
11/12/20

1

COS 217: Introduction to Programming Systems

Performance Improvement
“Premature optimization is the root of all evil.”

– Donald Knuth

“Rules of Optimization:
Rule 1: Don't do it.
Rule 2 (for experts only): Don't do it yet.”
– Michael A. Jackson

1

“Programming in the Large”
Design & Implement

•Program & programming style (done)
•Common data structures and algorithms (done)
•Modularity (done)
•Building techniques & tools (done)

Debug
•Debugging techniques & tools (done)

Test
•Testing techniques (done)

Maintain
•Performance improvement techniques & tools ¬ we are here

2

2

Goals of this Lecture

Help you learn about:
• How to use profilers to identify code hot-spots
• How to make your programs run faster

Why?
• In a large program, typically a small fragment of the code consumes most of the CPU time
• Identifying that fragment is likely to identify the source of inadequate performance
• Part of “programming maturity” is being able to recognize

common approaches for improving the performance of such code fragments
• Part of “programming maturity” is also being able to recognize

what is worth your time to improve and what is already “good enough”

3

3

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

4

4

Performance Improvement Pros

Techniques described in this lecture can answer:

Similar techniques (not discussed) can address:
• How can I make my program use less memory?

5
@chuttersnap @markuswinkler @emilymorter Peabody Awards via Wikimedia

5

Performance Improvement Cons

Techniques described in this lecture can yield code that:
•Is less clear/maintainable
•Might confuse debuggers
•Might contain bugs

• Requires regression testing

So…

6
https://www.linusakesson.net/programming/kernighans-lever/ ; https://plauger.com/

‘65

6

https://unsplash.com/@chuttersnap
https://unsplash.com/@markuswinkler
https://unsplash.com/@emilymorter
https://commons.wikimedia.org/wiki/File:Alex_Trebek_2012.jpg
https://www.linusakesson.net/programming/kernighans-lever/
https://plauger.com/

11/12/20

2

When to Improve Performance
“The first principle of optimization is

don’t.
Is the program good enough already?
Knowing how a program will be used

and the environment it runs in,
is there any benefit to making it faster?”

-- Kernighan & Pike7

7

Timing a Program
Run a tool to time program execution

•E.g., Unix time command

Output:
•Real: Wall-clock time between program invocation and termination
•User: CPU time spent executing the program
•System: CPU time spent within the OS on the program’s behalf

$ time sort < bigfile.txt > output.txt
real 0m12.977s
user 0m12.860s
sys 0m0.010s

8

8

Enabling Compiler Optimization
Enable compiler speed optimization
gcc217 –Ox mysort.c –o mysort
•Compiler looks for ways to transform your code so that

result is the same but it runs faster
•x controls how many transformations the compiler tries –

see “man gcc” for details
• -O0: do not optimize (default if –O not specified)
• -O1: optimize (default if –O but no number is specified)
• -O2: optimize more (longer compile time)
• -O3: optimize yet more (including inlining)

Warning: Speed optimization can affect debugging
•e.g., Optimization eliminates variable Þ

GDB cannot print value of variable9

9

Now What?

So you’ve determined that your program is taking too long, even
with compiler optimization enabled (and NDEBUG defined, etc.)

Is it time to completely rewrite the program?

10
@mipavelk

10

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

11

11

Identifying Hot Spots
Spend time optimizing only the parts of the program

that will make a difference!

Gather statistics about your program’s execution

•Coarse-grained: how much time did execution of a particular function call take?
• Time individual function calls or blocks of code

•Fine-grained: how many times was a particular function called?
How much time was taken by all calls to that function?
• Use an execution profiler such as gprof

12

12

https://unsplash.com/@mipavelk

11/12/20

3

Timing Parts of a Program
Call a function to compute wall-clock time consumed

•Unix gettimeofday() returns time in seconds + microseconds

•Not defined by C90 standard

#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);
<execute some code here>
gettimeofday(&endTime, NULL);
wallClockSecondsConsumed =

endTime.tv_sec - startTime.tv_sec +
1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

13

13

Timing Parts of a Program (cont.)
Call a function to compute CPU time consumed

•clock() returns CPU times in CLOCKS_PER_SEC units

•Defined by C90 standard

#include <time.h>

clock_t startClock;
clock_t endClock;
double cpuSecondsConsumed;

startClock = clock();
<execute some code here>
endClock = clock();
cpuSecondsConsumed =

((double)(endClock - startClock)) / CLOCKS_PER_SEC;

14

14

Identifying Hot Spots
Spend time optimizing only the parts of the program

that will make a difference!

Gather statistics about your program’s execution

•Coarse-grained: how much time did execution of a particular function call take?
• Time individual function calls or blocks of code

•Fine-grained: how many times was a particular function called?
How much time was taken by all calls to that function?
• Use an execution profiler such as gprof

15

15

GPROF Example Program
Example program for GPROF analysis

•Sort an array of 10 million random integers
•Artificial: consumes lots of CPU time, generates no output

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

enum {MAX_SIZE = 10000000};
int a[MAX_SIZE];

void fillArray(int a[], int size)
{ int i;

for (i = 0; i < size; i++)
a[i] = rand();

}

void swap(int a[], int i, int j)
{ int temp = a[i];

a[i] = a[j];
a[j] = temp;

}
…

…
int part(int a[], int left, int right)
{ int first = left-1;

int last = right;
for (;;)
{ while (a[++first] < a[right]) ;

while (a[right] < a[--last])
if (last == left)

break;
if (first >= last)

break;
swap(a, first, last);

}
swap(a, first, right);
return first;

}
…16

16

GPROF Example Program (cont.)

…
void quicksort(int a[], int left, int right)
{ if (right > left)

{ int mid = part(a, left, right);
quicksort(a, left, mid - 1);
quicksort(a, mid + 1, right);

}
}

int main(void)
{ fillArray(a, MAX_SIZE);

quicksort(a, 0, MAX_SIZE - 1);
return 0;

}

17

Example program for GPROF analysis
•Sort an array of 10 million random integers
•Artificial: consumes lots of CPU time, generates no output

17

Using GPROF
Step 1: Instrument the program

gcc217 –pg mysort.c –o mysort
• Adds profiling code to mysort, that is…
• “Instruments” mysort

Step 2: Run the program
./mysort

• Creates file gmon.out containing statistics

Step 3: Create a report

gprof mysort > myreport
• Uses mysort and gmon.out to create textual report

Step 4: Examine the report
cat myreport

18

18

11/12/20

4

The GPROF Report

•Each line describes one function
• name: name of the function
• %time: percentage of time spent executing this function
• cumulative seconds: [skipping, as this isn’t all that useful]
• self seconds: time spent executing this function
• calls: number of times function was called (excluding recursive)
• self s/call: average time per execution (excluding descendants)
• total s/call: average time per execution (including descendants)

% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 part
9.33 2.53 0.25 54328749 0.00 0.00 swap
2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray

20

20

The GPROF Report (cont.)
Call graph profile

index % time self children called name
<spontaneous>

[1] 100.0 0.00 2.68 main [1]
0.08 2.53 1/1 quicksort [2]
0.07 0.00 1/1 fillArray [5]

13330614 quicksort [2]

0.08 2.53 1/1 main [1]
[2] 97.4 0.08 2.53 1+13330614 quicksort [2]

2.27 0.25 6665307/6665307 part [3]
13330614 quicksort [2]

2.27 0.25 6665307/6665307 quicksort [2]

[3] 94.4 2.27 0.25 6665307 part [3]
0.25 0.00 54328749/54328749 swap [4]

0.25 0.00 54328749/54328749 part [3]

[4] 9.4 0.25 0.00 54328749 swap [4]

0.07 0.00 1/1 main [1]
[5] 2.6 0.07 0.00 1 fillArray [5]

21

21

The GPROF Report

•Each line describes one function
• name: name of the function
• %time: percentage of time spent executing this function
• cumulative seconds: [skipping, as this isn’t all that useful]
• self seconds: time spent executing this function
• calls: number of times function was called (excluding recursive)
• self s/call: average time per execution (excluding descendants)
• total s/call: average time per execution (including descendants)

% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 part
9.33 2.53 0.25 54328749 0.00 0.00 swap
2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray

23

23

Agenda

Should you optimize?

What should you optimize?

Optimization techniques

25

25

Using Better Algs and DSs

Use a better algorithm or data structure
•e.g., would a different sorting algorithm work better?

See COS 226 …
•But only where it would really help!

Not worth using asymptotically efficient algorithms and
data structures that are {complex, hard-to-understand,
hard-to-maintain, …} if they will not make any difference anyway!

26

26

27

four fs’ sake
Q: Could a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No

B.

int g(int x)
{ return f(x) + f(x) + f(x) + f(x);
}

int g(int x)
{ return 4 * f(x);
}

Before:

After:

27

11/12/20

5

Aside: Side Effects as Blockers

Suppose f() has side effects?

int g(int x)
{ return f(x) + f(x) + f(x) + f(x);
}

int g(int x)
{ return 4 * f(x);
}

int counter = 0;
...
int f(int x)
{ return counter++;
}

And f() might be defined in
another file known only at link
time!

28

28

29

Q: Could a good compiler do this optimization for you?

A. Yes

B. Only sometimes

C. No

Probably A.

for (i = 0; i < n; i++)
{ ni = n * i;

for (j = 0; j < n; j++)
a[ni + j] = b[j];

}

After:

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[j];
Before:

29

Avoiding Repeated Computation

for (i = 0; i < strlen(s); i++)
{ /* Do something with s[i] */
}

length = strlen(s);
for (i = 0; i < length; i++)
{ /* Do something with s[i] */
}

Could a good
compiler do that
for you?

Before:

After:

30

30

31

Sydney Bristow asks …
Q: Could a good compiler do this optimization for you?

void twiddle(int *p1, int *p2)
{ *p1 += *p2;

*p1 += *p2;
}

void twiddle(int *p1, int *p2)
{ *p1 += *p2 * 2;
}

Before:

After:
A. Yes

B. Only sometimes

C. No

C.

31

Aside: es as Blockers

What if p1 and p2 are aliases?
•What if p1 and p2 point to the same integer?
•First version: result is 4 times *p1
•Second version: result is 3 times *p1

C99 supports the restrict keyword
•e.g., int * restrict p1

void twiddle(int *p1, int *p2)
{ *p1 += *p2;

*p1 += *p2;
} void twiddle(int *p1, int *p2)

{ *p1 += *p2 * 2;
}

32

32

Inlining Function Calls

void g(void)
{ /* Some code */
}
void f(void)
{ …

g();
…

}

void f(void)
{ …

/* Some code */
…

}

Before:

After:

Beware: Can introduce redundant/cloned code
Some compilers support inline keyword

Could a good
compiler do that
for you?

33

33

11/12/20

6

Unrolling Loops

for (i = 0; i < 6; i++)
a[i] = b[i] + c[i];

for (i = 0; i < 6; i += 2)
{ a[i] = b[i] + c[i];

a[i+1] = b[i+1] + c[i+1];
}

a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];
a[i+4] = b[i+4] + c[i+4];
a[i+5] = b[i+5] + c[i+5];

Could a good
compiler do that
for you?

Original:

Some compilers provide option, e.g. –funroll-loops

Maybe
faster:

Maybe
even
faster:

34

34

Using a Lower-Level Language

Rewrite code in a lower-level language
•As described in this module of the course …
•Compose key functions in assembly language instead of C

• Use registers instead of memory
• Use instructions (e.g. adc) that compiler doesn’t know

Beware!
Modern optimizing compilers generate fast code
•Hand-written assembly language code could be slower!

35

35

Summary

Steps to improve execution (time) efficiency:
•Don't do it.
•Don't do it yet.
•Time the code to make sure it's necessary
•Enable compiler optimizations
•Identify hot spots using profiling
•Use a better algorithm or data structure
•Identify common inefficiencies and bad idioms
•Fine-tune the code

36

36

