
COS 217: Introduction to Programming Systems

Data Structures

@
mrthetrain

https://unsplash.com/@mrthetrain

DATA STRUCTURES

2

“Every program depends on
algorithms and data structures,
but few programs depend on the
invention of brand new ones.”

-- Kernighan & Pike

Goals of this Lecture

Help you learn (or refresh your memory) about:
• Common data structures: linked lists and hash tables

Why? Deep motivation:
• Common data structures serve as “high level building blocks”
• A mature programmer:

• Rarely creates programs from scratch
• Often creates programs using high level building blocks

Why? Shallow motivation:
• Provide background pertinent to Assignment 3
• … especially for those who haven’t taken COS 226
• … especially for those who skipped COS 126

3

Symbol Table Data Structure

Goal: maintain a collection of key/value pairs
• For now, each key is a string; each value is an int
• Lookup by key, get value back
• Unknown number of key-value pairs

Examples
• (student name, class year)

• (“Andrew Appel”, 81), (“Jen Rexford”, 91), (“JP Singh”, 87)
• (baseball player, number)

• (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
• (variable name, value)

• (“maxLength”, 2000), (“i”, 7), (“j”, -10)

4

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

5

Linked List Data Structure

struct Node
{ const char *key;

int value;
struct Node *next;

};

struct List
{ struct Node *first;
};

Your Assignment 3
data structures will
be more general and
perhaps more elaborate

6

4 3
NULL

struct
List

struct
Node

struct
Node

R u t h \0 ? ??
G e h r \0i g? ?

Linked List Data Structure

struct Node
{ const char *key;

int value;
struct Node *next;

};

struct List
{ struct Node *first;
};

4
"Gehrig"

3
"Ruth"

NULL

struct
List

struct
Node

struct
Node

Your Assignment 3
data structures will
be more general and
perhaps more elaborate

Really this is the
address at which
a string with
contents “Ruth”
resides

7

struct List lineup;
struct Node g;
struct Node* r =
calloc(1,sizeof(struct Node));
g.key = “Gehrig”;
lineup.first = &g;
(*lineup.first).value = 4;

(*lineup.first).next = r;

struct List lineup;
struct Node g;
struct Node* r =
calloc(1,sizeof(struct Node));
g.key = “Gehrig”;
lineup.first = &g;
(*lineup.first).value = 4;
lineup.first->value = 4;
(*lineup.first).next = r;
lineup.first->next = r;

Accessing a Linked List

struct Node
{ const char *key;

int value;
struct Node *next;

};

struct List
{ struct Node *first;
};

4
"Gehrig"

0
NULL

NULL

struct
List

struct
Node

struct
Node

8

Linked List Algorithms

Create
• Allocate List structure; set first to NULL
• Performance: O(1) ⇒ fast

Add (no check for duplicate key required)
• Insert new node containing key/value pair at front of list
• Performance: O(1) ⇒ fast

Add (check for duplicate key required)
• Traverse list to check for node with duplicate key
• Insert new node containing key/value pair into list
• Performance: O(n) ⇒ slow

9

Linked List Algorithms

Search
• Traverse the list, looking for given key
• Stop when key found, or reach end
• Performance: ???

10

11

iClicker Question
Q: How fast is searching for a key in a linked list?

A. Always fast – O(1)

B. Always slow – O(n)

C. On average, fast

D. On average, slow

Not well specified:

Depends on workload,
insertion algorithm, etc.

Probably B or D.

Linked List Algorithms

Search
• Traverse the list, looking for given key
• Stop when key found, or reach end
• Performance: O(n) ⇒ slow

Free
• Free Node structures while traversing
• Free List structure
• Performance: O(n) ⇒ slow

12

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

13

Hash Table Data Structure

enum {BUCKET_COUNT = 1024};

struct Binding
{ const char *key;

int value;
struct Binding *next;

};

struct Table
{ struct Binding *buckets[BUCKET_COUNT];
};

NULL

4
"Gehrig"

NULL

3
"Ruth"

NULL

NULL
NULL0

1

806

23

723

…

…

…

NULL1023
…

struct
Table

struct
Binding

struct
Binding

Your Assignment 3
data structures will
be more general
and perhaps more
elaborate

Array of linked lists
Really this is the
address at which
“Ruth” resides

14

Hash Table Data Structure

Hash function maps given key to an integer

Mod integer by BUCKET_COUNT to determine proper bucket

0

BUCKET_COUNT-1

Binding

Bucket

15

Hash Table Example

Example: BUCKET_COUNT = 7

Add (if not already present) bindings with these keys:
• the, cat, in, the, hat

16

Hash Table Example (cont.)

First key: “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

0
1
2
3
4
5
617

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

0
1
2
3
4
5
6

X
the

18

Hash Table Example (cont.)

Second key: “cat”
• hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

0
1
2
3
4
5
6

X
the

19

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

0
1
2
3
4
5
6

X
the

X
cat

20

Hash Table Example (cont.)

Third key: “in”
• hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found

0
1
2
3
4
5
6

X
the

X
cat

21

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

0
1
2
3
4
5
6

X
the

X
cat

X
in

22

Hash Table Example (cont.)

Fourth word: “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
• Don’t change hash table

0
1
2
3
4
5
6

X
the

X
cat

X
in

23

Hash Table Example (cont.)

Fifth key: “hat”
• hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

24

0
1
2
3
4
5
6

X
the

X
cat

X
in

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]
• At front or back?

X
cat

25

0
1
2
3
4
5
6

X
the

hat

X
in

Hash Table Algorithms

Create
• Allocate Table structure; set each bucket to NULL
• Performance: O(1) ⇒ fast

Add
• Hash the given key
• Mod by BUCKET_COUNT to determine proper bucket
• Traverse proper bucket to make sure no duplicate key
• Insert new binding containing key/value pair into proper bucket
• Performance: ???

26

27

iClicker Question
Q: How fast is adding a key to a hash table?

A. Always fast

B. Usually fast, but depends on how many
keys are in the table

C. Usually fast, but depends on how many
keys hash to the same bucket

D. Usually slow

E. Always slow

C

If bindings are spread across
buckets, this is fast
(though B is a concern).

Worst case: everything hashes
to the same bucket (O(n))

Hash Table Algorithms

Search
• Hash the given key
• Mod by BUCKET_COUNT to determine proper bucket
• Traverse proper bucket, looking for binding with given key
• Stop when key found, or reach end
• Performance: Usually O(1) ⇒ fast

Free
• Traverse each bucket, freeing bindings
• Free Table structure
• Performance: O(n) ⇒ slow

28

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

29

How Many Buckets?
Many!

• Too few ⇒ large buckets ⇒ slow add, slow search

But not too many!
• Too many ⇒ memory is wasted

This is OK:

0

BUCKET_COUNT-1

30

What Hash Function?
Should distribute bindings across the buckets well

• Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1
• Distribute bindings evenly to avoid very long buckets

This is not so good:

0

BUCKET_COUNT-1

What would be the worst
possible hash function?31

How to Hash Strings?

Simple hash schemes don't distribute the keys evenly
• Number of characters, mod BUCKET_COUNT
• Sum the numeric codes of all characters, mod BUCKET_COUNT
• …

A reasonably good hash function:
• Weighted sum of characters si in the string s

• (Σ aisi) mod BUCKET_COUNT
• Best if a and BUCKET_COUNT are relatively prime

• e.g., a = 65599, BUCKET_COUNT = 1024

32

How to Hash Strings?

A bit of math, and translation to code, yields:

size_t hash(const char *s, size_t bucketCount)
{ size_t i;

size_t h = 0;
for (i=0; s[i]!='\0'; i++)

h = h * 65599 + (size_t)s[i];
return h % bucketCount;

}

33

Agenda

Linked lists

Hash tables

Hash table issues

Symbol table key ownership

34

How to Protect Keys?

Suppose a hash table function Table_add() contains this code:

void Table_add(struct Table *t, const char *key, int value)
{ …

struct Binding *p =
(struct Binding*)malloc(sizeof(struct Binding));

p->key = key;
…

}

35

How to Protect Keys?
Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Ruth\0k

36

Ruth\0

How to Protect Keys?
Problem: Consider this calling code:

37

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);
strcpy(k, "Gehrig");

What happens if the
client searches t for
“Ruth”? For Gehrig?

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Gehrig\0k

k is REALLY &k[0]!

How to Protect Keys?

Solution: Table_add() saves a defensive copy of the given key

void Table_add(struct Table *t, const char *key, int value)
{ …

struct Binding *p =
(struct Binding*)malloc(sizeof(struct Binding));

p->key = (const char*)malloc(strlen(key) + 1);
strcpy((char*)p->key, key);
…

} Why add 1?

38

What is missing from
this code that you
should have in yours?

How to Protect Keys?
Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Ruth\0k

39

Ruth\0

How to Protect Keys?
Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";
…
Table_add(t, k, 3);
strcpy(k, "Gehrig");

3
NULL

N0
1

806

23

723
…

…

1023
…

t

Gehrig\0k

Ruth\0

Hash table is
not corrupted!

40
@neonbrand @kekoss

https://unsplash.com/@neonbrand
https://unsplash.com/@kekoss

Who Owns the Keys?

Then the hash table owns its keys
• That is, the hash table allocated the memory in

which its keys reside
• Table_remove() function must also free the

memory in which the key resides, not just its
binding

41

Summary

Common data structures and associated algorithms
• Linked list

• (Maybe) fast add
• Slow search

• Hash table
• (Potentially) fast add
• (Potentially) fast search
• Very common

Hash table issues
• (Initial) Bucket array size
• Hashing algorithms

Symbol table concerns
• Key ownership

42

