
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 8/31/20 1:12 PM

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ memory usage

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Cast of characters

3

programmer needs to
develop a working solution

client wants to solve
problem efficiently

student (you)
might play all of

these roles someday

theoretician seeks
to understand

Running time

4

how many times
do you have to turn

the crank?

“ As soon as an Analytical Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will then arise—By what course of calculation can these results be arrived
 at by the machine in the shortest time? ” — Charles Babbage (1864)

Running time

5

“ As soon as an Analytical Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will then arise—By what course of calculation can these results be arrived
 at by the machine in the shortest time? ” — Charles Babbage (1864)

Ada Lovelace’s algorithm
to compute Bernoulli numbers

on Analytic Engine (1843)

An algorithmic success story

N-body simulation.

・Simulate gravitational interactions among n bodies.

・Applications: cosmology, fluid dynamics, semiconductors, ...

・Brute force: n2 steps.

・Barnes–Hut algorithm: n log n steps, enables new research.

6

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

Andrew Appel  
PU ’81

The challenge

Q. Will my program be able to solve a large practical input?

Our approach. Combination of experiments and mathematical modeling.

7

Why is my program so slow ? Why does it run out of memory?

3-SUM. Given n distinct integers, how many triples sum to exactly zero?

Context. Related to problems in computational geometry.

Example: 3-SUM

8

~/Desktop/3sum> more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

~/Desktop/3sum> java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

1 30 –40 10 0 ✔

2 30 –20 –10 0 ✔

3 –40 40 0 0 ✔

4 –10 0 10 0 ✔

3-SUM: brute-force algorithm

9

public class ThreeSum
{
 public static int count(int[] a)
 {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut.println(count(a));
 }
}

check distinct triples

for simplicity,
ignore integer overflow

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Measuring the running time

Q. How to time a program?

A. Manual.

11

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Measuring the running time

Q. How to time a program?

A. Automatic.

12

import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Stopwatch;

public static void main(String[] args)
{
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 Stopwatch stopwatch = new Stopwatch();
 StdOut.println(ThreeSum.count(a));
 double time = stopwatch.elapsedTime();
 StdOut.println("elapsed time = " + time);
}

Empirical analysis

Run the program for various input sizes and measure running time.

13

Empirical analysis

Run the program for various input sizes and measure running time.

14

n time (seconds) †

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

† on a 2.8GHz Intel PU-226 with 64GB
 DDR E3 memory and 32MB L3 cache;
 running Oracle Java 1.7.0_45-b18 on
 Springdale Linux v. 6.5

Data analysis

Standard plot. Plot running time T (n) vs. input size n.

Hypothesis (power law). T (n) = a nb.

Questions. How to validate hypothesis? How to estimate a and b ?

15

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

lgnproblem size n
2K 4K 8K

lg
(T

(n
))

ru
nn

in
g

tim
e
T(
n

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

1K

0.1

0.2

0.4

0.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

log 2nproblem size n
2K 4K 8K

lo
g

2(
T(
n

))

ru
nn

in
g

tim
e
T(
n

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log–log plot. Plot running time T (n) vs. input size n using log–log scale.

Regression. Fit straight line through data points.

Hypothesis. The running time is about 1.006 × 10–10 × n2.999 seconds.

Data analysis

16

slope

log2(T (n)) = 2.999 log2 n + (–33.21)

3 orders
of magnitude

T (n) = 2–33.21 × n 2.999

 = 1.006 × 10–10 × n2.999

Prediction and validation

Hypothesis. The running time is about 1.006 × 10–10 × n2.999 seconds.

Predictions.

・51.0 seconds for n = 8,000.

・408.1 seconds for n = 16,000.

Observations.

17

validates hypothesis!

n time (seconds) †

8,000 51.1

8,000 51.0

8,000 51.1

16,000 410.8

“order of growth”
of running time is about n3

[stay tuned]

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis. Running time is about a nb with b = log2 ratio.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.

18

n time (seconds) † ratio log2 ratio

250 0 –

500 0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8 3.0

8,000 51.1 8 3.0

seems to converge to a constant b ≈ 3

log2 (6.4 / 0.8) = 3.0

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

=) b = log2
T (n)

T (n/2)

<latexit sha1_base64="2ERZfSkOaQSkbeVo7TqIVmF7wC0=">AAACXXicbVBNSwMxEE3X7++qBw9egkVQkLpbBSsiCF48KlgVuqVk09kamk2WZFZalv4Qf41X/Qme/Ctmaw+2OpDM481MXuZFqRQWff+z5M3Mzs0vLC4tr6yurW+UN7cerM4MhwbXUpuniFmQQkEDBUp4Sg2wJJLwGPWui/rjCxgrtLrHQQqthHWViAVn6Kh2+SQUidMBS8OL8IJGLl26HErdbddoeETD2DCe3x+ow2FxH9cOh+1yxa/6o6B/QTAGFTKO2/ZmaSvsaJ4loJBLZm0z8FNs5cyg4BKGy2FmIWW8x7rQdFCxBGwrH203pPuO6dBYG3cU0hH7eyJnibWDJHKdCcNnO10ryP9qzQzjeisXKs0QFP8RijNJUdPCKtoRBjjKgQOMG+H+Svkzc3agM3RCZfR2Cnxik7yfKcF1B6ZYiX00rHAxmPbsL3ioVYPT6vndaeWqPvZzkeySPXJAAnJGrsgNuSUNwskreSPv5KP05c15q976T6tXGs9sk4nwdr4BDpe1jA==</latexit>

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

Hypothesis. Running time is about 0.998 × 10–10 × n3 seconds.

19

n time (seconds) †

8,000 51.1

8,000 51.0

8,000 51.1

almost identical hypothesis
to one obtained via regression

(but less work)

51.1 = a × 80003

⇒ a = 0.998 × 10–10

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds

B. 52 seconds

C. 117 seconds

D. 350 seconds

20

n time (seconds)

1,000 0.02

2,000 0.05

4,000 0.20

8,000 0.81

16,000 3.25

32,000 13.01

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds

B. 52 seconds

C. 117 seconds

D. 350 seconds

21

n time (seconds) ratio log2 (ratio)

1,000 0.02 – –

2,000 0.05 2.5 1.3

4,000 0.20 4.0 2.0

8,000 0.81 4.1 2.0

16,000 3.25 4.0 2.0

32,000 13.01 4.0 2.0

T(n) = a n2 seconds T(3n) = a (3n)2

 = 9 a n2

 = 9 T(n) seconds
T(32,000) = 13 seconds

⇒ T(3 𐄂 32,000) = 9 𐄂 13 = 117 seconds
⇒ a = 1.2695 𐄂 10−8

⇒ T(96,000) = 117 seconds

Experimental algorithmics

System independent effects.

・Algorithm.

・Input data.

System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …

Bad news. Sometimes difficult to get accurate measurements.

22

determines constant a
in power law a nb

determines exponent b
in power law a nb

�2012suecahalane!

By!
Sue Cahalane!

Science Teacher!
Grades PK - 4!

Context: the scientific method

Experimental algorithmics is an example of the scientific method.

Good news. Experiments are easier and cheaper than other sciences.

23

Physics
(1 experiment)

Chemistry
(1 experiment)

Biology
(1 experiment)

Computer Science
(1 million experiments)

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

・Need to analyze program to determine set of operations.

・Cost depends on machine, compiler.

・Frequency depends on algorithm, input data.

Warning. No general-purpose method (e.g., halting problem).

25

Example: 1-SUM

Q. How many operations as a function of input size n ?

26

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation cost (ns) † frequency

variable declaration 2/5 2

assignment statement 1/5 2

less than compare 1/5 n + 1

equal to compare 1/10 n

array access 1/10 n

increment 1/10 n to 2 n

exactly n array accesses

† representative estimates (with some poetic license)

in practice, depends on
caching, bounds checking, …

(see COS 217)

Analysis of algorithms: quiz 2

How many array accesses as a function of n?

 
 
 
 
 

A. ½ n (n − 1)

B. n (n − 1)

C. 2 n 2

D. No idea.

27

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

Analysis of algorithms: quiz 2

How many array accesses as a function of n?

 
 
 
 
 

A. ½ n (n − 1)

B. n (n − 1)

C. 2 n 2

D. No idea.

28

n − 1

n

(1 + 2 + n − 1) = n (n − 1)+ 3 + …2 𐄂

⟹ = ½ n (n − 1)(1 + 2 + n − 1)+ 3 + …

(n − 1) + (n − 2) + 0+ … + 1

½ n (n − 1)

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

Example: 2-SUM

Q. How many operations as a function of input size n ?

1/4 n2 + 13/20 n + 13/10 ns
to

3/10 n2 + 3/5 n + 13/10 ns

(tedious to count exactly)

29

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

operation cost (ns) frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n2

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

30

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

operation cost (ns) frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n2

cost model = array accesses

(we’re assuming compiler/JVM does
not optimize any array accesses
away!)

Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.

Big Theta notation. Also discard leading coefficient.

Rationale.

・When n is large, lower-order terms are negligible.

・When n is small, we don’t care.

31

Leading-term approximation

n 3/6

n (n! 1)(n! 2)/6

166,167,000

1,000

166,666,667

n

function tilde

4 n5 + 20 n + 16 ~ 4 n5

7 n2 + 100 n 4/3 + 56 ~ 7 n2

⅙ n3 – ½ n2 + ⅓ n ~ ⅙ n3

discard lower-order terms
(e.g., n = 1,000: 166.67 million vs. 166.17 million)

big Theta

Θ(n5)

Θ(n2)

Θ(n3)

formal definitions
involve limits

Common order-of-growth classifications

32

order of
growth name typical code framework description example T(2n) / T(n)

Θ(1) constant a = b + c; statement add two
numbers 1

Θ(log n) logarithmic
while (n > 1)

{ n = n/2; ... }
divide
in half

binary search ~ 1

Θ(n) linear
for (int i = 0; i < n; i++)

 { ... }
single
loop

find the
maximum 2

Θ(n log n) linearithmic see mergesort lecture
divide and
conquer

mergesort ~ 2

Θ(n2) quadratic
for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)
 { ... }

double
loop

check all pairs 4

Θ(n3) cubic

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)

 for (int k = 0; k < n; k++)
 { ... }

triple
loop

check all triples 8

Θ(2n) exponential see combinatorial search lecture
exhaustive

search
check all subsets 2n

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size n ?

A. ~ n 2 array accesses.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

33

“inner loop”

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size n ?

A. ~ ½ n3 array accesses.

Bottom line. Use cost model and asymptotic notation to simplify analysis.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

34

“inner loop”

�
n

3

�
=

n(n � 1)(n � 2)

3!

� 1

6
n3

see COS 340

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take a discrete mathematics course (COS 340).

35

Estimating a discrete sum

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral; use calculus!

Ex 1. 1 + 2 + … + n.

Ex 2. 1 + 1/2 + 1/3 + … + 1/n.

Ex 3. 3-sum triple loop.

Ex 4. 1 + ½ + ¼ + ⅛ + …

36

��

i=0

�
1

2

�i

= 2

� �

x=0

�
1

2

�x

dx =
1

ln 2
� 1.4427

integral trick
doesn’t always work!

n�

i=1

i �
� n

x=1
x dx � 1

2
n2

n�

i=1

1

i
�

� n

x=1

1

x
dx � ln n

n�

i=1

n�

j=i

n�

k=j

1 �
� n

x=1

� n

y=x

� n

z=y
dz dy dx � 1

6
n3

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

37

https://www.wolframalpha.com

Analysis of algorithms: quiz 3

How many array accesses as a function of n ?  

 

 

A. ~ n 2 log2 n

B. ~ 3/2 n2 log2 n

C. ~ 1/2 n3

D. ~ 3/2 n3

38

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = 1; k <= n; k = k*2)
 if (a[i] + a[j] >= a[k])
 count++;

~ 3 log2 n array accesses

k loop iterates ~ ½ n 2 times

Analysis of algorithms: quiz 4

What is order of growth of running time as a function of n ?
 
 
 

 

A. Θ(n)

B. Θ(n log n)

C. Θ(n 2)

D. Θ(2n)

39

int count = 0;
for (int i = n; i >= 1; i = i/2)
 for (int j = 1; j <= i; j++)
 count++;

n + n /2 + n /4 + n /8 + … + 1

for simplicity, assume n is a power of 2

= 2n

“inner loop”

≤ n (1 + 1/2 + 1/4 + 1/8 + …)

1.4 ANALYSIS OF ALGORITHMS

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ memory usage
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 220 bytes.

Gigabyte (GB). 1 billion or 230 bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

41

some JVMs “compress” ordinary object
pointers to 4 bytes to avoid this cost

NIST most computer scientists

Typical memory usage for primitive types and arrays

42

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

boolean[] 1n + 24

int[] 4n + 24

double[] 8n + 24

one-dimensional arrays (length n)

type bytes

boolean[][] ~ 1 n2

int[][] ~ 4 n2

double[][] ~ 8 n2

two-dimensional arrays (n-by-n)

wasteful
(but ~ 36n in Python 3)

array overhead = 24 byte

Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Memory of each object rounded up to use a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

43

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

Typical memory usage summary

Total memory usage for a data type value in Java:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable.

・Padding: round up to multiple of 8 bytes.

Note. Depending on application, we often count the memory for any

referenced objects (recursively).

44

“deep memory”

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF use as a function of n ?  

A. ~ 4 n bytes

B. ~ 8 n bytes

C. ~ 4 n2 bytes

D. ~ 8 n2 bytes

45

public class WeightedQuickUnionUF
{
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n)
 {
 parent = new int[n];
 size = new int[n];

 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF use as a function of n ?

46

16 bytes
(object overhead)

4 bytes (int)

4 bytes (padding)

8n + 88 ~ 8n bytes

8 + (4n + 24) bytes each
(reference + int[] array)

public class WeightedQuickUnionUF
{
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n)
 {
 parent = new int[n];
 size = new int[n];

 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Turning the crank: summary

Empirical analysis.

・Execute program to perform experiments.

・Assume power law.

・Formulate a hypothesis for running time.

・Model enables us to make predictions.

Mathematical analysis.

・Analyze algorithm to count frequency of operations.

・Use tilde and big-Theta notations to simplify analysis.

・Model enables us to explain behavior.

This course. Learn to use both.

47

�lg n��

h=0

�n/2h+1� h � n

© Copyright 2020 Robert Sedgewick and Kevin Wayne

48

