Princeton University
COS 217: Introduction to Programming Systems
C Primitive Data Types

Type: int (or signed int)

Description: A (positive or negative) integer.

Size: System dependent. On armlab with gcc2l17: 4 bytes.
Example Variable Declarations:

int iFirst;
signed int iSecond;

Example Literals (assuming size is 4 bytes):

C Literal Binary Representation Note

123 00000000 00000000 00000000 01111011 decimal form
-123 11111111 11111111 11111111 10000101 negative form
0173 00000000 00000000 00000000 01111011 octal form

0x7B 00000000 00000000 00000000 01111011 hexadecimal form
2147483647 01111111 11111111 11111111 11111111 largest
-2147483648 10000000 00000000 00000000 00000000 smallest

Type: wunsigned int

Description: A non-negative integer.

Size: System dependent. sizeof (unsigned int) == sizeof(int). On armlab with gcc2l17: 4 bytes.
Example Variable Declaration:

unsigned int uiFirst;
unsigned uiSecond;

Example Literals (assuming size is 4 bytes):

C Literal Binary Representation Note

1230 00000000 00000000 00000000 01111011 decimal form
01730 00000000 00000000 00000000 01111011 octal form

0x7BU 00000000 00000000 00000000 01111011 hexadecimal form
42949672950 11111111 11111111 11111111 11111111 largest

0u 00000000 00000000 00000000 00000000 smallest

Type: 1long (or long int or signed long or signed long int)

Description: A (positive or negative) integer.

Size: System dependent. sizeof (long) >= sizeof (int). On armlab with gcc2l17: 8 bytes.
Example Variable Declarations:

long lFirst;

long int iSecond;

signed long 1Third;
signed long int 1Fourth;

Page 1 of 5

Example Literals (assuming size is 8 bytes):

C Literal Binary Representation/Note

123L 00000000 00000000 00000000 00000000 00000000 00000000

decimal form

-123L 11111111 11111111 11111111 112111111 11111111 11111111

negative form

0173L 00000000 00000000 00000000 00000000 00000000 00000000

octal form

0x7BL 00000000 00000000 00000000 00000000 00000000 00000000

hexadecimal form

9223372036854775807L 01111111 11111111 11111111 11111111 11111111 11111111

largest

-9223372036854775808L 10000000 00000000 00000000 00000000 00000000 00000000

smallest

00000000

11111111

00000000

00000000

11111111

00000000

01111011

10000101

01111011

01111011

11111111

00000000

Type: unsigned long (or unsigned long int)

Description: A non-negative integer.

Size: System dependent. sizeof (unsigned long) == sizeof (long).

Example Variable Declarations:

unsigned long ulFirst;
unsigned long int ulSecond;

Example Literals (assuming size is 8 bytes):

On armlab with gcc217:

C Literal Binary Representation/Note

1230L 00000000 00000000 00000000 00000000 00000000 00000000
decimal form

0173UL 00000000 00000000 00000000 00000000 00000000 00000000
octal form

0x7BUL 00000000 00000000 00000000 00000000 00000000 00000000
hexadecimal form

184467440737095516150L 11111111 111121112 1111212112 1211121111 11111111 11111111
largest

0UL 00000000 00000000 00000000 00000000 00000000 00000000
smallest

00000000

00000000

00000000

11111111

00000000

8 bytes.

01111011

01111011

01111011

11111111

00000000

Type: signed char

Description: A (positive or negative) integer. Usually represents a character according to a

character code (e.g., ASCII).
Size: 1 byte.

Example Variable Declarations:
signed char cSecond;

Example Literals (assuming the ASCII code is used):

C Literal Binary Representation Note

(signed char) 'a' 01100001 character form

(signed char) 97 01100001 decimal form

(signed char) 0141 01100001 octal form

(signed char)Ox61l 01100001 hexadecimal form

(signed char) '"\ol41"' 01100001 octal character form
(signed char) "\x61" 01100001 hexadecimal character form
(signed char)123 01111011 decimal form

(signed char)-123 10000101 negative form

Page 2 of 5

(signed char) 127 01111111 largest

(signed char)-128 10000000 smallest
(signed char) '"\0"' 00000000 the null character
(signed char) '\a' 00000111 bell

(signed char) '"\b' 00001000 backspace
(signed char) "\f' 00001100 formfeed
(signed char) '\n' 00001010 newline

(signed char) '"\r' 00001101 carriage return
(signed char) "\t' 00001001 horizontal tab
(signed char) "\v' 00001011 vertical tab
(signed char) "\\' 01011100 backslash
(signed char) '\'"' 00100111 single quote

Type: unsigned char

Description: A non-negative integer. Usually represents a character according to a character
code (e.g., ASCII).

Size: 1 byte.
Example Variable Declaration:
unsigned char ucFirst;

Example Literals (assuming the ASCII code is used):

C Literal Binary Representation Note
(unsigned char) 'a' 01100001 character form
(unsigned char) 97 01100001 decimal form
(unsigned char) 0141 01100001 octal form

(unsigned char) 0x61 01100001 hexadecimal form
(unsigned char) "\ol41' 01100001 octal character form
(unsigned char) "\x61' 01100001 hexadecimal character form
(unsigned char)123 01111011 decimal form
(unsigned char) 255 11111111 largest

(unsigned char)0 00000000 smallest

(unsigned char) '\0' 00000000 the null character
(unsigned char) '\a' 00000111 bell

(unsigned char) '"\b' 00001000 backspace

(unsigned char) '\f' 00001100 formfeed

(unsigned char) '\n"' 00001010 newline

(unsigned char) "\r' 00001101 carriage return
(unsigned char) '\t' 00001001 horizontal tab
(unsigned char) '"\v' 00001011 vertical tab
(unsigned char) "\\' 01011100 backslash

(unsigned char) "\'"' 00100111 single quote

Type: char

Description:
On some systems "char" is the same as "signed char".
On some systems "char" is the same as "unsigned char".
On armlab with gcc2l17 "char" is the same as "unsigned char".

Type: short (or short int, or signed short, or signed short int)

Description: A (positive or negative) integer.

Size: System dependent. sizeof (short) <= sizeof (int). On armlab with gcc2l17: 2 bytes.
Example Variable Declarations:

short sFirst;
short int sSecond;

Page 3 of 5

signed short sThird;
signed short int sFourth;

Example Literals (assuming size is 2 bytes):

C Literal Binary Representation Note

(short) 123 00000000 01111011 decimal form
(short)-123 11111111 10000101 negative form
(short) 32767 01111111 11111111 largest
(short)-32768 10000000 00000000 smallest

(short) 0173
(short) 0x7B

00000000 01111011
00000000 01111011

octal form
hexadecimal form

Type: unsigned short (or unsigned short int)
Description: A non-negative integer.
Size: System dependent. sizeof (unsigned short) == sizeof (short). On armlab with gcc217:

Example Variable Declarations:

unsigned short usFirst;
unsigned short int usSecond;

Example Literals (assuming size is 2 bytes):

C Literal Binary Representation Note
00000000 01111011
00000000 01111011
00000000 01111011
11111111 11111111

00000000 00000000

(unsigned short) 123
(unsigned short)0173
(unsigned short)0x7B
(unsigned short) 65535
(unsigned short)O0

decimal form
octal form
hexadecimal form
largest

smallest

2 bytes.

Type: double
Description: A (positive or negative) double-precision floating point number.
Size: System dependent. On armlab with gcc2l7: 8 bytes.

Example Variable Declaration:
double dFirst;

Example Literals (assuming size is 8 bytes):

C Literal Note

123.456 fixed-point notation

1.23456E2 scientific notation

.0123456 fixed-point notation

1.234546E-2 scientific notation with negative exponent

-123.456 fixed-point notation

-1.23456E2 scientific notation with negative mantissa

-.0123456 fixed-point notation

-1.23456E-2 scientific notation with negative mantissa and negative exponent

1.797693E308
-1.797693E308
2.225074E-308

largest (approximate)
smallest (approximate)
closest to 0 (approximate)

Type: float

Description:

A (positive or negative) single-precision floating point number.

Page 4 of 5

Size:

System dependent.

sizeof (float) <= sizeof (double). armlab with gcc217: 4 bytes.

Example Variable Declaration:

float fFirst;
Example Literal
C Literal

123.456F
1.23456E2F
.0123456F
1.234546E-2F
-123.456F
-1.23456E2F
-.0123456F
-1.23456E-2F
3.402823E38F
-3.402823E38F
1.175494E-38F

s (assuming size is 4 bytes):
Note

fixed-point notation

scientific notation

fixed-point notation

scientific notation with negative exponent
fixed-point notation

scientific notation with negative mantissa
fixed-point notation

scientific notation with negative mantissa and negative exponent
largest (approximate)

smallest (approximate)

closest to 0 (approximate)

Type: long double
Description: A (positive or negative) extended-precision floating point number.
Size: System dependent. sizeof (long double) >= sizeof (double). On armlab with gcc2l17: 16 bytes.

Example Variabl
long double 1dF
Example Literal
C Literal

123.456L
1.23456E2L
.0123456L
1.234546E-2L
-123.456L
-1.23456E2L
-.0123456L
-1.23456E-2L
1.18973E4932L
-1.189731E4932L
3.3621E-4932L

e Declaration:

irst;

s (assuming size is 16 bytes):
Note

fixed-point notation

scientific notation

fixed-point notation

scientific notation with negative exponent
fixed-point notation

scientific notation with negative mantissa
fixed-point notation

scientific notation with negative mantissa and negative exponent
largest (approximate)

smallest (approximate)

closest to 0 (approximate)

Differences between C and Java:

Java only:

C only:

Java:

Java:

boolean, byte

unsigned char, unsigned short, unsigned int, unsigned long
long double

Sizes of all types are specified
Sizes of all types except char are system dependent

char comprises 2 bytes
char comprises 1 byte
Copyright © 2019 by Robert M. Dondero, Jr.

Page 5 of 5

sizes.c (Page 1 of 1)

OOk WN
e oo e es ee oo

o

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

/* __ */
/* sizes.c */
/* Author: Bob Dondero */
/* __ */

: #include <stdio.h>

/* Write the size, in bytes, of each fundamental data type
to stdout. Return 0. */

int main(void)

{

printf ("Bytes per char: %d\n",
(int)sizeof(char));

printf ("Bytes per unsigned char: $d\n",
(int)sizeof (unsigned char));

printf("Bytes per short: $d\n",
(int)sizeof(short));

printf("Bytes per unsigned short: %d\n",
(int)sizeof (unsigned short));

printf ("Bytes per int: $d\n",
(int)sizeof(int));

printf("Bytes per unsigned int: $d\n",
(int)sizeof (unsigned int));

printf ("Bytes per long: %d\n",
(int)sizeof(long));

printf("Bytes per unsigned long: $d\n",
(int)sizeof (unsigned long));

printf ("Bytes per size_t: $d\n",
(int)sizeof(size t));

printf ("Bytes per float: %d\n",
(int)sizeof(float));

printf ("Bytes per double: $d\n",
(int)sizeof (double));

printf ("Bytes per long double: $d\n",
(int)sizeof(long double));

printf ("Bytes per pointer: %d\n",
(int)sizeof (void*));

return 0;

}

/* Example execution:
S gcc2l7 sizes.c -o sizes

S ./sizes

Bytes per char:

Bytes per unsigned char:
Bytes per short:

Bytes per unsigned short:
Bytes per int:

Bytes per unsigned int:
Bytes per long:

Bytes per unsigned long:
Bytes per size t:

Bytes per float:

Bytes per double:

Bytes per long double:
Bytes per pointer:

*/

O~ 0 I oo™ ABDNNRKRRK

Grouped by Category:

Princeton University
COS 217: Introduction to Programming Systems

C Operators

Operator Precedence Category Description Associativity
++ 2 arithmetic Increment R to L
-= 2 arithmetic Decrement R to L
+ 2 arithmetic Unary positive R to L
- 2 arithmetic Unary negative R to L
* 3 arithmetic Multiplication L to R
/ 3 arithmetic Division L to R
% 3 arithmetic Modulus L to R
+ 4 arithmetic Addition L to R
- 4 arithmetic Subtraction L to R
= 14 assignment Assignment R to L
+= 14 assignment Addition and assignment R to L
- 14 assignment Subtraction and assignment R to L
*= 14 assignment Multiplication and assignment R to L
/= 14 assignment Division and assignment R to L
%= 14 assignment Modulus and assignment R to L
< 6 relational Less than L to R
<= 6 relational Less than or equal to L to R
> 6 relational Greater than L to R
>= 6 relational Greater than or equal to L to R
= 7 relational Equality L to R
|= 7 relational Inequality L to R
! 2 logical Logical “not” R to L
&& 11 logical Logical “and” L to R
|| 12 logical Logical “or” L to R
[] 1 pointer Array element select L to R
* 2 pointer Dereference R to L
& 2 pointer Address of R to L
-> 1 structure Structure dereference and field select L to R
1 structure Structure field select L to R
~ 2 bitwise Bitwise “not” R to L
<< 5 bitwise Bitwise shift left L to R
>> 5 bitwise Bitwise shift right L to R
& 8 bitwise Bitwise “and” L to R
~ 9 bitwise Bitwise “exclusive or” L to R
| 10 bitwise Bitwise “or” L to R
&= 14 bitwise Bitwise “and” and assignment R to L
N= 14 bitwise Bitwise “exclusive or” and assignment R to L
= 14 bitwise Bitwise “or” and assignment R to L
<<= 14 bitwise Bitwise left shift and assignment R to L
>>= 14 bitwise Bitwise right shift and assignment R to L
() 1 function Function call L to R
(type) 2 cast Cast R to L
sizeof 2 sizeof size of (compiletime) R to L
?: 13 ternary Conditional expression (ternary) R to L
, 15 sequence Sequence L to R

Page 1 of 2

Differences between C and Java

Java only:
>>> Right shift with zero extension
new Create an object

instanceof Is left operand an object of class right-operand?

C only:
-> structure member select
* dereference
& address of
, sequence
sizeof compile-time sizeof
Related to type boolean:
Java: Relational and logical operators evaluate to type boolean
C: Relational and logical operators evaluate to type int
Java: Logical operators take operands of type boolean
C: Logical operators take operands of type int

Related to class String:
Java: Operators + and += can concatenate string objects
C: Operators + and += do not concatenate string objects — because there are
no string objects

Java: Demotions are not automatic

C: Demotions are automatic
int 1i;
char c;
i=c; /* Implicit promotion. */

/* OK in Java and C. */

c = 1i; /* Implicit demotion. */
/* Java: Compiletime error. */
/* C: OK. Truncation without warning. */

Q
|

= (char)i; /* Explicit demotion. */
/* Java: Truncation without warning. */
/* C: Truncation without warning. */

Copyright © 2015 by Robert M. Dondero, Jr.

Page 2 of 2

Princeton University
COS 217: Introduction to Programming Systems
C Statements

Statement Type Statement Syntax Examples

Expression expression; i=25;
Statement printf ("Hello");
5; /* valid, but nonsensical */
Declaration modifiers datatype variable [= int 1i;
Statement initialvalue] [,variable [= int i, J;
initialvalue]]...; int 1 =5, j = 6;
const int 1i;
static int 1i;
extern int i;
Compound {statement statement ... } {
Statement int 1i;
(alias Block) i =25;
}
If if (integerexpr) statement; if (i == 5)
Statement if (pointerexpr) statement; {
statement;
statement;
}
Switch switch (integerexpr) switch (i)
Statement { {
case Integerconstant: statements case 1l: statement; break;
case integerconstant: statements case 2: statement; break;
default: statements default: statement;
} }
While while (integerexpr) statement while (1 < 5)
Statement while (pointerexpr) statement {
statement;
Statement;
}
DoWhile do statement while (integerexpr); do
Statement do statement while (pointerexpr); {
statement;
statement;
} while (1 < 5);
For for (initexpr; integerexpr; increxpr) for (1 = 0; i < 5; i++)
Statement statement {
for (initexpr; pointerexpr; increxpr) statement;
Statement statement;
}
Return return; return;
Statement return expr; return i1 + 5;
Break break; while (i < 5)
Statement {
statement;
if (3 == 6)
break;
statement;
}
Continue continue; while (1 < 5)
Statement {
statement;
if (j == 6)
continue;
statement;
}
Goto goto label; mylabel:
Statement .
goto mylabel;

Page 1 of 2

10

Differences between C and Java:

Expression Statement:
Java: Only expressions that have a side effect can be made into expression statements

C: Any expression can be made into an expression statement
Java: Has final variables
C: Has const variables

Declaration Statement:
Java: Compile-time error to use a local variable before specifying its value
C: Run-time error to use a local variable before specifying its value

Compound Statement:
Java: Declarations statements can be placed anywhere within compound statement

C: Declaration statements must appear before any other type of statement within compound
statement
If Statement
Java: Controlling expr must be of type boolean
C: Controlling expr must be of some integer type or a pointer (0 => FALSE, non-0 =>
TRUE)

While Statement
Java: Controlling expr must be of type boolean

C: Controlling expr must be of some integer type or a pointer (0 => FALSE, non-0 =>
TRUE)

DoWhile Statement
Java: Controlling expr must be of type boolean
C: Controlling expr must be of some integer type or a pointer (0 => FALSE, non-0 =>
TRUE)

For Statement
Java: Controlling expr must be of type boolean
C: Controlling expr must be of some integer type or a pointer (0 => FALSE,
non-0 => TRUE)
Java: Can declare loop control variable in initexpr
C: Cannot declare loop control variable in initexpr

Break Statement
Java: Also has "labeled break" statement
C: Does not have "labeled break" statement

Continue Statement

Java: Also has "labeled continue" statement

C: Does not have "labeled continue" statement
Goto Statement

Java: Not provided
C: Provided (but don’t use it!)

Copyright © 2016 by Robert M. Dondero, Jr.

Page 2 of 2

formattedio.c (Page 1 of 3)

o

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

OOk WN
e es es ee se s e

/* formattedio.c
/* Author: Bob Dondero

/* Read from stdin, and write to stdout, one literal of each

fundamental data type. Ignore the possibility of bad input.
Return 0. */

int main(void)

{

int iTypical;

unsigned int uiTypical;
long 1Typical;

unsigned long ulTypical;
short sTypical;

unsigned short usTypical;
char cTypical;

unsigned char ucTypical;
double dTypical;

float fTypical;

long double 1dTypical;

printf("\n");

printf("Enter a constant of type char:\n");

/* Place a space before %c to skip leading whitespace
characters. Do not place a space before $%c to read
whitespace characters. */

scanf (" %c", &cTypical);

printf("You entered %c.\n", (int)cTypical);

2
/* unsigned char

e
printf("\n");

printf("Enter a constant of type unsigned char:\n");

scanf (" %c", &ucTypical);

printf("You entered %c.\n", (unsigned int)ucTypical);

printf("\n");
printf("Enter a constant of type short:\n");
scanf("%hd", &sTypical);

printf("You entered $hd.\n", sTypical);

*/

*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

11

formattedio.c (Page 2 of 3)

64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:

printf("\n");
printf("Enter a constant of type unsigned short:\n");
scanf ("%hu", &usTypical);

printf("You entered %hu.\n", usTypical);

printf("\n");
printf("Enter a constant of type int:\n");
scanf("%d", &iTypical);

printf("You entered %d.\n", iTypical);

printf("\n");
printf("Enter a constant of type unsigned int:\n");
scanf("%u", &uiTypical);

printf("You entered %u.\n", uiTypical);

printf("\n");
printf("Enter a constant of type long:\n");
scanf("%1d", &lTypical);

printf("You entered %1d.\n", 1lTypical);

printf("\n");
printf("Enter a constant of type unsigned long:\n");
scanf("%1lu", &ulTypical);

printf("You entered %lu.\n", ulTypical);

printf("\n");
printf("Enter a constant of type float:\n");
scanf ("%f", &fTypical); /* %e or %g work identically. */

oo

printf("You entered
printf("You entered
printf("You entered
printf("You entered
printf("You entered

f.\n", (double)fTypical);
e.\n", (double)fTypical);
E.\n", (double)fTypical);
g
G

oP o°

o

.\n", (double)fTypical);
.\n", (double)fTypical);

o°

/* double

12

*/
*/

*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

*/

formattedio.c (Page 3 of 3) 13

127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:

printf("\n");
printf("Enter a constant of type double:\n");
scanf ("%1f", &dTypical); /* 8%le or %lg work identically. */

/* Note the assymmetry of the following with scanf(). */
printf("You entered %f.\n", dTypical);
printf("You entered %e.\n", dTypical);
printf("You entered $E.\n", dTypical);
printf("You entered %g.\n", dTypical);
printf("You entered %G.\n", dTypical);

e e */
/* long double */
R e */

printf("\n");
printf("Enter a constant of type long double:\n");
scanf ("$Lf", &ldTypical); /* 8Le or 8%Lg work identically. */

printf("You entered $Lf.\n", 1dTypical);
printf("You entered %$Le.\n", 1dTypical);
printf("You entered $LE.\n", 1ldTypical);
printf("You entered %Lg.\n", 1ldTypical);
printf("You entered %LG.\n", 1dTypical);

return 0;

	C Primitive Data Types
	Type: int (or signed int)
	Type: unsigned int
	Type: long (or long int or signed long or signed long int)
	Type: unsigned long (or unsigned long int)
	Type: signed char
	Type: unsigned char
	Type: short (or short int, or signed short, or signed short int)
	Type: unsigned short (or unsigned short int)
	Type: double
	Type: float
	Type: long double

