A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

» APls

» elementary implementations
» binary heaps
» heapsort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

» APls

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

stack PusH, PopP

linked list
queue ENQUEUE, DEQUEUE resicing array
priority queue INSERT, DELETE-MAX binary heap
symbol table PuT, GET, DELETE ,
binary search tree
set ADD, CONTAINS, DELETE hash table

“ Show me your code and conceal your data structures, and I shall
continue to be mystified. Show me your data structures, and I won't

usually need your code; it’ll be obvious.” — Fred Brooks

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

Generalizes: stack, queue, randomized queue.

operation argument

™~

I
o

triage in an emergency room
(priority = urgency of wound/illness)

insert
insert
insert
remove max
insert
insert
insert
remove max
insert
insert
insert
remove max

P
Q
E

return

Max-oriented priority queue API

Requirement. Must insert keys of the same (generic) type; moreover,

keys must be Comparable.
“bounded type parameter”

/

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue
void insert(Key v) insert a key
Key delMax() return and remove a largest key
boolean 1isEmpty() is the priority queue empty?

Note. Duplicate keys allowed; de1TMax() removes and returns any maximum key.

Min-oriented priority queue API

Analogous to MaxPQ.

public class MinPQ<Key extends Comparable<Key>>

Warmup client.

MinPQ()

void 1nsert(Key v)

Key delMin()

boolean 1isEmpty()

create an empty priority queue

insert a key

return and remove a smallest key

is the priority queue empty?

Sort a stream of integers from standard input.

Priority queue: applications

customers in a line, colliding particles]

)

C- Event-driven simulation.

« Discrete optimization. bin packing, scheduling]
C- Artificial intelligence. - A* search])

« Computer networks. - web cache]

- Data compression. ' Huffman codes]

« Operating systems.

' load balancing, interrupt handling]

C- Graph searching.

Dijkstra’s algorithm, Prim’s algorithm]

)

« Number theory. sum of powers]
- Spam filtering. ' Bayesian spam filter]
« Statistics. ' online median in data stream]

8]4]7)

noo
DEni

° L]
... L]

priority = length of priority = “distance”
best known path to goal board

priority = event time

2.4 PRIORITY QUEUES

» elementary implementations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Priority queue: elementary implementations

Unordered list. Store keys in a linked list.

33, —— 44 —— 22 —— 11 —— 55 —— 44 —— jull

first

Performance. INSERT takes ©(1) time; DELETE-MAX takes ®(n) time.

Priority queue: elementary implementations

Ordered array. Store keys in an array in ascending (or descending) order.

ordered array implementation of a MaxPQ

10

Priority queues: quiz 1 7

What are the worst-case running times for INSERT and DELETE-MAX, respectively,

for a MaxPQ implemented with an ordered array?

A. O(1) and B(n)
B. ©O(1)and ©(og n)
C. ©O(logn)and ©(1)

D. ©O() and ©(1)

ordered array implementation of a MaxPQ

11

Priority queue: implementations cost summary

Elementary implementations. Either INSERT or DELETE-MAX takes O(n) time.

implementation INSERT DELETE-MAX -

unordered list

ordered array n 1 1

goal Clog n) Clog n) log n

order of growth of running time for priority queue with n items

Challenge. Implement both core operations efficiently.

Solution. “Somewhat-ordered” array.

12

2.4 PRIORITY QUEUES

Algorithms » binary heaps

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Every level (except possibly the last) is completely filled;

the last level is filled from left to right.

complete binary tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with n nodes is | log, n |.

Pf. As you add nodes, height increases (by 1) only when n is a power of 2.

A complete binary tree in nature

15

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered tree.
- Keys in nodes.

« Child’s key no larger than parent’s key.

Array representation. ali]

« Indices start at 1. S~

SR
« Take nodes in level order.
\\N\OA

. No explicit links!

Heap representations

16

Priority queues: quiz 2

Consider the node at index k in a binary heap. Which Java expression gives the index

of its parent?

A. (k-1) /2
B. k /2
C. k+1) /2

D. 2 * k

17

Binary heap: properties

Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move through tree.
- Parent of key at index k is at index k/2.

« Children of key at index k are at indices 2*k and 2*k + 1.

(T
O TR,
4 (P s(N) - 6(0) 7(A)
8 9 1o 11

18

Binary heap demo

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

19

Binary heap: promotion

Scenario. A key becomes larger than its parent’s key.

To eliminate the violation:
- Exchange key in child with key in parent.

« Repeat until heap order restored.

private void swim(int k)
{
while (k > 1 &% less(k/2, k))
{
exch(k, k/2):
k = k/2:

Peter principle. Node promoted to level of incompetence.

) parent of node at k is at k/2 ;

violates heap order

@ (larger key than parent)

20

Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.

Cost. At most 1 +log, n compares.

public void 1nsert(Key x)

{
pal++n] = X;
swim(n) ;

- add key to heap
violates heap order

Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children’s key.

To eliminate the violation: why not smafler child?
- Exchange key in parent with key in larger child.

« Repeat until heap order restored.

private void sink(int k) violates heap order

smaller than a child
{ (;\) @
while (2%k <= n) children of node at k @ G
{ are at 2*k and 2*k+1 G 5 @ e
int j = 2%k; / / &
1f (3 < n & less(3, J+1)) J++; O
if (!less(k, j)) break; , R
exch(k, 3); 5
o ri) © ®
1 (E) ©
} Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

22

Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most 2 log, n compares.

remove the maximum @ ~— key to remove
(s, (R,
public Key delMax() . : h
{ CReRCRO

violates

Key max = pqlll;
<_heap order
(O

exch(1l, n--); (H)

sink (1) ; ()

Pg [n+1] = null _ prevent loitering

rerarn e m e remove node
} G o O T — from heap

sink down

23

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{
private Key[] a;

private int n;

public MaxPQ(int capacity)) fixed capacity
{ a = (Key[]) new Comparable[capacity+1]; } (for simplicity)

public boolean 1sEmpty()

{ return n == 0; } < PQ ops
public void 1nsert(Key key)

public Key delMax()

private void swim(int k)

« heap helper functions
private void sink(int k)
private boolean less(int 1, int j)
{ return al[1].compareTo(alj]) < 0; }) array helper functions

private void exch(int 1, 1nt j)
{ Key temp = al[il; al[il = al[jl; alj] = temp; }

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html

Priority queue: implementations cost summary

Goal.

Implement both INSERT and DELETE-MAX in ©(log n) time.

implementation INSERT DELETE-MAX -

unordered list

ordered array n 1 1

goal C log n) C log n) 1

order of growth of running time for priority queue with n items

25

Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.

- Overflow: add no-arg constructor and use resizing array.

\ leads to ©(og n)
amortized time per op

Minimum-oriented priority queue. (how to make worst case?)

- Replace Tess() with greater().

« Implement greater().

Other operations.

- Remove an arbitrary item. can implement efficiently with sink() and swim()

. Change the priority of an item. [stay tuned for Prim/Dijkstra |

Immutability of keys.

« Assumption: client does not change keys while they're on the PQ.

« Best practice: use immutable keys.

N

immutable in Java: String, Integer, Double, ...

26

PRIORITY QUEUE WITH DELETE-RANDOM

Goal. Design an efficient data structure to support the following API:

e INSERT: insert a key.

« DELETE-MAX: return and remove a largest key.
« SAMPLE: return a random key.

o DELETE-RANDOM: return and remove a random key.

27

DELETE-RANDOM FROM A BINARY HEAP

Goal. Delete a random key from a binary heap in O(log n) time.

28

Multiway heaps

Multiway heaps.
« Complete d-way tree.

« Child’s key no larger than parent’s key.

Fact. Height of complete d-way tree on n nodes is ~log, n.

O T O
(X} (P ONOROERONORO
HOOE®OVWOOUMm OME

3-way heap

31

Priority queues: quiz 4

In the worst case, how many compares to INSERT and DELETE-MAX

in a d-way heap as function of both » and d?

A. ~logdn and NlOgdl/l

O
(X (P
HOWOHEO®WOOM

B. ~log,n and ~dlog,n

C. ~dlog,n and ~log,n

D. ~dlog,n and ~dlog,n

32

Priority queue: implementation cost summary

implementation INSERT DELETE-MAX m

unordered array

ordered array n 1 1
binary heap log n log n |
d-ary heap log,n dlog,n 1 «——— sweet spot: d=4
1 lognt | «——— see COS 423
1 log n 1
impossible 1 1 1 «—— why impossible?

+ amortized

order-of-growth of running time for priority queue with n items

33

2.4 PRIORITY QUEUES

Algorithms
» heapsort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Priority queues: quiz 5

What are the properties of this sorting algorithm?

public void sort(String[] a)
{

int n = a.length;
MinPQ<String> pgq = new MinPQ<String>();

for (int 1 = 0; 1 < n; 1++)
pg.insert(ali1]);

for (int i = 0; i < n; i++)
al[1] = pq.delMin();

A. O(nlogn) compares in the worst case.
B. In-place.
C. Stable.

D. All of the above.

35

Heapsort

Basic plan for in-place sort.
- View input array as a complete binary tree.
« Heap construction: build a max-oriented heap with all n keys.

« Sortdown: repeatedly remove the maximum key.

keys in arbitrary order build max heap sorted result
(in place) (in place)
LA
°E S E
4 5 6 /
L M 0 P

36

Heap construction

Top-down approach. Insert keys into a max-oriented heap, one at a time.
 |Intuitive swim-based approach.

* O(nlogn) compares in worst case.

Bottom-up approach. Successively build larger heap from smaller ones.
« Clever sink-based alternative.

 ®(n) compares.

goal: 7-node heap

0
3-node heap ~_ —

Ve

3-node heap

37

Heapsort demo

Heap construction. Build max heap using bottom-up method.

AN

for now, assume array entries are indexed 1 to n

array in arbitrary order

38

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

39

Heapsort: heap construction

First pass. Build heap using bottom-up approach.

Invariant. After calling sink(a, k, n), trees rooted at k to n are heap-ordered.

for (int k = n/2; k >= 1;: k--)
sink(a, k, n):

sink(3, 11)
(X)
R) W

starting point (arbitrary order)

sink(2, 11)
sink(5, 11) 6

(P) (L)

8 M @ ® ©

sink(4, 11) sink(l, 11)

©
® ®

result (heap-ordered)

40

Heapsort: sortdown

Second pass.

exche 3)
sink(1,
Cfﬁxggxao

SXRCL B @/Q—)\@
sink(1, 4)
(S

&® @&

« Remove the maximum, one at a time.

- Leave in array, instead of nulling out.

exch(1l, 11)
sink(1, 10)

Invariants. After calling sink(a, 1, k)

i . ® ® @® X
- al[k..n] are in final sorted order.
i : Gy 7 Gy (E)
- a[1..k-1] is a heap. ’ R G
L
1t ko= s B a3 O

while (k > 1)

{
exch(a, 1, k--);

sink(a, 1, k); Sk, 3 O Sk B @
) © Q :
@ O ®®

R

h(1l, 7
kL, 6 © 4
(M) °E S E
(A} (L) P ‘L M %0 'p

8R 9S 10_|_ llX

result (sorted)

Heapsort: Java implementation

public class Heap

{

public static void sort(Comparable[] a)

{
int n = a.length;
for (int k = n/2; k >= 1; k--)
sink(a, k, n);
int k = n;
while (k > 1)
{
exch(a, 1, k--);
sink(a, 1, k);
}
}

private static void sink(Comparable[] a, 1nt k, 1nt n)

{ Pt~

but make static (and pass arguments)

private static boolean less(Comparable[] a, 1nt 1, 1nt j)

{ ¥

private static void exch(Obyect[] a, 1nt 1, 1nt jJ)

{ ¥

but convert from 1-based
indexing to 0-base indexing

42

https://algs4.cs.princeton.edu/24pq/Heap.java.html

Heapsort: trace

N K
initial values
11 5
11 4
11 3
11 2
11 1
heap-ordered
10 1
9 1
8 1
/ 1
6 1
5 1
4 1
3 1
2 1
1 1

sorted result

ali]
1 2 3 4 5 6 7 8 910 11
S 0O R T E X A M P L E
L E E
T M P
X R A
T P L M O
X T S R A
X T S P L R A M O E E
T P S 0 L M E X
S P R E A T
R P E E A M S
P O E M L R
O M E A L P
M L E A E O
L E E A M
E A E L
E A E
A E
AAE E L M O P R S T X

Heapsort trace (array contents just after each sink)

Heapsort animation

50 random items

-
I,

https://www.toptal.com/developers/sorting-algorithms/heap-sort

algorithm position
in order
not in order

44

https://www.toptal.com/developers/sorting-algorithms/heap-sort

Heapsort: mathematical analysis

Proposition. Heap construction makes <n exchanges and <2 n compares.

Pf sketch. [assume n = 21 _ 1]

max number of exchanges
to sink node

binary heap of height h = 3

ohtl _p 9
n—(h—1)

h+ 2h—1) + 4h—2) + 8h—3) + ... + 2"(0)

VAN
S

45

Heapsort: mathematical analysis

Proposition. Heap construction makes <n exchanges and <2 n compares.

Proposition. Heapsort makes <2 nlog, n compares and exchanges.

Significance. In-place sorting algorithm with ©(n log n) worst-case.
« Mergesort: no, ©(n) extra space.
* Quicksort: no, ®(n?) time in worst case.

 Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
« Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

46

Introsort

Goal. As fast as quicksort in practice; ®(n log n) worst case; in place.

Introsort.
« Run quicksort.
« Cutoff to heapsort if stack depth exceeds 2 log, n.

o Cutoff to insertion sort for n = 16.

Introspective Sorting and Selection Algorithms

David R. Musser*
Computer Science Department
Rensselaer Polytechnic Institute, Troy, NY 12180
musser@cs.rpi.edu

Abstract
Quicksort is the preferred in-place sorting algorithm in many contexts, since its average

S I AN D ARD computing time on uniformly distributed inputs is ©(N log N) and it is in fact faster than
most, other sorting algorithms on most inputs. Its drawback is that its worst-case time

bound is ©(N?2). Previous attempts to protect against the worst case by improving the
TE M PLATE way quicksort chooses pivot elements for partitioning have increased the average computing
time too much—one might as well use heapsort, which has a ©(N log N) worst-case time
LI BRARY bound but is on the average 2 to 5 times slower than quicksort. A similar dilemma exists
with selection algorithms (for finding the i-th largest element) based on partitioning. This
paper describes a simple solution to this dilemma: limit the depth of partitioning, and for
; subproblems that exceed the limit switch to another algorithm with a better worst-case
FJ. PLAUGER bound. Using heapsort as the “stopper” yields a sorting algorithm that is just as fast
ALEXANDER A. STEPANOV as quicksort in the average case but also has an ©(N log N) worst case time bound. For
MENG LEE selection, a hybrid of Hoare’s FIND algorithm, which is linear on average but quadratic
in the worst case, and the Blum-Floyd-Pratt-Rivest-Tarjan algorithm is as fast as Hoare’s
algorithm in practice, yet has a linear worst-case time bound. Also discussed are issues
of implementing the new algorithms as generic algorithms and accurately measuring their
performance in the framework of the C++ Standard Template Library.

DAVID R. MUSSER

In the wild. C++ STL, Microsoft .NET Framework.

Sorting algorithms: summary

selection

3-way quick

v

v v
v
v

v

v

v

v v

15 n?

“»nlog,n

nlog, n

3n

15 n?

V4 n?

nlog,n

nlog,n

2ninn

2nlnn

2nlog,n

nlog,n

15 n?

s n?

nlog,n

nlog,n

15 n?

s n?

2nlog,n

nlog,n

remarks

n exchanges

use for small n
or partially ordered

O(n log n) guarantee,
stable

Improves mergesort
when pre-existing order

O log n) probabilistic guarantee;
fastest in practice

improves quicksort
when duplicate keys

O(n log n) guarantee,
in-place

holy sorting grail

number of compares to sort an array of n elements

© Copyright 2020 Robert Sedgewick and Kevin Wayne

