-

COS 217: Introduction to Programming Systems

~N

Assignment 5

(@ryanjohng

% PRINCETON UNIVERSITY

https://unsplash.com/@ryanjohns

-
The wc command

If the file named proverb contains these characters:

Learninggisga,
treasuregwhich,
accompaniesgits,
owner_everywhere. ,
--zChinesegproverb,

then the command:

S wc < proverb
writes this line to stdout:

2 5 12 82
_ | @danieltuttle J

https://unsplash.com/@danieltuttle

-

Part 1a Task

The given mywc. c file contains a C program that implements the
subset of the wc command described above.

Translate that program into ARMv8 assembly language, thus
creating a file named mywc.s. Your mywcC. S program must be an

accurate translation of mywc. C. e

-

Part 1b Task

Compose data files (patterned mywc*. txt) that,
when read by your mywc. s program, perform:

* boundary tests
e statement tests
* stress tests

Describe your test files’ testing characteristics and the
corresponding lines in mywc. C that they exercise.

Part 2: B1gInt objects

0000ffffbedd0o1lo
0000ffffbeddoo1l8
0000ffffbedd0o20

0000ffffbedd0n28
HEAP

STACK

V00000V0V0000V0001

V0000000000000 22

00000000000V

wlalalalatalalalalalalalalalaly

0000TffTbedddd1lo

VET | Nov
Y TES | TAM I
| ey |rvm |

oBigInt—>1Length
oBigInt—>aulDigits[0]
oBigInt—>aulDigits|[1]

oBigInt—>aulDigits|[2]

oBigInt

-

Part 2a: Unoptimized C BigInt_add Implementation

Study the given code.

Then build a f1b program consisting of the files fib.c, bigint.c,
and bigintadd. c, without the =D NDEBUG or —0 options.

Run the program to compute fib(250000). In your readme file
note the amount of CPU time consumed.

-

-

Part 2b/c: Optimized C BigInt_add Implementation

Rebuild a f1b program consisting of the files fib.c, bigint.c,
and bigintadd. c, with the =D NDEBUG and -0 options.

Run the program to compute fib(250000). In your readme file
note the amount of CPU time consumed.

Profile the code with gprof. (More on this next lecture.)

-
Part 2d: Translate to Assembly Language

Suppose, not surprisingly, your gprof analysis shows that most CPU time is spent executing the BigInt_ add function. In an attempt to gain
speed, you decide to code the BigInt add function manually in assembly language...

Manually translate the C code in the bigintadd.c file into ARMv8 assembly language, thus creating the file bigintadd.s. Do not translate the
code in other files into assembly language.

Your assembly language code must store all parameters and local variables defined in the BigInt_larger and BigInt_add functions in
memory, on the stack.

-

-

Part 2e: Optimize to use registers, not the stack

Suppose, to your horror, you discover that you have taken a step backward: the CPU time consumed by your assembly

language code is

approximately the same as that of the non-optimized compiler-generated code! So you decide to optimize your assembly language code...

Manually optimize your assembly language code in bigintadd.s, thus creating the file bigintaddopt.s. Specifically, perform this optimization:

e Store all parameters and local variables defined in the BigInt_larger and BigInt_add functions in callee-saved registers instead of in

memory.

-

(

Part 2f (Challenge Portion): Optimize All You Want

10|

Finally, suppose you decide to optimize your assembly language code even further, moving away from a statement-by-statement translation of C
code into assembly language...

Further optimize your assembly language code in bigintaddopt. s, thus creating the file bigintaddoptopt.s. Specifically, perform these
optimizations:

e Use the assembly language guarded loop pattern described in Section 3.2 of Chapter 5 of the Pyeatt with Ughetta book instead of the
simpler but less efficient loop patterns described in precepts.

e "Inline" the call of the BigInt_larger function. That is, eliminate the BigInt_ larger function, placing its code within the BigInt_add
function.

e Use the adcs ("add with carry and set condition flags") instruction effectively. The adcs instruction computes the sum of its source
operand, its destination operand, and the C condition flag, places the sum in the destination operand, and assigns 1 (or O) to the C condition
flag if a carry occurred (or did not occur) during the addition. Effective use of the adcs instruction will use the C condition flag instead of a
ulcCarry variable to keep track of carries during addition.

“Feel free to implement any additional optimizations” 4

“This part is challenging. We will not think unkindly
of you if you decide not to do it.”

