. 

・Let P be the path from s to w of length distTo[w]. 

・Consider any other path P ʹ from s to w. 

・Let x→y be first edge in P ʹ that leaves T. 

・P ʹ is no shorter than P :

37

P ʹ

T P

length(P) =   distTo[w]

≤   distTo[y]

≤   distTo[x]  +  weight(x, y)

≤   length(Pʹ)

Dijkstra chose 
w instead of y

yx

w

s

length of shortest path from s to v

=   d*(x)  +  weight(x, y)

by construction

relax vertex x

induction

weights are 
non-negative ▪



Dijkstra’s algorithm:  correctness proof

Invariant. For each vertex v in T, distTo[v] = d*(v). 

 

 

 

Corollary.  Dijkstra’s algorithm computes shortest path distances. 

Pf.  Upon termination, T contains all vertices (reachable from s).

38

length of shortest path from s to v



Dijkstra’s algorithm:  Java implementation

39

public class DijkstraSP 
{ 
   private DirectedEdge[] edgeTo; 
   private double[] distTo; 
 

   public DijkstraSP(EdgeWeightedDigraph G, int s) 
   { 
      edgeTo = new DirectedEdge[G.V()]; 
      distTo = new double[G.V()]; 

 
      for (int v = 0; v < G.V(); v++)  
         distTo[v] = Double.POSITIVE_INFINITY; 
      distTo[s] = 0.0; 
 
 
 
 
 
 
 
 
   } 
}

private IndexMinPQ<Double> pq;

pq = new IndexMinPQ<Double>(G.V());

pq.insert(s, 0.0); 
while (!pq.isEmpty()) 
{ 
   int v = pq.delMin(); 
   for (DirectedEdge e : G.adj(v)) 
      relax(e); 
}

relax vertices in order 

of distance from s

PQ that supports 
decreasing the key 

(stay tuned)



Dijkstra’s algorithm:  Java implementation

When relaxing an edge, also update PQ: 

・Found first path from s to w :  add w to PQ. 

・Found better path from s to w :  decrease key of w in PQ.

40

private void relax(DirectedEdge e) 
{ 
   int v = e.from(), w = e.to(); 
   if (distTo[w] > distTo[v] + e.weight()) 
   { 
       distTo[w] = distTo[v] + e.weight(); 
       edgeTo[w] = e; 
 
 

   }        
}

if (!pq.contains(w)) pq.insert(w, distTo[w]);  
else                 pq.decreaseKey(w, distTo[w]);

update PQ



Indexed priority queue (Section 2.4)

Associate an index between 0 and n – 1 with each key in a priority queue. 

・Insert a key associated with a given index. 

・Delete a minimum key and return associated index. 

・Decrease the key associated with a given index.

41

  public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create PQ with indices 0, 1, … , n – 1

void insert(int i, Key key) associate key with index i

int delMin() remove min key and return associated index

void decreaseKey(int i, Key key) decrease the key associated with index i

boolean isEmpty() is the priority queue empty?

  ⋮ ⋮

for Dijkstra’s algorithm: 
n = V, 

index = vertex, 
key = distance from s



DECREASE-KEY IN A BINARY HEAP

Goal.  Implement DECREASE-KEY operation in a binary heap.

0 1 2 3 4 5 6 7 8

  pq[] – v3 v5 v7 v2 v0 v4 v6 v1

42

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8



DECREASE-KEY IN A BINARY HEAP

Goal.  Implement DECREASE-KEY operation in a binary heap. 

 

Solution. 

・Find vertex in heap. How? 

・Change priority of vertex and call swim() to restore heap invariant. 

 

Extra data structure.  Maintain an array qp[] that maps from the vertex 

to the binary heap node index.

0 1 2 3 4 5 6 7 8

  pq[] – v3 v5 v7 v2 v0 v4 v6 v1

  qp[] 5 8 4 1 6 2 4 3 –

keys[] 1.0 2.0 3.0 0.0 6.0 8.0 4.0 2.0 –

43

decrease key of vertex v2

v7

v0 v4 v6v2

v1

v5

v31

2 3

4 5 6 7

8
vertex 2 has priority 3.0 
and is at heap index 4



Dijkstra’s algorithm:  which priority queue?

Number of PQ operations:  V INSERT, V DELETE-MIN, ≤ E DECREASE-KEY. 

 

 

 

 

 

 

 

 

 

 

Bottom line. 

・Array implementation optimal for complete digraphs. 

・Binary heap much faster for sparse digraphs. 

・4-way heap worth the trouble in performance-critical situations. 

・Fibonacci heap best in theory, but not worth implementing.

44

† amortized

PQ implementation INSERT DELETE-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE / V V

Fibonacci heap 1 † log V † 1 † E + V log V



Priority-first search

Dijkstra’s algorithm seems familiar? 

・Prim’s algorithm is essentially the same algorithm. 

・Both in same family of algorithms. 

 

Main distinction:  rule used to choose next vertex for the tree. 

・Prim:  Closest vertex to the tree (via an undirected edge). 

・Dijkstra:  Closest vertex to the source (via a directed path). 

 

 

 

 

 

 

 

 

Note:  DFS and BFS are also in same family.

45



Algorithms for shortest paths

Variations on a theme:  vertex relaxations. 

・Bellman–Ford:  relax all vertices; repeat V − 1 times. 

・Dijkstra:  relax vertices in order of distance from s. 

・Topological sort:  relax vertices in topological order.

46

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford E V ✔ ✔

Dijkstra E log V ✔

topological sort E ✔

†  no negative cycles

see Section 4.4 
and next lecture



Which shortest paths algorithm to use?

Select algorithm based on properties of edge-weighted digraph. 

・Negative weights (but no “negative cycles”):  Bellman–Ford. 

・Non-negative weights:  Dijkstra. 

・DAG:  topological sort.

47

algorithm worst-case
running time negative weights † directed 

cycles

Bellman–Ford E V ✔ ✔

Dijkstra E log V ✔

topological sort E ✔

†  no negative cycles
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Content-aware resizing

Seam carving.  [Avidan–Shamir]  Resize an image without distortion for display 

on cell phones and web browsers.    

49
https://www.youtube.com/watch?v=vIFCV2spKtg

https://www.youtube.com/watch?v=vIFCV2spKtg


Content-aware resizing

Seam carving.  [Avidan–Shamir]  Resize an image without distortion for display 

on cell phones and web browsers.    

 

 

 

 

 

 

 

 

 

 

 

 

 

In the wild.  Photoshop, Imagemagick, GIMP, ...
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To find vertical seam: 

・Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.  

・Weight of pixel = “energy function” of 8 neighboring pixels. 

・Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing
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Content-aware resizing

To find vertical seam: 

・Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.  

・Weight of pixel = “energy function” of 8 neighboring pixels. 

・Seam = shortest path (sum of vertex weights) from top to bottom.
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seam



Content-aware resizing

To remove vertical seam: 

・Delete pixels on seam (one in each row).
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Content-aware resizing

To remove vertical seam: 

・Delete pixels on seam (one in each row).
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SHORTEST PATH VARIANTS IN A DIGRAPH

Q1.  How to model vertex weights (along with edge weights)? 

 

 

 

 

 

Q2.  How to model multiple sources and sinks?
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