

Page 1 of 3

Linux System-Level Functions

Bash C Application Programs

Standard C Functions

Hardware

Linux

Princeton University
COS 217: Introduction to Programming Systems
The Linux Operating System and the Bash Shell

File Names and Directory Names
/dir1/.../dirN Absolute dname
dir1/.../dirN Relative dname
/dir1/.../file Absolute fname
dir1/.../file Relative fname

Special File Name and Directory Name Characters
fnameord*name * matches 0 or more characters
fnameord?name ? matches any single character
"fname or dname" " allows whitespace in a dname or fname
'fname or dname' ' allows whitespace in a dname or fname
fnameord\'name Backslash (escape) character allows special characters in a dname or fname
~loginid Home directory of loginid
~ Your home directory
.. Parent of working directory
. Working directory

A command marked with "(bash)" is a Bash built-in command. A command marked with "(ext)" causes Bash
to execute a program that is external to Bash, that is, a program that exists in the file system.

Command for Getting Help
man [section] pagename (ext) Write to stdout the manual page (from section) whose name is

pagename. Section 1 describes Linux commands (e.g. cat, ls). Section 2
describes Linux system-level functions (e.g. brk(), fork(), dup()). Section 3
describes standard C functions (e.g. printf(), strlen()).

Directory-Related Commands
pwd (bash, ext) Write (print) the name of the working directory to stdout
cd [dname] (bash) Make dname the working directory
ls [-la] [dname] (ext) List the contents of dname to stdout
ls [-la] [fname] (ext) List the attributes of fname to stdout
mkdir dname (ext) Create dname
rmdir dname (ext) Destroy the empty directory dname

1

Page 2 of 3

File-Related Commands
cat (ext) Concatenate (write) stdin to stdout
cat fname ... (ext) Concatenate (write) fname ... to stdout
more fname ... (ext) Write fname ... to stdout one screen at a time
less fname ... (ext) Write fname, ... to stdout one screen at a time

The man command pipes its output through less
xxd fname (ext) Hexdecimal dump fname to stdout
cp [-i] sourcefname targetfname (ext) Copy sourcefname to targetfname
cp [-i] sourcefname targetdname (ext) Copy sourcefname to targetdname
cp –r sourcedname targetdname (ext) Copy (recursively) sourcedname to targetdname
mv [-i] sourcefname targetfname (ext) Rename sourcefname to targetfname
mv [-i] sourcefname ... targetdname (ext) Move sourcefname ... to targetdname
rm [-i] fname ... (ext) Remove fname ...
rm –r [-i] dname [fname ...] (ext) Remove dname (recursively) and fname ...

Special Command Characters
command 0< fname
command < fname

Redirect stdin to fname

command 1> fname
command > fname

Redirect stdout to fname

command 2> fname Redirect stderr to fname
command 1> fname 2>&1 Redirect stdout and stderr to fname
command1 | command2 Pipe from command1 to command2
^d End of file
command & Run command as a background process
^z Turn my foreground process into a stopped background process
^c Send a SIGINT signal
 Scroll backward through the command history list
 Scroll forward through the command history list
^r Search (and browse) the command history that matches what is typed.
!prefix Reissue the most recently issued command that begins with prefix
!commandnum Reissue the command whose number is commandnum

Configuration Commands
source fname (bash) Execute the shell script in fname
export variable=value (bash) Set environment variable to value
export PATH=dname1:dname2:... (bash) Set the PATH environment variable indicating that Bash

should search dname1, dname2, ... to find commands that are
specified as relative fnames

export MANPATH=dname1:dname2:... (bash) Set the MANPATH environment variable indicating that
the man command should search dname1, dname2, ... to find
man pages

variable=value (bash) Set shell variable to value
PS1="\h:\w\$ " (bash) Set the PS1 shell variable to indicate that the command

prompt should contain the name of the host computer, a colon,
the name of the working directory, a dollar sign, and a space

set –o shelloption (bash) Turn on shelloption
set +o shelloption (bash) Turn off shelloption
set –o ignoreeof (bash) Turn on the ignoreeof shell option to indicate that ^D

entered at the Bash prompt should not terminate Bash
set –o noclobber (bash) Turn on the noclobber shell option to indicate that Bash

should not overwrite files via redirection
alias aliasname=string (bash) Create an alias definition such that aliasname as an

abbreviation for string
unalias aliasname (bash) Destroy the alias definition that defines aliasname

2

Page 3 of 3

File and Directory Permission Commands
id (ext) Write to stdout my login id and the group(s) to which I

belong
chmod mask fnameordname ... (ext) Set the permissions of fnameordname ... as indicated by

mask
chmod {u,g,o,a}{+,-}{r,w,x} fnameordname (ext) Set the permissions of fnameordname ... for its owner

(u), group (g), other (o), or all (a) by adding (+) or removing (-)
read (r), write (w), or execute (x) permissions

umask (Bash) Write to stdout the default permissions used when
creating new files and directories

umask mask (Bash) Set the default permissions used when creating new
files and directories as indicated by mask

Software Development Commands
emacs (ext) Create or edit a text file using the Emacs editor
gcc217 (ext) Preprocess, compile, assemble, and link a program using options appropriate for COS 217;

a variant of gcc
gdb (ext) Debug a program
make (ext) Build a program
ar (ext) Create an archive file containing object code
gprof (ext) Analyze the performance of a program

Miscellaneous Commands
history (bash) Write a numbered command history list to stdout
wc [fname ...] (ext) Write a count of characters, words, and lines in fname ... (or stdin) to stdout
date (ext) Write the date and time to stdout
printenv [variable] (ext) Write the definition of environment variable (or of all environment variables) to

stdout
echo [arg ...] (bash, ext) Write arg ... to stdout
who (ext) Write information about current users to stdout
grep pattern fname ... (ext) Write each line of fname that contains pattern to stdout
sort [fname] (ext) Write each line of fname (or stdin) in lexicographic order to stdout
diff fname1 fname2 (ext) Write an indication of the differences between the contents of fname1 and

fname2 to stdout
which command (ext) Search PATH for command, and write the dname where it was found to stdout

Process Control Commands
jobs (bash) Write the names and jobnums of my background processes to stdout
fg [%jobnum] (bash) Move my background process with the given jobnum to the foreground
bg [%jobnum] (bash) Turn my stopped background process into a running background

process
kill [–signal] %jobnum (bash) Send signal to my background process with the given jobnum
ps (ext) Display a list of my processes
kill [–signal] pid (ext) Send signal to the process whose id is pid
exit (bash) Exit Bash
logout (bash) Exit Bash and the terminal session

Copyright © 2020 by Robert M. Dondero, Jr. & Xiaoyan Li

3

.bash_profile (Page 1 of 1)
1: #---
2: # .bash_profile
3: #---
4:
5: source .bashrc

4

.bashrc (Page 1 of 1)
1: #---
2: # .bashrc
3: #---
4:
5: # Source global definitions
6: if [-f /etc/bashrc]; then
7: source /etc/bashrc
8: fi
9:
10: # User specific aliases and functions
11:
12: # Set the PATH environment variable.
13: export PATH=/u/cos217/bin/ARM/meminfo:$PATH
14: export PATH=/u/cos217/bin/critter2/bin:$PATH
15: export PATH=/u/cos217/bin/ARM:$PATH
16: export PATH=/u/cos217/bin:$PATH
17:
18: # Set the MANPATH environment variable.
19: export MANPATH=/usr/share/man:/u/cos217/man
20:
21: # Set the default permission for new files to rwx------.
22: umask 077
23:
24: # Set the terminal type so applications (e.g. emacs) use color.
25: export TERM=xterm-color
26:
27: # Make the command line history ignore duplicate command lines.
28: history_control=ignoredups
29:
30: # Make the command line history show dates and times.
31: export HISTTIMEFORMAT="%F %T "
32:
33: # Set the shell prompt. See the bash man page for a description
34: # of special characters.
35: if [! "$LOGIN_SHELL"]; then
36: PS1="\[\e[32m\]\h:\w\\[\e[0m\]$ "
37: fi
38:
39: # Establish a safe environment.
40: set -o ignoreeof # Do not log out with <ctrl-d>
41: set -o noclobber # Do not overwrite files via ’>’
42: alias rm="rm -i" # Prompt before removing files via rm
43: alias cp="cp -i" # Prompt before overwriting files via cp
44: alias mv="mv -i" # Prompt before overwriting files via mv
45:
46: # Create aliases for commonly used commands.
47: alias ls="ls -a --color=tty"
48: alias ll="ls -al --color=tty"
49: alias xxd="xxd -g1"
50:
51: # Make the sort program behave in the traditional way.
52: export LC_ALL=C

5

Page 1 of 9

Princeton University
COS 217: Introduction to Programming Systems

Emacs Tutorial and Reference

Part 1: Tutorial

This tutorial describes how to use a minimal subset of the emacs editor. See the emacs reference in Part
2 of this document for more information. Also see the GNU Emacs Tutorial document at
http://www.gnu.org/software/emacs/tour. Throughout the tutorial text in boldface indicates hands-on
activities.

The tutorial assumes that you've copied the file /u/cos217/.emacs to your home directory, as
described in the A Minimal COS 217 Computing Environment handout from our first precept. It also
assumes that you've copied files named hello.c, circle.c, and testintmath.c into your working
directory. (Those files contain C programs that we'll describe in upcoming precepts.) Those files are
available in the directory /u/cos217/emacstestfiles. You can issue this command to copy them
to your working directory:

cp /u/cos217/emacstestfiles/* .

Background

The emacs editor was created in the mid 1970s by Richard Stallman. Originally it was a set of "editing
macros" for an editor that now is extinct.

The emacs editor is popular, for a few reasons. It is:

• Free. It's a component of the GNU tool set from the Free Software Foundation.
• Highly customizable. Emacs is written in the LISP programming language, and is easy to

customize via that language.
• Integrated with other GNU software. In particular, emacs is integrated with the Bash history

mechanism. Essentially you can think of the Bash history list as a "file"; you can use Emacs
commands to scroll through and edit that file, and thereby easily reissue previous commands or
variants thereof. Emacs also is integrated with the gcc compiler driver, as this tutorial describes.
Finally, and probably most importantly, Emacs is integrated with the gdb debugger. A future
precept will describe that integration.

The emacs editor is modal. That is, at any given time, emacs is in one of several modes. In the COS 217
course you will use C mode, Assembler mode, Text mode, and Fundamental mode. Emacs determines its
mode based upon filename extensions. If the current file has a name whose extension is .c, then emacs is
in C mode. If the current file has a name whose extension is .s, then emacs is in Assembler mode. If the
current file has a name whose extension is .txt, then emacs is in Text mode. If the current file has a
name which does not have an extension, then emacs is in Fundamental mode. This tutorial uses C mode.

Launching emacs

To launch emacs, issue the emacs command followed by the name of the file that you wish to create or
edit. For example, issue this command at the Bash prompt:

emacs testintmath.c

6

http://www.gnu.org/software/emacs/tour

Page 2 of 9

emacs loads the contents of the testintmath.c into a buffer in memory, and displays that buffer in the
window. It places the point over the first character in the first line of the buffer.

Note the emacs terminology: A buffer is an area of memory. A window is a graphical entity that displays
the contents of a specified buffer. The point is a small gray box which overlays a character, thus indicating
which character is the "current" character.

Notation

Throughout this document:

• Esc somechar means "type the Esc key followed by the somechar key."
• Ctrl-somechar means "type the somechar key while holding down the Ctrl key."

for any character somechar.

Incidentally, on a PC Alt-somechar (that is, typing the somechar key while holding down the Alt key)
has the same effect in emacs as ESC somechar does. On a Mac that's true if and only if you have
configured your Terminal application appropriately. To do that, from the Terminal application's menu
choose Terminal | Preferences... | Settings | Keyboard and make sure the "Use
option as meta key" checkbox is checked.

The .emacs File

When you launch emacs, it looks for a file named .emacs in your home directory. If emacs finds that
file, it assumes that the file contains configuration function calls, and executes them.

Take a look at the .emacs file that you copied to your home directory. Issue the command
cat .emacs to do that. The file is thoroughly commented; please study it at your leisure. In particular,
note this line:

(setq c-default-style "ellemtel")

As described below, emacs automatically indents your C code according to whatever indentation style you
specify. That line sets the indentation style to ellemtel. The commented-out lines that immediately
follow in the .emacs file show the names of some other styles. Any of those styles is fine in the context
of the COS 217 course. Experiment! See which you like best.

Calling Functions

In emacs, all work is accomplished by calling functions. The syntax for calling a function is:

Esc x function

For example, the forward-char function moves the point forward one character:

Esc x forward-char

emacs moves the point forward one character within the buffer each time you call the forward-char
function. Call forward-char a few times.

7

Page 3 of 9

Clearly there must be a better way to move the point! More generally, there must be a better way to call
often-used functions.

Key Bindings

There indeed is a better way. The most often-used functions are bound to keystrokes. For example, the
forward-char function is bound to the keystroke Ctrl-f. Type Ctrl-f a few times. The
forward-char function also is bound to the right-arrow key. Type the right-arrow key a few times.

Many keystrokes are bound by default. You also can bind your own, typically by placing a function call of
this form in your .emacs file:

(global-set-key keystrokes 'function)

But few new emacs users create their own keystroke bindings.

Moving the Point

The simplest way to move the point is via the forward-char, backward-char, next-line and
previous-line functions, each of which is bound to an arrow key. Type the arrow keys to move the
point right, left, down, and up several times.

The beginning-of-line and end-of-line functions have intuitive meanings. They are bound to
the Ctrl-a and Ctrl-e keystrokes, respectively. They may also be bound to the Home and End keys,
respectively; but Home and End may or may not work with your terminal emulation software. Type
Ctrl-a, Ctrl-e, Home, and End several times.

Perhaps counter-intuitively, the scroll-up function moves the window downward in the buffer;
equivalently, it moves the buffer upward in the window. The scroll-up function is bound to Ctrl-v,
and also may be bound to the PageDn key. The scroll-down function moves the window upward in
the buffer. That is, it moves the buffer downward in the window. The scroll-down function is bound to
ESC v, and also may be bound to the PageUp key. Type Ctrl-v, PageDn, ESC v, and PageUp
several times.

The end-of-buffer function moves the point to the end of the buffer; it is bound to Esc >. The
beginning-of-buffer function moves the point to the beginning of the buffer; it is bound to the Esc
<. Type Esc > and Esc < several times.

The goto-line function allows you to specify, by number, the line to which the point should be moved.
It is bound to the Ctrl-x l (that's Ctrl-x followed by the "ell" key) keystroke sequence. Type Ctrl-x
l, followed by some reasonable line number, followed by the Enter key.

Inserting and Deleting

To insert a character, move the point to the character before which the insertion should occur, and then type
the character. Move the point to some arbitrary spot in the buffer, and type some characters.

The c-electric-backspace function (bound to the Backspace key) deletes the character before
the point. Move the point to some arbitrary spot in the buffer, and type Backspace several times.
The c-electric-delete-forward function (bound to Ctrl-d) deletes the character at the point.
Move the point to some arbitrary spot in the buffer, and type Ctrl-d several times.

8

Page 4 of 9

To delete a line, move the point to the beginning of the line and then call the kill-line function (bound
to Ctrl-k). Calling the function once kills the characters comprising the line, but not the line's end-of-
line mark. Calling the function a second time also kills the end-of-line mark. Move the point to the
beginning of some arbitrary line, and type Ctrl-k several times.

Actually, the kill-line function doesn't completely discard the line that it kills; instead it moves the
line to the emacs clipboard. The yank function (bound to Ctrl-y) copies (yanks) the line from the
emacs clipboard into the buffer at the point. The combination of the kill-line and yank functions
provides a single-line cut-and-paste functionality, as this sequence illustrates:

• Move the point to the beginning of some non-empty line that you wish to move.
• Type Ctrl-k twice.
• Move the point.
• Type Ctrl-y.

For multiple-line cut-and-paste, you must know about emacs regions. A region is an area of text that is
bounded by the point and the mark. The set-mark-command function (bound to Ctrl-Space) sets
the mark. The kill-region function (bound to Ctrl-w) moves the region to the emacs clipboard;
effectively it wipes out the region. This sequence illustrates moving multiple contiguous lines from one
place to another in the buffer:

• Move the point to the beginning of the first line that you wish to move.
• Type Ctrl-Space to set the mark.
• Move the point to the end of the last line that you wish to move. Note that emacs highlights

the region thus bounded by the point and the mark.
• Type Ctrl-w to wipeout the region. emacs moves the region to its clipboard.
• Move the point to some spot in the buffer
• Type Ctrl-y to yank (that is, copy) the text from the clipboard to the buffer at the point.

(Note that the "minimal computing environment" described in our first precept is completely mouseless.
To use the mouse (or a touch pad) with emacs, you can install an X Window System Server on your
computer, as described in a forthcoming message.)

Saving and Exiting

The save-buffer function (bound to Ctrl-x Ctrl-s) saves the buffer, that is, copies the contents of
the buffer to its file on disk. Type Ctrl-x Ctrl-s to save the buffer to the testintmath.c file.
As its name implies, the save-buffers-kill-emacs function (bound to Ctrl-x Ctrl-c) saves
all emacs buffers to their respective files on disk, and exits emacs. (The section of this tutorial entitled
Managing Windows and Buffers describes how you can use more than one emacs buffer simultaneously.)
Type Ctrl-x Ctrl-c to exit emacs, thus returning to the Bash prompt.

Indenting

At this point testintmath.c probably is seriously mangled. So recopy the testintmath.c file
from the /u/cos217/emacstestfiles directory to your working directory. Then issue the
command emacs testintmath.c to relaunch emacs to edit the testintmath.c file.

emacs automatically indents C code as you type it, according to the indentation style that you specified in
your .emacs file.

9

Page 5 of 9

The c-indent-command function (bound to the Tab key) indents the current line according to the
chosen indentation style. Note that the Tab key does not insert a tab character into your file; rather it
indents the current line. Intentionally mal-indent a line, move the point to any spot within that line,
and type the Tab key.

The indent-all function (bound to Ctrl-x p because it indents your code perfectly) indents all lines
of the buffer according to the chosen indentation style. Intentionally mal-indent multiple lines scattered
throughout the buffer, and then type Ctrl-x p.

Searching and Replacing

The isearch-forward function (bound to Ctrl-s) incrementally searches forward through the buffer
for the text that you specify. This sequence illustrates:

• Move the point to the beginning of the buffer.
• Type Ctrl-s, followed by the text "i1"
• Type Ctrl-s repeatedly.
• Move the point, thereby ending the search.

The similar isearch-backward function (bound to Ctrl-r) incrementally searches backward.

The query-replace function (bound to Esc %) incrementally replaces the "old" text that you specify
with the "new" text that you specify. During execution of the function, typing y commands emacs to
perform the replacement and continue executing the function, n commands emacs to skip the replacement
and continue executing the function, ! commands emacs to perform all replacements and stop executing
the function, and q commands emacs to stop (quit) executing the function. For example:

• Move the point to the beginning of the buffer
• Type Esc %, followed by "i1", followed by "xxx".
• Type "y" and "n" a few times.
• Type "q".
• Move the point to the beginning of the buffer.
• Type Esc %, followed by "xxx", followed by "i1".
• Type "!".

Managing Windows and Buffers

Recall that, in emacs jargon, a buffer is a region of memory, and a window is a graphical area which
displays the contents of a buffer. So far in this tutorial you've used only one buffer and one window. More
generally, at any given time, emacs will be managing multiple buffers and will be displaying some (but
not necessarily all) of them in windows.

To find a file means to load it into a buffer. The find-file function (bound to Ctrl-x Ctrl-f) finds
the file whose name you provide. Type Ctrl-x Ctrl-f hello.c followed by the Enter key to
load the hello.c file into a buffer. Then type Ctrl-x Ctrl-f circle.c followed by the Enter
key to load the circle.c file into a buffer. At this point emacs is managing three buffers; one of them
is displayed in a window.

The split-window-vertically function (bound to Ctrl-x 2) splits the current window into two
windows, each of which displays the same buffer. Type Ctrl-x 2 to split the current window into two
windows. The other-window function (bound to Ctrl-x o) moves the point to the other window.
Type Ctrl-x o a few times to move the point back-and-forth between the two windows. Now type

10

Page 6 of 9

Ctrl-x Ctrl-f testintmath.c to find the testintmath.c file. At this point emacs is
managing three buffers; two of them are displayed in emacs windows.

The delete-other-window function (bound to Ctrl-x 1) deletes the other window (that is, the
window in which the point does not reside), thus returning emacs to its default one-window state. Type
Ctrl-x o as necessary to move the point to the window that displays the testintmath.c buffer.
Type Ctrl-x 1 to delete the window that displays the circle.c buffer, leaving only the window that
displays the testintmath.c buffer. At this point emacs is managing three buffers; only one of them –
the testintmath.c buffer – is displayed in a window.

With today's windowing operating systems, the ability of emacs to manage multiple windows is less
important than it used to be. However, you must know about emacs windows to (1) use gdb within
emacs, as will be described in an upcoming precept, and (2) build within emacs, as described in the next
section of this tutorial.

Building

Most COS 217 students build (that is, preprocess, compile, assemble, and link) C programs by issuing the
gcc217 command at the shell prompt. An alternative is to build C programs by issuing the gcc217
command from within emacs. The alternative approach is optional in the COS 217 course.

The compile function (no keystroke binding) builds a C program from within emacs using whatever
command you specify. This sequence illustrates:

• Intentionally introduce some compile-time errors into testintmath.c. Specifically, change
the return type of the gcd() function from int to it, and change the last line of the gcd()
function from return iFirst to retrn iFirst.

• Type Ctrl-x Ctrl-s to save the testintmath.c buffer to disk.
• Type Esc x compile. emacs assumes that you wish to use the make –k command to build.

At this point in the course, that's incorrect. So type the Backspace key repeatedly to delete
that command. Then type:
gcc217 testintmath.c –o testintmath.

• Type the Enter key. emacs opens a compilation window, displaying error messages.
• Type Ctrl-x o to move the point to the compilation window.
• Move the point to one of the error messages, and type the Enter key. emacs moves the

point to the other window, to the offending line.
• Correct the offending line.
• Use the same approach to correct the second offending line, and thus build successfully.

Miscellaneous Functions

The undo function (bound to Ctrl-_) undoes the previously executed function. Move the point to some
arbitrary spot in the buffer, type the Backspace key to delete a character, and then type Ctrl-_ to
undo that change.

The keyboard-quit function (bound to Ctrl-g) aborts a multi-keystroke function call. Type Ctrl-
x to begin a keystroke sequence that calls a function; then type Ctrl-g to abort the function call. Type
Esc x to begin a keystroke sequence that calls a function; then type Ctrl-g to abort the function call.

The linum function (bound to Ctrl-x n) toggles the display of line numbers on the left side of the
window. Type Ctrl-x n to display line numbers; then type Ctrl-x n to undisplay them.

11

Page 7 of 9

Type Ctrl-x Ctrl-c to save all buffers and exit emacs, thus ending the tutorial.

12

Page 8 of 9

Part 2: Reference

This reference assumes that emacs is configured using the .emacs file provided to COS 217 students.

To type Ctrl-somechar (for any character somechar), type the somechar key while holding down the Ctrl key. To type Esc
somechar (for any character somechar), type the Esc key followed by the somechar key.

On a PC using PuTTY, typing Alt- somechar has the same effect as typing Esc somechar. On a Mac that's true if and only if
you have configured your Terminal application appropriately. To do that, from the Terminal application's menu choose Terminal |
Preferences... | Settings | Keyboard and make sure the "Use option as meta key" checkbox is checked.

In emacs all work is accomplished by calling functions. To call a function, type Esc x function. Many functions are bound to
keystrokes. Commonly used functions are in boldface.

Moving the Point

Binding Function Description
→ forward-char Move the point forward one character
← backward-char Move the point backward one character
↓ next-line Move the point to the next line
↑ previous-line Move the point to the previous line
Ctrl-f forward-char Move the point forward one character
Ctrl-b backward-char Move the point backward one character
Ctrl-n next-line Move the point to next line
Ctrl-p previous-line Move the point to previous line
Esc f forward-word Move the point to next word
Esc b backward-word Move the point to previous word
Home beginning-of-line Move the point to beginning of line (but not with some terminal apps)
End end-of-line Move the point to end of line (but not with some terminal apps)
Ctrl-a beginning-of-line Move the point to beginning of line
Ctrl-e end-of-line Move the point to end of line
Esc a c-beginning-of-statement Move the point to the beginning of C statement
Esc e c-end-of-statement Move the point to the end of C statement
PageDn scroll-up Move the point to next page (but not with some terminal apps)
PageUp scroll-down Move the point to previous page (but not with some terminal apps)
Ctrl-v scroll-up Move the point to next page
Esc v scroll-down Move the point to previous page
Esc < beginning-of-buffer Move the point to beginning of the buffer
Esc > end-of-buffer Move the point to end of the buffer
Esc Ctrl-a beginning-of-defun Move the point to beginning of the C function
Esc Ctrl-e end-of-defun Move the point to end of the C function
Ctrl-x l line goto-line Move the point to line whose number is line

Inserting and Deleting

Binding Function Description
Bsp c-electric-backspace Delete the character before the point
Esc Bsp backward-kill-word Delete the characters from the point to the beginning of the word
Ctrl-d c-electric-delete-forward Delete the character at the point
Ctrl-k kill-line Cut the current line
Ctrl-Sp set-mark-command Set the mark at the point
Ctrl-x Ctrl-x exchange-point-and-mark Exchange the mark and the point
Ctrl-x h mark-whole-buffer Set the point at the beginning and the mark at the end of the buffer
Ctrl-w kill-region Cut the region denoted by the mark and the point
Esc w kill-ring-save Copy the region denoted by the mark and the point
Ctrl-y yank Paste the previously cut/copied region at the point

Saving and Exiting

Binding Function Description
Ctrl-x Ctrl-s save-buffer Save the current buffer to its file
Ctrl-x Ctrl-w file write-file Write the current buffer to file
Ctrl-x Ctrl-q vc-toggle-read-only Toggle the current buffer between read-only and read/write

13

Page 9 of 9

Ctrl-x Ctrl-c save-buffers-kill-emacs Save all buffers and exit Emacs

Indenting

Binding Function Description
Ctrl-c . c-set-style Set the C indentation style to the specified one
TAB c-indent-command Indent the current line of the C program
Esc Ctrl-\ indent-region Indent the region of the C program denoted by the mark and the point
Ctrl-x p indent-all Indent all lines of the C program (i.e. indent the program perfectly)

Searching and Replacing

Binding Function Description
Ctrl-s string isearch-forward Search forward for string
Ctrl-r string isearch-backward Search backward for string
Esc % old new query-replace

Replace the old string with the new one
 y => replace
 n => skip
 ! => replace all
 q => quit

Managing Windows and Buffers

Binding Function Description
Ctrl-x Ctrl-f file find-file Load file into a buffer
Ctrl-x Ctrl-r file find-file-read-only Load file into a buffer for read only
Ctrl-x 2 split-window-vertically Split the current window into two windows arranged vertically
Ctrl-x o other-window Move the point to the other window
Ctrl-x 3 split-window-horizontally Split the current window into two windows arranged horizontally
Ctrl-x 0 delete-window "Undisplay" the current window
Ctrl-x 1 delete-other-windows "Undisplay" all windows except the current one
Ctrl-x Ctrl-b list-buffers Display a new window listing all buffers
Ctrl-x b file switch-to-buffer Load file into a buffer if necessary, and then display that buffer in the current

window

Building and Debugging

Binding Function Description
 compile command Build the program using command
 gdb executablefile Launch the GDB debugger to debug executablefile

Miscellaneous

Binding Function
Ctrl-x u undo Undo the previous change
Ctrl-_ undo Undo the previous change
Ctrl-g keyboard-quit Abort the multi-keystroke command
Ctrl-h help-command Access the Emacs help system
Esc ` tmm-menubar Access the Emacs menu
Ctrl-x n linum Display/undisplay a line number before each line

Copyright © 2018 by Robert M. Dondero, Jr.

14

