3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (insertion)
- context

https://algs4.cs.princeton.edu
Symbol table review

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>binary search (sorted array)</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>BST</td>
<td>$\sqrt n$</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

Challenge. $\Theta(\log n)$ time in worst case.

This lecture. 2–3 trees and left-leaning red–black BSTs.

optimized for teaching and coding; introduced to the world in COS 226!

co-invented by Bob Sedgewick
3.3 Balanced Search Trees

- 2–3 search trees
- Red–black BSTs (representation)
- Red–black BSTs (insertion)
- Context

https://algs4.cs.princeton.edu
2–3 tree

Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.
2–3 tree demo

Search.
- Compare search key against key(s) in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H
2–3 tree: insertion

Insertion into a 2-node at bottom.
- Add new key to 2-node to create a 3-node.

insert G

```
    L
   /|
  E  R
 / |
A C H P S X
```

```
    L
   /|
  E  R
 / |
A C G H P S X
```
2–3 tree: insertion

Insertion into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert Z
2–3 tree construction demo
Balanced search trees: quiz 2

What is the maximum height of a 2–3 tree with n keys?

A. $\sim \log_3 n$
B. $\sim \log_2 n$
C. $\sim 2 \log_2 n$
D. $\sim n$
2–3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Min: $\log_3 n \approx 0.631 \log_2 n$. [all 3-nodes]
- Max: $\log_2 n$. [all 2-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Search and insert take $\Theta(\log n)$ time in worst case
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>(sorted array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>2–3 tree</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

but hidden constant c is large (depends upon implementation)
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

fantasy code

```java
public void put(Key key, Value val)
{
    Node x = root;
    while (x.getTheCorrectChild(key) != null)
    {
        x = x.getTheCorrectChildKey();
        if (x.is4Node()) x.split();
    }
    if (x.is2Node()) x.make3Node(key, val);
    else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it, but there's a better way.
3.3 **Balanced Search Trees**

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (insertion)
- context
How to implement 2–3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
- No way to tell a 3-node from two 2-nodes.
- Can’t (uniquely) map from BST back to 2–3 tree.

Approach 2. Regular BST with red “glue” nodes.
- Wastes space for extra node.
- Messy code.

Approach 3. Regular BST with red “glue” links.
- Widely used in practice.
- Arbitrary restriction: red links lean left.
Left-leaning red–black BSTs (Guibas–Sedgewick 1979 and Sedgewick 2007)

1. Represent 2–3 tree as a BST.
2. Use “internal” left-leaning links as “glue” for 3–nodes.
Left-leaning red–black BSTs: 1–1 correspondence with 2–3 trees

Key property. 1–1 correspondence between 2–3 trees and LLRB trees.
An equivalent definition of LLRB trees (without reference to 2–3 trees)

A BST such that:

- No node has two red links connected to it.
- Red links lean left.
- Every path from root to null link has the same number of black links.

"perfect black balance"
Which LLRB tree corresponds to the following 2–3 tree?

A.

B.

C. Both A and B.

D. Neither A nor B.
Search implementation for red–black BSTs

Observation. Search is the same as for BST (ignore color).

```java
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return null;
}
```

Remark. Many other ops (iteration, floor, rank, selection) are also identical.
Red–black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒ can encode color of links in nodes.

```java
private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node {
    Key key;
    Value val;
    Node left, right;
    int N;
    boolean color; // color of link from parent to this node

    Node(Key key, Value val) {
        this.key = key;
        this.val = val;
        this.N = 1;
        this.color = RED;
    }

    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }
}
```

null links are black
Review: the road to LLRB trees

BSTs (can get imbalanced)

2–3 trees (balanced but awkward to implement)

3–nodes “glued” together with red links

how we draw LLRB trees (color in links)

how we implement LLRB trees (color in nodes)
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (insertion)
- context
Insertion into a LLRB tree: overview

Basic strategy. Maintain 1–1 correspondence with 2–3 trees.

During internal operations, maintain:
- Symmetric order.
- Perfect black balance.
- [but not necessarily color invariants]

Example violations of color invariants:

- right-leaning red link
- two red children (a temporary 4-node)
- left-left red (a temporary 4-node)
- left-right red (a temporary 4-node)

To restore color invariants: perform rotations and color flips.
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

![Diagram of left rotation](image)

```java
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```java
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Which sequence of elementary operations transforms the red–black BST at left to the one at right?

A. Color flip R; left rotate E.
B. Color flip R; right rotate E.
C. Color flip E; left rotate R.
D. Color flip R; left rotate R.
Insertion into a LLRB tree

- Do standard BST insert.
- Color new link red.
- Repeat up the tree until color invariants restored:
 - two left red links in a row? \(\Rightarrow \) rotate right
 - left and right links both red? \(\Rightarrow \) color flip
 - only right link red? \(\Rightarrow \) rotate left

Diagrams

1. Inserting H
 - Add new node here
 - Both children red so flip colors
 - Right link red so rotate left
 - Two lefts in a row so rotate right
Insertion into a LLRB tree

- Do standard BST insert.
- Color new link red.
- Repeat up the tree until color invariants restored:
 - two left red links in a row? ⇒ rotate right
 - left and right links both red? ⇒ color flip
 - only right link red? ⇒ rotate left
Red-black BST construction demo

insert S E A R C H X M P L
Insertion into a LLRB tree: Java implementation

- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
 - only right link red? ⇒ rotate left
 - two left red links in a row? ⇒ rotate right
 - left and right links both red? ⇒ color flip

```java
private Node put(Node h, Key key, Value val) {
    if (h == null) return new Node(key, val, RED);

    int cmp = key.compareTo(h.key);
    if (cmp < 0) h.left = put(h.left, key, val);
    else if (cmp > 0) h.right = put(h.right, key, val);
    else h.val = val;

    if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
    if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left) && isRed(h.right)) flipColors(h);

    return h;
}
```

only a few extra lines of code provides near-perfect balance
Insertion into a LLRB tree: visualization

n = 255
height = 9
average depth = 6.3

255 insertions in random order
Insertion into a LLRB tree: visualization

\[n = 255 \]
\[\text{height} = 7 \]
\[\text{average depth} = 6.0 \]

255 insertions in ascending order
Insertion into a LLRB tree: visualization

n = 254
height = 13
average depth = 6.5

254 insertions in descending order
Proposition. Height of LLRB tree is $\leq 2 \log_2 n$.

Pf.

- Black height = height of corresponding 2–3 tree $\leq \log_2 n$.
- Never two red links in-a-row.
 \Rightarrow height of LLRB tree $\leq (2 \times \text{black height}) + 1$
 $\leq 2 \log_2 n + 1$.
- [A slightly more refined arguments show height $\leq 2 \log_2 n$.]
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>binary search (sorted array)</td>
<td>$\log n$</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>2–3 tree</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
<tr>
<td>red–black BST</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

Hidden constant c is small ($\approx 2 \log_2 n$ compares).
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs (representation)
- red–black BSTs (insertion)
- context
Balanced trees in the wild

Red–black BSTs are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: CFQ I/O scheduler, linux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs,

B-trees (and cousins) are widely used for file systems and databases.

- Windows: NTFS.
- Mac OS X: HFS, HFS+, APFS.
- Linux: ReiserFS, XFS, ext4, JFS, Btrfs.
- Databases: Oracle, DB2, Ingres, SQL, PostgreSQL.
War story 1: red–black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.
- Red–black BST.
- Exceeding height limit of 80 triggered error-recovery process.

Extended telephone service outage.
- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

 “If implemented properly, the height of a red–black BST with \(n\) keys is at most \(2 \log_2 n\).” — expert witness
War story 2: red–black BSTs

I was just asked to balance a Binary Search Tree by JFK's airport immigration. Welcome to America.

8:26 AM · 26 Feb 2017 from Manhattan, NY

8,025 Retweets 7,087 Likes

Celestine Omin @cyberomin · 26 Feb 2017
I was too tired to even think of a BST solution. I have been travelling for 23hrs. But I was also asked about 10 CS questions.

Celestine Omin @cyberomin · 26 Feb 2017
Sad thing is, if I didn't give the Wikipedia definition for these questions, it was considered a wrong answer.

Simon Sharwood @ssharwood · 26 Feb 2017
Replying to @cyberomin
seriously? am reporter for @theregister and would love to know more about your experience

https://twitter.com/cyberomin/status/83588786462625792
The red–black tree song (by Sean Sandys)

I see a brand new node,
I want to paint it black.
We need a balanced tree,
we've got to paint it black.

I see a brand new node,
I want to paint it black.
No time for AVL trees,
We must paint it black.

I want to find my key in
log n time—that's all.
Rotating subtrees 'round,
sure can be a ball.

I see a brand new node,
I want to paint it black.
Can't have a lot of red nodes,
we must paint them black.

Unfortunately, coding them
can be a $!#%.
If we had half a brain,
to splay trees we would switch.

And if they're still confusing,
you should have no fear.
Because outside this class,
of them you'll never hear.

I wanna see it,
painted, painted black.
Black is nice.
I wanna see the nodes painted black.
Black is nice.
I wanna see 'em
painted, painted, painted, painted black.

Mm mm mm mm mm mm mm.
Mm mm mm mm mm-mm.
Mm mm mm mm mm mm mm.
Mm mm mm mm mm-mmm.