A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREES

» BSTs
» ordered operations

» Iteration

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

» BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.
root

a left link /
f\

A binary tree is either:
a subtree

. Empty. N

» A node with links to two disjoint binary trees QQ righichild
w/ of root

(left subtree and right subtree).

null links

parent of A and R

k
left link \ N
Symmetric order. Each node has a key; every node’s key is: oEF ——
o (A) QL
« Larger than all keys in its left subtree. 0 as:;‘a.’/;ied
. Smaller than all keys in its right subtree. / \ With R

- [Duplicate keys not permitted.] keys smaller than E keys larger than E

Binary search trees: quiz 1

Which of the following properties hold?

A. If a binary tree is heap ordered, then it is symmetrically ordered.
B. |If a binary tree is symmetrically ordered, then it is heap ordered.
C. Both A and B.

D. Neither A nor B.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if nul11, insert.

insert G

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:
« A Key and a Value.
- A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node

{
private Key key; BST
private Value val;
private Node Teft, right: ALels key | val
Teft | right
public Node(Key key, Value val))////// *
{
this.key = key;
this.val = val;
} BST with smaller keys BST with larger keys
J Binary search tree

Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value>

{

private Node root; < root of BST

private class Node

{ ¥

public void put(Key key, Value val)
{ ¥

public Value get(Key key)
{ ¥

public Iterable<Key> keys()
{ }

public void delete(Key key)
{ ¥

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

public Value get(Key key)

{
Node X = root;
while (x !'= null)
{
int cmp = key.compareTo(x.key) ;
1f (cmp < 0) x = x.left;
else 1f (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Cost. Number of compares = 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:
. Key in tree = reset value.

. Key not in tree = add new node.

inserting L

search for L ends 7
at this null link

create new node —» @
N
/

reset links
on the way up

Insertion into a BST

10

BST insert: Java implementation

Put. Associate value with key.

public void put(Key key, Value val)
{ root = put(root, key, val); }

private Node put(Node x, Key key, Value val)

{
1f (X == null) return new Node(key, val);
int cmp = key.compareTo(x.key) ;
i (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
return Xx;

}

A Warning: concise but tricky code; read carefully!

Cost. Number of compares = 1 + depth of node.

11

Tree shape

- Many BSTs correspond to same set of keys.

« Number of compares for search/insert = 1 + depth of node.

best case typical case

Bottom line. Tree shape depends on order of insertion.

worst case

12

BST insertion: random order visualization

Ex. Insert keys in random order.

N =255

max = 16
avg = 9.1
opt=7.0

13

Binary search trees: quiz 2

Suppose that you insert n» keys in random order into a BST.
What is the expected height of the resulting BST?

A. ~log,n s
B. ~2log,n height O:
C. ~2Inn A Ol

D. ~431107 Inn

14

ST implementations: summary

guarantee average case

implementation

sequential search

(unordered list) " " i l
binary search o o
(ordered array) g " gh "
BST n n log n log n

Why not shuffle to ensure a (probabilistic) guarantee of ©(log n) time?

operations
onh keys

equals()

compareTo()

compareTo()

15

3.2 BINARY SEARCH TREES

» Iteration

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Binary search trees: quiz 3

In which order does traverse(root) print the keys in the BST?

private void traverse(Node Xx)

{
1f (X == null) return;
traverse(x.left);
StdOut.printin(x.key) ;
traverse(x.right);

A.. ACEHMRSX
B. SEACRHMX
C. CAMHRENXS

D. SEXARCHWM

17

Inorder traversal

1norder(S)
1norder(E)
1norder (A)
print A e
1norder (C)
print C
done C G
done A
print E

1norder(R) e G
inorder(H)

print H
inorder (M)

print M (C) (H,

done M
done H

print R (ﬂi’
done R
done E
print S
1norder (X)
print X
done X
done S

output ACEHMRSX

Inorder traversal

« Traverse left subtree.
« Enqueue key.

+ Traverse rlght subtree. add items to a collection that is Iterable

/ and return that collection

public Iterable<Key> keys()

{
Queue<Key> g = new Queue<Key>(): BST
inorder(root, q);
. Node——>| key val
return 9 Teft | right

} X

private void inorder(Node x, Queue<Key> q)

t i BST with smaller keys BST with larger keys
1f (x == null) return;
inorder(x.left, q);
q.enqueue(x.key); smaller keys, inorder | key | larger keys, in order
inorder(x.right, q); ‘\\\aHMWsMOmhr
}

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal: running time

)

Property. Inorder traversal of a binary tree with n» nodes takes ©(n) time.

Silicon Valley (“The Blood Boy”)

20

LEVEL-ORDER TRAVERSAL

Level-order traversal of a binary tree.

e Process root.

« Process children of root, from left to right.

« Process grandchildren of root, from left to right.

level-order traversal: SETARCHM

21

LEVEL-ORDER TRAVERSAL

Q1. How to compute level-order traversal of a binary tree in ©(») time?

level-order traversal: SETARCHM

22

LEVEL-ORDER TRAVERSAL

Q2. Given the level-order traversal of a BST, how to (uniquely) reconstruct?

|
EX. /5}_’7(‘ /Z(K ¢ 174 M needed for Quizzera quizzes

23

3.2 BINARY SEARCH TREES

Algorithms » ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

Q. How to find the min / max?

25

Floor and ceiling

Floor. Largest key in BST < query key.
Ceiling. Smallest key in BST = query key.

ceiling(T)

26

Computing the floor

Floor. Largest key in BST =< query key.
Ceiling. Smallest key in BST = query key.

Key idea.
« To compute floor(key) or ceiling(key), search for key.
« Both floor(key) and ceiling(key) are on search path.

- Moreover, as you go down search path, any candidates get better and better.

ceiling(T)

27

Computing the floor: Java implementation

Invariant 1. The floor is either champ or in subtree rooted at x.

Invariant 2. Node x is in the right subtree of node containing champ. <—— assuming champ is not null

champ must be floor key in node x is too large

(floor can’t be in right subtree of x)

public Key floor(Key key)
{ return floor(root, key, null);

3

private Key floor(Node x, Key ke¥, Key champ) fo
{
1f (X == null) return champ;
int cmp = key.compareTo(x.key);
if (cmp < 0) return floor(x.left, key, champ);
else 1f (cmp > 0) return floor(x.right, key, x.key);
else return x.key: 1
¥
key in BST key in node x is a candidate for floor key in node x is better candidate than champ

(floor can’t be in left subtree of x)

Rank and select

Rank. How many keys < key ?

Select. Key of rank «.

Q. How to implement rank() and select() efficiently for BSTs?

A. In each node, store the number of nodes in its subtree.

subtree count

29

BST implementation: subtree counts

private class Node public 1nt size()
{ { return size(root); }
private Key key;
private Va]ue Va1; private int SiZE(NOde X)
private Node left; {
private Node right; if (X —— nu11) Feturn O;
private int size; return x.s1ze;‘\\\\\. ok to call

1 \ } when x is null

number of nodes in subtree

private Node put(Node x, Key key, Value val) initialize subtree

{ / size to 1

1f (x == null) return new Node(key, val, 1);

1int cmp = key.compareTo(x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else 1f (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;

X.s1ze = 1 + size(x.left) + size(x.right);

return X;

30

Computing the rank

Rank. How many keys < key ?

Case 1. [key < key in node]
« Keys in left subtree? count
» Key in node? 0

« Keys in right subtree? 0

Case 2. [key > key in node]
« Keys in left subtree? all
* Key in node. |

» Keys in right subtree? count

Case 3. [key= key in node]
« Keys in left subtree? count
« Key in node. 0
» Keys in right subtree? 0

node count

31

Rank: Java implementation

node count

public 1nt rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{

1f (X == null) return O;

int cmp = key.compareTo(x.key);

i f (cmp < 0) return rank(key, x.left):

else 1f (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else return size(x.left);

32

BST: ordered symbol table operations summary

sequential binary BST
search search

ordered iteration nlogn n n

order of growth of running time of ordered symbol table operations

h = height of BST

33

ST implementations: summary

worst case

implementation

sequential search

(unordered list) n n
binary search 1
(sorted array) Og 7 n
BST n n
red-black BST (log n) [log n]

next week: BST whose height is guarantee to be ©O(log n)

key
interface

equals()

compareTo()

compareTo()

compareTo()

34

© Copyright 2020 Robert Sedgewick and Kevin Wayne

