1. Initialization.

Don’t forget to do this.

2. Memory.

\[\sim 48n \text{ bytes} \]

Each Node object requires 48 bytes: object overhead (16 bytes), 3 references (24 bytes), char (2 bytes), int (4 bytes), padding (2 bytes).

3. Running time.

\[E \ D \ D \ D \ D \ E \]

4. String sorts.

- A Original input
- C MSD radix sort after the second call to key-indexed counting
- D 3-way radix quicksort after the first partitioning step
- C MSD radix sort after the first call to key-indexed counting
- B LSD radix sort after 1 pass
- D 3-way radix quicksort after the second partitioning step
- E Sorted

5. Depth-first search.

(a) 0 2 1 7 6 8 4 5 3 9
(b) 1 6 8 7 2 9 3 5 4 0
(c) Explanation 1: There cannot be a topological order because of the directed cycle 5 → 3 → 9 → 5.

Explanation 2: If \(G \) were a DAG, then we know that the reverse postorder would be a topological order. However, the reverse of the postorder from (b) is not a topological order (e.g., because 5 appears before 9 in the reverse postorder but 9 → 5 is an edge).
 0 4 8 5 9 2 3 1 7 6

7. Maximum flow.
 (a) 50 = 9 + 3 + 38
 (b) 78 = 29 + 12 + 37
 (c) \(A \rightarrow B \rightarrow C \rightarrow H \rightarrow I \rightarrow D \rightarrow J\)
 (d) 5
 (e) The unique mincut is \{A, B, C, F, G\}.

8. LZW compression.
 (a) C A A C A B C A B A

<table>
<thead>
<tr>
<th>(i)</th>
<th>codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>CA</td>
</tr>
<tr>
<td>82</td>
<td>AA</td>
</tr>
</tbody>
</table>
 (b) 83 AC
 84 CAB
 85 BC
 86 CABA

 TIGER, TO, TOO, TRIE

 0 1 2 3 4 5 6 7
 \(s\) C C A C C A C B
 \(A\) 0 0 3 0 0 6 0 0
 \(B\) 0 0 0 0 0 0 0 8
 \(C\) 1 2 2 4 5 2 7 5
11. Programming assignments.

(a)
- There is exactly one vertex of outdegree 0.
- There is exactly one vertex of indegree 0.
- There are no directed cycles.
- There is a directed path between every pair of vertices.
- There are \(V - 1 \) edges, where \(V \) is the number of vertices.
- There are \(E - 1 \) vertices, where \(E \) is the number of edges.

(b) \(WH \)

(c)
- A achieves a better compression ratio than B.
- C achieves a better compression ratio than A.
- E achieves a better compression ratio than A.
- D achieves the best compression ratio among A–E.

(d) Percolation, WordNet, SeamCarving

A C C A C

B C A D C

14. Regular expressions.

(a) \((A^*| (AB^*)^+)\)
(b) 1 2 3 6 7 8 11 12
15. **Shortest discount path.**

Use the graph-doubling trick (ala *Shortest-Princeton-Path* from the Spring 2015 Final) and create a digraph G' with $2V$ vertices and $3E$ edges as follows:

- For each vertex v in G: create two vertices v and v'.
- For each edge $v \rightarrow w$ in G: create the three edges $v \rightarrow w$, $v' \rightarrow w'$, and $v \rightarrow w'$. The weight of $v \rightarrow w$ and $v' \rightarrow w'$ equals the weight of e; the weight of $v \rightarrow w'$ is one-half that weight.

A shortest path from s to t' corresponds to a shortest discount path: the one edge in the path going from the first copy of the digraph to the second copy corresponds to the discounted edge.
16. **Substring of a circular string.**

Let u denote the string containing the first $m + n$ characters of the (infinite) circular string t. Do a substring search of the query string s in the text string u. If we use Knuth–Morris–Pratt, the overall running time will be proportional to $m + n$ in the worst case (m to build the DFA and $m + n$ to simulate it on string u).

Here are two examples, one with $m < n$ and one with $m > n$:

- $s = \text{ABBA}$, $t = \text{BABBBBBABBBBBAB}$, $m = 4$, $n = 15$. Search for the query string $s = \text{ABBA}$ in the text string $u = \text{BABBBBBABBBBBABBA}B\text{B}$.
- $s = \text{BBAABBAABBAABB}$, $t = \text{ABBA}$, $m = 14$, $n = 4$. Search for the query string $s = \text{BBAABBAABBAABB}$ in the text string $u = \text{ABBAABBAABBAABBAA}$.

Note 1: Two copies of t is not enough when $m \gg n$; $\lceil m/n \rceil$ copies of t is not enough when $m < n$.

Note 2: It simplest to form the string u explicitly, but you can also run Knuth–Morris–Pratt on u implicitly by building the DFA for s and simulating it on t, wrapping around to the beginning of t after you reach the end of t. In this case, you need to be careful about when to stop the simulation if no match is found: $m + n$ DFA transitions suffice.