
COS 217: Introduction to Programming Systems

Assignment 5

@ryanjohns

https://unsplash.com/@ryanjohns


The wc command

2

@danieltuttle

https://unsplash.com/@danieltuttle


Part 1a Task

The given mywc.c file contains a C program that implements the 
subset of the wc command described above. 

Translate that program into ARMv8 assembly language, thus 
creating a file named mywc.s. Your mywc.s program must be an 
accurate translation of mywc.c. 

3



Part 1b Task

Compose data files (patterned mywc*.txt) that, 
when read by your mywc.s program, perform:

• boundary tests

• statement tests

• stress tests 

Describe your test files’ testing characteristics and the 
corresponding lines in mywc.c that they exercise.

4



Part 2: BigInt objects

5

HEAP

0000ffffbe4d0010 oBigInt

00000000000000010000ffffbe4d0010

00000000000000220000ffffbe4d0018

00000000000000000000ffffbe4d0020

00000000000000000000ffffbe4d0028

oBigInt->lLength

oBigInt->aulDigits[0]

oBigInt->aulDigits[1]

oBigInt->aulDigits[2]
…

STACK



Part 2a: Unoptimized C BigInt_add Implementation

Study the given code. 

Then build a fib program consisting of the files fib.c, bigint.c, 
and bigintadd.c, without the -D NDEBUG or -O options. 

Run the program to compute fib(250000). In your readme file 
note the amount of CPU time consumed.

6



Part 2b/c: Optimized C BigInt_add Implementation

Rebuild a fib program consisting of the files fib.c, bigint.c, 
and bigintadd.c, with the -D NDEBUG and -O options. 

Run the program to compute fib(250000). In your readme file 
note the amount of CPU time consumed.

Profile the code with gprof. (More on this next lecture.)

7



Part 2d: Translate to Assembly Language

8



Part 2e: Optimize to use registers, not the stack

9



Part 2f (Challenge Portion): Optimize All You Want

“Feel free to implement any additional optimizations”

“This part is challenging. We will not think unkindly 
of you if you decide not to do it.”

10


