10/1/20

(7 (7
COS 217: Introduction to Programming Systems v
“Every program depends on
algorithms and data structures,
but few programs depend on the
Data Structures invention of brand new ones.”
PR~ ~ Kernighan & Pike
- g
L % PRINCETON UNIVERSITY) \2
() ()
Goals of this Lecture v Symbol Table Data Structure v
Help you learn (or refresh your memory) about: Goal: maintain a collection of key/value pairs
* Common data structures: linked lists and hash tables For now, each key is a string; each value is an int
* Lookup by key, get value back
Why? Deep motivation: . Uiinl;imynuer:r/\bg; o\;ak:j—vaal(;e pairs
« Common data structures serve as “high level building blocks”
A mature programmer: Examples
« Rarely creates programs from scratch * (student name, class year)
« Often creates programs using high level building blocks « (“Andrew Appel”, 81), (“Jen Rexford”, 91), (“JP Singh”, 87)
. . * (baseball player, number)
o .
Why? Sha”ow motlvatlor?. . * (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
* Provide background pertinent to Assignment 3 « (variable name, value)
« ... especially for those who haven't taken COS 226 « (“maxLength”, 2000), (“i", 7), (“i", -10)
« ... especially for those who skipped COS 126 ' ! T !
3 4
- J -

(Agenda v\

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

s N
Linked List Data Structure v
struct Node
{ const char xkey; Your Assignment 3
e TEilveg _ data structures will
: struct Node knext; be more general and
perhaps more elaborate
struct List
{ struct Node *first;
};
struct
struct Node
List
\

https://unsplash.com/@mrthetrain

10/1/20

s 3 s N
Linked List Data Structure v Accessing a Linked List v

struct List lineup;

struct Node struct Node struct Node g;
{ const char xkey; Your Assignment 3 { const char xkey; SRR Node*gl,' _
int value; data structures will int value;

calloc(1,sizeof(struct Node));
g.key = “Gehrig”;
lineup.first = &g;

; struct Node *next; be more general and ; struct Node *next;

perhaps more elaborate

struct List struct List q q - Ag
{ struct Node *first; { struct Node *first; AR, GATSE-SRENR = 0
ks Really this is the ki lineup.first->next = r;
struct struct address at which struct struct
struct Node Node - astingwith struct Node Node
List contents “Ruth

resides

() ()
Linked List Algorithms v Linked List Algorithms v
Create Search
* Allocate List structure; set first toNULL * Traverse the list, looking for given key
* Performance: O(1) = fast « Stop when key found, or reach end

* Performance: ???

Add (no check for duplicate key required)
« Insert new node containing key/value pair at front of list
* Performance: O(1) = fast

Add (check for duplicate key required)
» Traverse list to check for node with duplicate key
* Insert new node containing key/value pair into list
* Performance: O(n) = slow

9 10

(1IN 3 s N
I) iClicker Question v Linked List Algorithms v

Q: How fast is searching for a key in a linked list?

Search
* Traverse the list, looking for given key
* Stop when key found, or reach end
« Performance: O(n) = slow

Free
A. Always fast - O(1) Not well specified: « Free Node structures while traversing
* Free List structure
B. Always slow - O(n) Depends on workload, « Performance: O(n) = slow
C. On average, fast insertion algorithm, etc.
D. On average, slow Probably B or D.
11 12
S \

11 12

10/1/20

() (7
Agenda v Hash Table Data Structure v
Array of linked lists Really this is the
Linked lists enun {BUCKET_COUNT = 1024}; ﬁ;“{iﬁs a‘:mh
uth” resides
Hash tables & Gk aher Hag stuct
int value; |
Hash table issues | Struct Binding snext; Table_ ginging
b struct
Symbol table key ownership struct Table . Binding
§; struct Binding *buckets [BUCKET_COUNT]; eehrio"
[+ |
Your Assignment 3
data structures will
be more general
and perhaps more
3 w elaborate
_ _
((

Hash Table Data Structure

15|

~ Binding

~ Bucket

BUCKET_COUNT-1| @

Hash function maps given key to an integer
Mod integer by BUCKET_COUNT to determine proper bucket

Hash Table Example

16

Example: BUCKET_COUNT =7

Add (if not already present) bindings with these keys:

* the, cat, in, the, hat

N N
15 16
3 s

Hash Table Example (cont.)

First key: “the
« hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets [1] for binding with key “the”; not found

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets [1]

0]

1 1

2 2

3 3

4 4

5 5

17] 6 18 6
_ N
17 18

10/1/20

() (7
Hash Table Example (cont.) v Hash Table Example (cont.) v
Second key: “cat” Add binding with key “cat” and its value to buckets [2]
+ hash(“cat”) = 3895848756; 3895848756 % 7 = 2
Search buckets [2] for binding with key “cat”; not found
0 0
1 1
2 2
3 3
4 4
5 5
19 6 2 6
_ _
19 20
() ()
Hash Table Example (cont.) v Hash Table Example (cont.) v
Third key: “in” Add binding with key “in” and its value to buckets [5]
+ hash("in”) = 6888005; 6888005% 7 = 5
Search buckets [5] for binding with key “in”; not found
0 0
1 1
2 2
3 3
4 4
5 5
21 6 22 6
- -
21 22
() (A
Hash Table Example (cont.) v Hash Table Example (cont.) v
Fourth word: “the” Fifth key: “hat”
+ hash(“the”) = 965156977; 965156977 % 7 = 1 « hash(“hat”) = 865559739; 865559739 % 7 = 2
Search buckets [1] for binding with key “the”; found it! Search buckets [2] for binding with key “hat”; not found
* Don't change hash table
0 0
1 1
2 2
3 3
4 4
5 5
23 6 24 6
_ _
23 24

10/1/20

Ve
Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets [2]
* At front or back?

0

1

2

3

4

5
25 6
_

Ve
Hash Table Algorithms

Create
* Allocate Table structure; set each bucket to NULL
* Performance: O(1) = fast

Add
* Hash the given key
* Mod by BUCKET_COUNT to determine proper bucket
* Traverse proper bucket to make sure no duplicate key
« Insert new binding containing key/value pair into proper bucket
* Performance: ???

25

26

=
|> iClicker Question

Q: How fast is adding a key to a hash table?

A, Always fast C

B. Usually fast, but depends on how many

Keys are in the table If bindings are spread across

buckets, this is fast
C. Usually fast, but depends on how many (though B is a concern).
keys hash to the same bucket
D. Usually slow Worst case: everything hashes

27, E. Aways slow to the same bucket (O(n))
| E

=
Hash Table Algorithms

Search
* Hash the given key
* Mod by BUCKET_COUNT to determine proper bucket
* Traverse proper bucket, looking for binding with given key
« Stop when key found, or reach end
« Performance: Usually O(1) = fast

Free
« Traverse each bucket, freeing bindings
* Free Table structure
* Performance: O(n) = slow

28

27

28

Ve
Agenda

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

Va
How Many Buckets?

Many!

* Too few = large buckets = slow add, slow search

But not too many!
« Too many = memory is wasted

‘BEE
588

BUCKET_COUNT-1 @

W

29

30

10/1/20

Vs

What Hash Function?

Should distribute bindings across the buckets well
« Distribute bindings over the range @, 1, .., BUCKET_COUNT-1
« Distribute bindings evenly to avoid very long buckets

This is not so good:
B888E

What would be the worst
possible hash function?

BUCKET_COUNT-1

-

How to Hash Strings?

Simple hash schemes don't distribute the keys evenly
* Number of characters, mod BUCKET_COUNT
* Sum the numeric codes of all characters, mod BUCKET_COUNT

A reasonably good hash function:
* Weighted sum of characters siin the string s
* (£ aisi) mod BUCKET_COUNT
* Best if @a and BUCKET_COUNT are relatively prime
*e.g,a=65599, BUCKET_COUNT = 1024

31

32

Vs

How to Hash Strings?

33

A bit of math, and translation to code, yields:

size_t hash(const char *s, size_t bucketCount)
{ size_t i;
size_t h = 0;
for (i=0; s[il!='\0'; i++)
h = h % 65599 + (size_t)s[il;
return h % bucketCount;

-

Agenda

34

Linked lists
Hash tables
Hash table issues

Symbol table key ownership

33

34

Vs

How to Protect Keys?

35

Suppose a hash table function Table_add () contains this code:

\{loid Table_add(struct Table *t, const char xkey, int value)

struct Binding *p =
(struct Bindingx)malloc(sizeof(struct Binding));
p->key = key;

¥

Vs A
How to Protect Keys? v
Problem: Consider this calling code:
struct Table *t;
char k[100] = "Ruth"; k[Rutme |
Table_add(t, k, 3);
3
N

35

10/1/20

Ve
How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";

Table_add(t,(k,)3);
strcpy(k, "Gehrig");

 Crrero—

kis REALLY &K[O]!

What happens if the
client searches t for
“Ruth”? For Gehrig?

Va
How to Protect Keys?

Solution: Table_add() saves a defensive copy of the given key

void Table_add(struct Table xt, const char xkey, int value)
Struct Binding *p =
(struct Binding#)malloc(sizeof(struct Binding));
p->key = (const chark)malloc(strien(key) + 1);
strepy((charx)p->key, key);

¥ Why add 12

What is missing from
this code that you
hould have in yol

34 ?

38

=
How to Protect Keys?

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";

klruto]

:I:able_add(t, k, 3);

39

Ve
How to Protect Keys?

Now consider same calling code:

struct Table xt;
char k[100] = "Ruth";

Klcenrigo]

:I:able_add(t, k, 3);
strepy(k, “Gehrig");

Hash table is
not corrupted!

(::-

39

Ve
Who Owns the Keys?

Then the hash table owns its keys
« That is, the hash table allocated the memory in
which its keys reside
« Table_remove () function must also free the
memory in which the key resides, not just its
binding

41

Va
Summary

Common data structures and associated algorithms
* Linked list
* (Maybe) fast add
* Slow search
* Hash table
* (Potentially) fast add
* (Potentially) fast search
* Very common

Hash table issues
* (Initial) Bucket array size
* Hashing algorithms

Symbol table concerns
* Key ownership

41

42

https://unsplash.com/@neonbrand
https://unsplash.com/@kekoss

