
11/13/20

1

COS 217: Introduction to Programming Systems

Assignment 5

@ryanjohns

1

The wc command

2

@danieltuttle

2

Part 1a Task

The given mywc.c file contains a C program that implements the 
subset of the wc command described above. 

Translate that program into ARMv8 assembly language, thus 
creating a file named mywc.s. Your mywc.s program must be an 
accurate translation of mywc.c. 

3

3

Part 1b Task
Compose data files (patterned mywc*.txt) that, 

when read by your mywc.s program, perform:

• boundary tests

• statement tests

• stress tests 

Describe your test files’ testing characteristics and the 
corresponding lines in mywc.c that they exercise.

4

4

Part 2: BigInt objects

5

HEAP

0000ffffbe4d0010 oBigInt

00000000000000010000ffffbe4d0010

00000000000000220000ffffbe4d0018

00000000000000000000ffffbe4d0020

00000000000000000000ffffbe4d0028

oBigInt->lLength

oBigInt->aulDigits[0]

oBigInt->aulDigits[1]

oBigInt->aulDigits[2]

…

STACK

5

Part 2a: Unoptimized C BigInt_add Implementation
Study the given code. 

Then build a fib program consisting of the files fib.c, bigint.c, 
and bigintadd.c, without the -D NDEBUG or -O options. 

Run the program to compute fib(250000). In your readme file 
note the amount of CPU time consumed.

6

6

https://unsplash.com/@ryanjohns
https://unsplash.com/@danieltuttle


11/13/20

2

Part 2b/c: Optimized C BigInt_add Implementation
Rebuild a fib program consisting of the files fib.c, bigint.c, 

and bigintadd.c, with the -D NDEBUG and -O options. 

Run the program to compute fib(250000). In your readme file 
note the amount of CPU time consumed.

Profile the code with gprof. (More on this next lecture.)

7

7

Part 2d: Translate to Assembly Language

8

8

Part 2e: Optimize to use registers, not the stack

9

9

Part 2f (Challenge Portion): Optimize All You Want

“Feel free to implement any additional optimizations”

“This part is challenging. We will not think unkindly 
of you if you decide not to do it.”

10

10


