Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

Last updated on 10/26/20 11:45 AM

4.3 MINIMUM SPANNING TREES

introduction

cut property

edge-weighted graph AP

Kruskal's algorithm

Prim's algorithm

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

Minimum spanning tree problem

Input. Connected, undirected graph *G* with positive edge weights.

edge-weighted graph G

edge weight

Minimum spanning tree problem

Input. Connected, undirected graph *G* with positive edge weights. Output. A spanning tree of minimum weight.

Brute force. Try all spanning trees?

edge weight

Let *T* be any spanning tree of a connected graph *G* with *V* vertices. Which of the following properties must hold?

- A. *T* contains exactly V-1 edges.
- Removing any edge from *T* disconnects it. B.
- Adding any edge to T creates a cycle. С.
- **D.** All of the above.

spanning tree T of graph G

Network design

https://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Dendrogram of cancers in human

Reference: Botstein & Brown group

More MST applications

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

http://www.flickr.com/photos/quasimondo/2695389651

http://algo.inria.fr/broutin/gallery.html

Applications

MST is fundamental problem with diverse applications.

- Cluster analysis.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Curvilinear feature extraction in computer vision.
- Find road networks in satellite and aerial imagery.
- Handwriting recognition of mathematical expressions.
- Measuring homogeneity of two-dimensional materials. Model locality of particle interactions in turbulent fluid flows.
- Reducing data storage in sequencing amino acids in a protein.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Network design (communication, electrical, hydraulic, computer, road).
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

4.3 MINIMUM SPANNING TREES

introduction

cut property

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

For simplicity, we assume:

- The graph is connected. \Rightarrow MST exists.
- The edge weights are distinct. \Rightarrow MST is unique. \leftarrow see Exercise 4.3.3

Note. Algorithms still work even if duplicate edge weights.

no two edge weights are equal

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge is in the MST.

Minimum spanning trees: quiz 2

Which is the min-weight edge crossing the cut $\{2, 3, 5, 6\}$?

- 0–7 (0.16) Α.
- **B.** 2–3 (0.17)
- **C.** 0–2 (0.26)
- **D.** 5–7 (0.28)

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge *e* is in the MST.

Note. A cut may have multiple edges in the MST.

other crossing edge may or may not be in the MST

Cut property: correctness proof

Def. A **cut** in a graph is a partition of its vertices into two (nonempty) sets. **Def.** A **crossing edge** is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge *e* is in the MST. **Pf.** [by contradiction] Suppose *e* is not in the MST *T*.

- Adding *e* to the MST creates a cycle.
- Some other edge f in cycle must be a crossing edge.
- Removing f and adding e yields a different spanning tree T'.
- Since weight(e) < weight(f), we have weight(T') < weight(T).
- Contradiction.

the MST *T* does not contain *e*

adding e to MST creates a unique cycle

Framework for minimum spanning tree algorithm

Efficient implementations.

- Which cut? \leftarrow 2^{V-2} distinct cuts
- How to compute min-weight crossing edge.
- Ex 1. Kruskal's algorithm.
- Ex 2. Prim's algorithm.
- Ex 3. Borüvka's algorithm.

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

edge-weighted graph API

introduction

cut property

Kruskal's algorithm

Prim's algorithm

Weighted edge API

API. Edge abstraction for weighted edges.

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight)

int either()

•

int other(int v)

int compareTo(Edge that)

Idiom for processing an edge e. int v = e.either(), w = e.other(v).

create a weighted edge v–w

either endpoint

the endpoint that's not v

compare edges by weight

•

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
private final int v, w;
private final double weight;
public Edge(int v, int w, double weight)
{
   this v = v;
   this.w = w;
   this.weight = weight;
public int either()
                              either endpoint
{ return v; }
public int other(int vertex)
{
                                other endpoint
   if (vertex == v) return w;
   else return v;
public int compareTo(Edge that)
  return Double.compare(this.weight, that.weight); }
{
```


Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

public class EdgeWeightedGraph			
EdgeWeightedGraph(int V)			
void addEdge(Edge e)			
Iterable <edge> adj(int v)</edge>			

create an empty graph with V vertices

add weighted edge e to this graph

edges incident to v

•

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
private final int V;
private final Bag<Edge>[] adj;
public EdgeWeightedGraph(int V)
{
  this.V = V;
  adj = (Bag<Edge>[]) new Bag[V];
  for (int v = 0; v < V; v++)
     adj[v] = new Bag<>();
public void addEdge(Edge e)
{
  int v = e.either(), w = e.other(v);
  adj[v].add(e);
  adj[w].add(e);
public Iterable<Edge> adj(int v)
{ return adj[v]; }
```

]

same as Graph (but adjacency lists of Edge objects)

constructor

add same Edge object to both adjacency lists

Minimum spanning tree API

- **Q.** How to represent the MST?
- A. Technically, an MST is an edge-weighted graph. For convenience, we represent it as a set of edges.

public class MST		
	MST(EdgeWeightedGraph G)	
Iterable <edge></edge>	edges()	(
double	weight()	V

constructor

edges in MST

weight of MST

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

edge-weighted graph API

Kruskal's algorithm

introduction

cut property

Prim's algorithm

Kruskal's algorithm demo

Consider edges in ascending order of weight.

• Add next edge to T unless doing so would create a cycle.

an edge-weighted graph

graph edges			
sorted by weight			
0-7	0.16		
2-3	0.17		
1-7	0.19		
0-2	0.26		
5-7	0.28		
1-3	0.29		
1-5	0.32		
2-7	0.34		
4-5	0.35		
1-2	0.36		
4-7	0.37		
0-4	0.38		
6-2	0.40		
3-6	0.52		
6-0	0.58		
6-4	0.93		

6

Minimum spanning trees: quiz 3

In which order does Kruskal's algorithm select edges in MST?

Kruskal's algorithm: visualization

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. When considering edge e, Kruskal's algorithm adds it to T if and only if it is in the MST.

[Case 1 \Rightarrow] Kruskal's algorithm adds edge e = v - w to T.

- Vertices v and w are in different connected components of T.
- Cut = set of vertices connected to v in T.
- By construction of cut, no edge crossing cut is currently in T.
- No edge crossing cut has lower weight. Kruskal considers edges in ascending order by weight
- Cut property \Rightarrow edge *e* is in the MST.

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. When considering edge *e*, Kruskal's algorithm adds it to *T* if and only if it is in the MST.

[Case 2 \Leftarrow] Kruskal's algorithm discards edge e = v - w.

- From Case 1, all edges in T are in the MST.
- The MST can't contain a cycle, so it can't contain edge *e*.

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If *v* and *w* are in same set, then adding *v*–*w* would create a cycle.
- To add *v*–*w* to *T*, merge sets containing *v* and *w*.

Case 2: adding v-w creates a cycle

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
private Queue<Edge> mst = new Queue<>();
public KruskalMST(EdgeWeightedGraph G)
  DirectedEdge[] edges = G.edges();
  Arrays.sort(edges);
  UF uf = new UF(G.V());
  for (int i = 0; i < G.E(); i++)
       Edge e = edges[i];
       int v = e.either(), w = e.other(v);
       if (uf.find(v) != uf.find(w))
       {
          mst.enqueue(e);
          uf.union(v, w);
       }
public Iterable<Edge> edges()
   return mst; }
```

edges in the MST

- sort edges by weight
- maintain connected components
- optimization: stop as soon as V-1 edges in T
- greedily add edges to MST
- edge *v*–*w* does not create cycle
- add edge e to MST
- merge connected components

Kruskal's algorithm: running time

Proposition. In the worst case, Kruskal's algorithm computes the MST in an edge-weighted graph in $\Theta(E \log E)$ time.

Pf.

• Bottlenecks are sort and union-find operations.

operation	frequency	time per op
Sort	1	$E \log E$
UNION	V – 1	$\log V^+$
Find	2 <i>E</i>	$\log V^+$

+ using weighted quick union

• Total. $\Theta(V \log V) + \Theta(E \log V) + \Theta(E \log E)$.

dominated by $\Theta(E \log E)$ since graph is connected

Minimum spanning trees: quiz 4

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

- A. Run Kruskal's algorithm using the original edge weights.
- **B.** Run Kruskal's algorithm using the squares of the edge weights.
- C. Run Kruskal's algorithm using the square roots of the edge weights.
- **D.** All of the above.

sum of squares = $4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347$

MAXIMUM SPANNING TREE

Problem. Given an undirected graph *G* with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm that takes $\Theta(E \log E)$ time in the worst case.

maximum spanning tree T (weight = 104)

Greed is good

Gordon Gecko (Michael Douglas) evangelizing the importance of greed (in algorithm design?) Wall Street (1986)

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

Prim's algorithm

edge-weighted graph AP

Kruskal's algorithm

introduction

cut property

Prim's algorithm demo

- Start with vertex 0 and grow tree T.
- Repeat until *V* 1 edges:
- add to *T* the min-weight edge with exactly one endpoint in *T*

an edge-weighted graph

Minimum spanning trees: quiz 5

In which order does Prim's algorithm select edges in the MST? Assume it starts from vertex s.

- **A.** 8, 2, 1, 4, 5
- **B.** 8, 2, 1, 5, 4
- **C.** 8, 2, 1, 5, 6

D. 8, 2, 3, 4, 5

Prim's algorithm: visualization

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959] Prim's algorithm computes the MST.

Pf. Let *e* = min-weight edge with exactly one endpoint in *T*.

- Cut = set of vertices in *T*.
- Cut property \Rightarrow edge *e* is in the MST. •

Challenge. How to efficiently find min-weight edge with exactly one endpoint in *T*?

Prim's algorithm: lazy implementation demo

- Start with vertex 0 and grow tree *T*.
- Repeat until *V* 1 edges:
- add to *T* the min-weight edge with exactly one endpoint in *T*

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Prim's algorithm: lazy implementation

Challenge. How to efficiently find min-weight edge with exactly one endpoint in *T*?

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge e = v w to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let w be the unmarked vertex (not in T):

- add *e* to *T* and mark *w*

- add to PQ any edge incident to $w \leftarrow w$ but don't bother if other endpoint is in T

Prim's algorithm: lazy implementation

```
public class LazyPrimMST
private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq; // PQ of edges
 public LazyPrimMST(WeightedGraph G)
     pq = new MinPQ<>();
     mst = new Queue<>();
     marked = new boolean[G.V()];
     visit(G, 0); \leftarrow assume graph G is connected
     while (mst.size() < G.V() - 1)
        Edge e = pq.delMin();
        int v = e.either(), w = e.other(v);
        if (marked[v] && marked[w]) continue; ←
        mst.enqueue(e);
        if (!marked[v]) visit(G, v);
        if (!marked[w]) visit(G, w);
```


- repeatedly delete the min-weight edge e = v - w from PQ
- ignore if both endpoints in tree T
- add edge *e* to tree *T*
- add either v or w to tree T

Lazy Prim's algorithm: running time

Proposition. In the worst case, lazy Prim's algorithm computes the MST in $\Theta(E \log E)$ time and $\Theta(E)$ extra space.

Pf.

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

operation	frequency	binary
INSERT	E	log
Delete-Min	E	log

/ heap

g E

g E

Prim's algorithm: eager implementation

Challenge. Find min-weight edge with exactly one endpoint in T.

Observation. For each vertex v, need only min-weight edge connecting v to T.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; $\Theta(V)$ extra space; $\Theta(E \log V)$ running time in worst case.

MST: algorithms of the day

leneck	running time
rting on–find	E log E
ty queue	Elog V

© Copyright 2020 Robert Sedgewick and Kevin Wayne