
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 10/26/20 11:45 AM

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

3

graph G
spanning tree T

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

4

not connected

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

5

not acyclic

Spanning tree

Def. A spanning tree of G is a subgraph T that is:

・A tree: connected and acyclic.

・Spanning: includes all of the vertices.

6

not spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

7

6 5

9

78 10 14

21

16

24

4 23 18

11

edge-weighted graph G

edge weight

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

Brute force. Try all spanning trees?

8

minimum spanning tree T
(weight = 50 = 4 + 6 + 5 + 8 + 9 + 11 + 7)

6 5

9

78 10 14

21

16

24

4 23 18

11

edge weight

Minimum spanning trees: quiz 1

Let T be any spanning tree of a connected graph G with V vertices.  
Which of the following properties must hold?

A. T contains exactly V – 1 edges.

B. Removing any edge from T disconnects it.

C. Adding any edge to T creates a cycle.

D. All of the above.

9spanning tree T of graph G

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

paved, but didnt want to spend more money than necessary because the city also wanted to
build a swimming pool. The mayor therefore specified two conditions: 3

1. Enough streets must be paved so that it is possible for everyone to travel from their
house to anyone elses house only along paved roads, and

2. The paving should cost as little as possible.
Here is the layout of the city. The number of paving stones between each house represents

the cost of paving that route. Find the best route that connects all the houses, but uses as few
counters (paving stones) as possible.

Solution: the graph (for another muddy city) and the paving.

3 Other practical applications

Other practical applications based on minimal spanning trees include: 4

• Taxonomy.

• Cluster analysis: clustering points in the plane, single-linkage clustering, graph-theoretic
clustering, and clustering gene expression data.

3http://computing2school.com/category/computer-science-unplugged-2/part-ii-algorithms/lesson-9-
minimal-spanning-trees

4https://www.quora.com/What-is-a-real-time-practical-application-of-the-Minimum-Spanning-Tree-MST

2

Network design

10

https://www.utdallas.edu/~besp/teaching/mst-applications.pdf

http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Dendrogram of cancers in human

11

Reference: Botstein & Brown group

gene 1

gene n

gene expressed

gene not expressed

More MST applications

12

MST describes arrangement of nuclei in the epithelium for cancer research

https://www.youtube.com/watch?v=GwKuFREOgmo http://algo.inria.fr/broutin/gallery.html

http://ginger.indstate.edu/ge/gfx

http://www.flickr.com/photos/quasimondo/2695389651

MST dithering

http://www.bccrc.ca/ci/ta01_archlevel.html

https://www.youtube.com/watch?v=GwKuFREOgmo
http://algo.inria.fr/broutin/gallery.html
http://ginger.indstate.edu/ge/gfx
http://www.flickr.com/photos/quasimondo/2695389651
http://www.bccrc.ca/ci/ta01_archlevel.html

Applications

MST is fundamental problem with diverse applications.

・Cluster analysis.

・Real-time face verification.

・LDPC codes for error correction.

・Image registration with Renyi entropy.

・Curvilinear feature extraction in computer vision.

・Find road networks in satellite and aerial imagery.

・Handwriting recognition of mathematical expressions.

・Measuring homogeneity of two-dimensional materials.

Model locality of particle interactions in turbulent fluid flows.

・Reducing data storage in sequencing amino acids in a protein.

・Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

・Network design (communication, electrical, hydraulic, computer, road).

・Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

13

http://www.ics.uci.edu/~eppstein/gina/mst.html
http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

http://www.ics.uci.edu/~eppstein/gina/mst.html
http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:

・The graph is connected. ⇒ MST exists.

・The edge weights are distinct. ⇒ MST is unique.

Note. Algorithms still work even if duplicate edge weights.

15

6

1

2
4

7

10

5

9

12

14

20

16

8

13

no two edge
weights are equal

11

3

see Exercise 4.3.3

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge is in the MST.

16

a crossing edge has one gray
and one white endpoint

min-weight crossing edge
must be in the MST

3

10

5

20

16

11

Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut { 2, 3, 5, 6 } ?

A. 0–7 (0.16)

B. 2–3 (0.17)

C. 0–2 (0.26)

D. 5–7 (0.28)

17

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

two white

two gray

crossing edge (but not min-weight)

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge e is in the MST.

Note. A cut may have multiple edges in the MST.

18

6

1

2
4

9

8

other crossing edge may
or may not be in the MST

3

min-weight crossing edge
must be in the MST

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge e is in the MST.

Pf. [by contradiction] Suppose e is not in the MST T.

・Adding e to the MST creates a cycle.

・Some other edge f in cycle must be a crossing edge.

・Removing f and adding e yields a different spanning tree T ʹ.

・Since weight(e) < weight(f), we have weight(T ʹ) < weight(T).

・Contradiction. ▪

19

e

the MST T does
not contain e

adding e to MST
creates a unique cycle

f

Framework for minimum spanning tree algorithm

Efficient implementations.

・Which cut?

・How to compute min-weight crossing edge.

Ex 1. Kruskal’s algorithm.

Ex 2. Prim’s algorithm.

Ex 3. Borüvka’s algorithm.

20

T = ∅.
Repeat until T is a spanning tree:
 - Find a cut in G.
 - e ← min-weight crossing edge.

 - T ← T ∪ { e }.

Generic algorithm (to compute MST)

V − 1 edges

2V−2 distinct cuts

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted edge API

API. Edge abstraction for weighted edges.

Idiom for processing an edge e. int v = e.either(), w = e.other(v).

22

 public class Edge

Edge(int v, int w, double weight) create a weighted edge v–w

int either() either endpoint

int other(int v) the endpoint that’s not v

int compareTo(Edge that) compare edges by weight

 ⋮ ⋮

v
weight

w

edge e = v–w

implements Comparable<Edge>

Weighted edge: Java implementation

23

public class Edge implements Comparable<Edge>
{
 private final int v, w;
 private final double weight;

}

public Edge(int v, int w, double weight)
{
 this.v = v;
 this.w = w;
 this.weight = weight;
}

public int either()
{ return v; }

public int other(int vertex)
{
 if (vertex == v) return w;
 else return v;
}

public int compareTo(Edge that)
{ return Double.compare(this.weight, that.weight); }

constructor

either endpoint

other endpoint

compare edges
by weight

Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

24

 public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

 ⋮ ⋮

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

25

Edge-weighted graph representation

adj[]
0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 4 7 .37

references to the
same Edge object

tinyEWG.txt
V

E

Edge-weighted graph: adjacency-lists implementation

26

public class EdgeWeightedGraph
{
 private final int V;
 private final Bag<Edge>[] adj;

}

same as Graph (but adjacency lists of Edge objects)

public EdgeWeightedGraph(int V)
{
 this.V = V;
 adj = (Bag<Edge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<>();
}

public void addEdge(Edge e)
{
 int v = e.either(), w = e.other(v);
 adj[v].add(e);
 adj[w].add(e);
}

public Iterable<Edge> adj(int v)
{ return adj[v]; }

add same Edge object to both adjacency lists

constructor

Minimum spanning tree API

Q. How to represent the MST?

A. Technically, an MST is an edge-weighted graph.

 For convenience, we represent it as a set of edges.

27

 public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order of weight.

・Add next edge to T unless doing so would create a cycle.

29

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

graph edges
sorted by weight

an edge-weighted graph

Minimum spanning trees: quiz 3

In which order does Kruskal’s algorithm select edges in MST?  

A. 1, 2, 4, 5, 6

B. 1, 2, 4, 5, 8

C. 1, 2, 5, 4, 8

D. 8, 2, 1, 5, 4

30

8

1 6

42

7

9 3 5

Kruskal’s algorithm: visualization

31

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. When considering edge e, Kruskal’s algorithm adds it to T if and only if it is in the MST.

[Case 1 ⇒] Kruskal’s algorithm adds edge e = v–w to T.

・Vertices v and w are in different connected components of T.

・Cut = set of vertices connected to v in T.

・By construction of cut, no edge crossing cut is currently in T.

・No edge crossing cut has lower weight.

・Cut property ⇒ edge e is in the MST.

32

adding edge to tree
would create a cycle

add edge to tree

v

w

Kruskal considers edges in ascending order by weight

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.

Pf. When considering edge e, Kruskal’s algorithm adds it to T if and only if it is in the MST.

[Case 2 ⇐] Kruskal’s algorithm discards edge e = v–w.

・From Case 1, all edges in T are in the MST.

・The MST can’t contain a cycle, so it can’t contain edge e. ▪

33

adding edge to tree
would create a cycle

add edge to tree

Challenge. Would adding edge v–w to T create a cycle? If not, add it.

Efficient solution. Use the union–find data structure.

・Maintain a set for each connected component in T.

・If v and w are in same set, then adding v–w would create a cycle.

・To add v–w to T, merge sets containing v and w.

Kruskal’s algorithm: implementation challenge

34

Case 2: adding v–w creates a cycle

v w

Case 1: add v–w to T and merge sets containing v and w

w

v

Kruskal’s algorithm: Java implementation

35

public class KruskalMST
{
 private Queue<Edge> mst = new Queue<>();

 public KruskalMST(EdgeWeightedGraph G)
 {
 DirectedEdge[] edges = G.edges();
 Arrays.sort(edges);
 UF uf = new UF(G.V());

 for (int i = 0; i < G.E(); i++)
 {

 }
 }

 public Iterable<Edge> edges()
 { return mst; }
}

Edge e = edges[i];
int v = e.either(), w = e.other(v);
if (uf.find(v) != uf.find(w))
{
 mst.enqueue(e);
 uf.union(v, w);
}

sort edges by weight

greedily add edges to MST

edge v–w does not create cycle

merge connected components

add edge e to MST

maintain connected components

edges in the MST

optimization: stop as soon as V−1 edges in T

Kruskal’s algorithm: running time

Proposition. In the worst case, Kruskal’s algorithm computes the MST

in an edge-weighted graph in Θ(E log E) time.

Pf.

・Bottlenecks are sort and union–find operations.

・Total. Θ(V log V) + Θ(E log V) + Θ(E log E).

36

† using weighted quick union

operation frequency time per op

SORT 1 E log E

UNION V − 1 log V †

FIND 2 E log V †

dominated by Θ(E log E)
since graph is connected

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree 
that minimizes the sum of the squares of the edge weights?  

A. Run Kruskal’s algorithm using the original edge weights.

B. Run Kruskal’s algorithm using the squares of the edge weights.

C. Run Kruskal’s algorithm using the square roots of the edge weights.

D. All of the above.

37
sum of squares = 42 + 62 + 52 + 102 + 112 + 72 = 347

6

5

7104

11

x < y () x2 < y2 ()
p
x <

p
y

<latexit sha1_base64="hhod+WAkJZX0HprU9ewpXth1fhI=">AAACoXichVHRTtswFHUC2xiDrcDjXiyqSXuqUoYY0/aAtJdN2kOHKCA1XXXj3LQWjh3sm5Eo6ofugX9Z0kZsBSSuZOvonHN97eMoU9JREPzx/LX1Z89fbLzcfLW1/fpNZ2f33JncChwKo4y9jMChkhqHJEnhZWYR0kjhRXT1tdEvfqN10ugzKjMcpzDVMpECqKYmnZuCh5/5l2YrOefhdQ4xD38YPVWYkJXTGYG15qZVil8H//wNfsIfumtLVTG/a1oS5XzS6Qa9YFH8Iei3oMvaGkx2vN0wNiJPUZNQ4NyoH2Q0rsCSFArnm2HuMANxBVMc1VBDim5cLRKa83c1E/PE2Hpp4gv2/44KUufKNKqdKdDM3dca8jFtlFNyPK6kznJCLZaDklxxMryJm8fSoiBV1gCElfVduZiBBUH1p6xMWZydoVh5SVXkWgoT4z1WUUEWlil+auroLrOH4Pyg1//QO/x52D05bvPcYG/ZPnvP+uwjO2Hf2IANmWC33pq35W37Xf+7P/BPl1bfa3v22Er5o78G+s09</latexit>

MAXIMUM SPANNING TREE

Problem. Given an undirected graph G with positive edge weights,

find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes Θ(E log E) time in the worst case.

38
maximum spanning tree T (weight = 104)

14 19

17

712 13 6

5

8

9

18 10 15

16

Greed is good

39

Gordon Gecko (Michael Douglas) evangelizing the importance of greed (in algorithm design?) 
Wall Street (1986)

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithmROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Prim’s algorithm demo

・Start with vertex 0 and grow tree T.

・Repeat until V - 1 edges:

– add to T the min-weight edge with exactly one endpoint in T

41

5

4

7

1
3

0

2

6

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

an edge-weighted graph

Minimum spanning trees: quiz 5

In which order does Prim’s algorithm select edges in the MST?
Assume it starts from vertex s.  

A. 8, 2, 1, 4, 5

B. 8, 2, 1, 5, 4

C. 8, 2, 1, 5, 6

D. 8, 2, 3, 4, 5

42

s 8

1 5

62

4

9 3 7

Prim’s algorithm: visualization

43

Prim’s algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim’s algorithm computes the MST.

Pf. Let e = min-weight edge with exactly one endpoint in T.

・Cut = set of vertices in T.

・Cut property ⇒ edge e is in the MST. ▪

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ?

44

edge e = 7-5 added to tree

Prim’s algorithm: lazy implementation demo

・Start with vertex 0 and grow tree T.

・Repeat until V - 1 edges:

– add to T the min-weight edge with exactly one endpoint in T

45

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

Prim’s algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in T ?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

・Key = edge; priority = weight of edge.

・DELETE-MIN to determine next edge e = v–w to add to T.

・If both endpoints v and w are marked (both in T), disregard.

・Otherwise, let w be the unmarked vertex (not in T):

– add e to T and mark w

– add to PQ any edge incident to w

46

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

but don’t bother if other endpoint is in T

 public Iterable<Edge> mst()
 { return mst; }

public class LazyPrimMST
{
 private boolean[] marked; // MST vertices
 private Queue<Edge> mst; // MST edges
 private MinPQ<Edge> pq; // PQ of edges

 public LazyPrimMST(WeightedGraph G)
 {
 pq = new MinPQ<>();
 mst = new Queue<>();
 marked = new boolean[G.V()];
 visit(G, 0);

 }
}

Prim’s algorithm: lazy implementation

47

while (mst.size() < G.V() - 1)
{
 Edge e = pq.delMin();
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;
 mst.enqueue(e);
 if (!marked[v]) visit(G, v);
 if (!marked[w]) visit(G, w);
}

repeatedly delete the min-weight
edge e = v–w from PQ

ignore if both endpoints in tree T

add either v or w to tree T

assume graph G is connected

add edge e to tree T

private void visit(WeightedGraph G, int v)
{
 marked[v] = true;
 for (Edge e : G.adj(v))
 if (!marked[e.other(v)])
 pq.insert(e);
}

for each edge e = v–w:
add e to PQ if w not already in T

add v to tree T

Lazy Prim’s algorithm: running time

Proposition. In the worst case, lazy Prim’s algorithm computes the MST

in Θ(E log E) time and Θ(E) extra space.

Pf.

・Bottlenecks are PQ operations.

・Each edge is added to PQ at most once.

・Each edge is deleted from PQ at most once.

48

operation frequency binary heap

INSERT E log E

DELETE-MIN E log E

Prim’s algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only min-weight edge connecting v to T.

・MST includes at most one edge connecting v to T. Why?

・If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; Θ(V) extra space; Θ(E log V) running time in worst case.

49

5

4

7

1
3

0

2

6

see te xtbook

for de tai ls

MST: algorithms of the day

50

algorithm visualization bottleneck running time

Kruskal
sorting

union–find
E log E

Prim priority queue E log V

© Copyright 2020 Robert Sedgewick and Kevin Wayne

