
COS 217: Introduction to Programming Systems

Testing

TESTING

2

“On two occasions I have been asked
[by members of Parliament!],
‘Pray, Mr. Babbage, if you put
into the machine wrong figures,
will the right answers come out?’
I am not able rightly to apprehend
the kind of confusion of ideas that
could provoke such a question.”
‒ Charles Babbage

Why Test?
It's hard to know if a (large) program works properly

Ideally: Automatically prove that a program is correct (or demonstrate
why it’s not)

General
Program
Checkerprogram.c

Right or Wrong
Specification

That’s
impossible

Alan M. Turing *38

3

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”
‒ Donald Knuth

Why Test?
Semi-ideally: Semi-automatically prove that
some programs are correct

This is possible, but
• beyond most current engineering practice
• beyond the scope of this course
Take COS 326, then COS 510 or COS 516 if you’re interested!

Proof
Assistantprogram.c

Verification
of correctness

Specification

user interaction

4

Why Test?
Pragmatically: Convince yourself that your program probably works

Result: software engineers spend
at least as much time building test code
as writing the program

• You want to spend that time efficiently!

Possibly Right
(no bugs found)

or
Certainly Wrong

(bugs found)

Testing
Strategyprogram.c

Specification

5

Who Does the Testing?
Programmers

• White-box testing
• Pro: Know the code ⇒ can test all statements/paths/boundaries
• Con: Know the code ⇒ biased by code design; shared oversights

Quality Assurance (QA) engineers
• Black-box testing
• Pro: Do not know the code ⇒ unbiased by code design
• Con: Do not know the code ⇒ unlikely to test all statements/paths/boundaries

Customers
• Field testing
• Pros: Use code in unexpected ways; “debug” specs
• Cons: Often don’t like “participating”;

difficult to be systematic;
could be hard to generate enough examples

6

EXTERNAL TESTING

7

@andrewtneel

https://unsplash.com/@andrewtneel

Example: “upper1” Program
/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

int main(void)
{

. . .
}

How do we test this program?
Run it on some sample inputs?

$./upper1
heLLo there...
^D
HeLLo There...
$

OK to do it once; tedious
to repeat every time the
program changes

8

Organizing Your Tests
/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

int main(void)
{

. . .
}

$./upper1 < inputs/001
HeLLo There...
$ cat correct/001
HeLLo There...
$./upper1 < inputs/002
84weird E. Xample
$ cat correct/002
84Weird E. Xample

9

heLLo there…
HeLLo There…

84weird e. xample
84weird E. Xample

Running Your Tests
/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

$ cat run-tests
./upper1 < inputs/001 > outputs/001
cmp outputs/001 correct/001
./upper1 < inputs/002 > outputs/002
cmp outputs/002 correct/002
$ sh run-tests
outputs/002 correct/002 differ: byte 5, line 1

this is a
“shell script”
or “bash script”

10

$ cat testdecomment
#!/bin/bash

#---
testdecomment
Author: Bob Dondero
#---

#---
testdecomment is a testing script for the decomment program.
To run it, type "testdecomment".
To use it, the working directory must contain:
(1) decomment, the executable version of your program, and
(2) sampledecomment, the given executable binary file.

The script executes decomment and sampledecomment on each file
in the working directory that ends with ".txt", and compares the
results.
#---

Validate the argument.
if ["$#" -gt "0"]; then

echo "Usage: testdecomment"
exit 1

fi

echo

Call testdecommentdiff for each file in the working directory
that ends with ".txt", passing along the argument.

for file in *.txt
do

./testdecommentdiff $file
done

Assignment 1 Testing Script

11

Caution (xkcd 1319)

12

Regression Testing

for (;;) {
test program; discover bug;
fix bug, in the process break something else;

}

regression testing: Rerun your entire test suite after each
change to the program. When new bugs are found, add tests
to the test suite that check for those kinds of bugs.

re·gres·sion
rəˈɡreSH(ə)n/
noun
1. a return to a former or less developed state.
2. . . .

14

Regression Testing (reality)

15

Regression Testing (xkcd 1739)

16

Bug-Driven Testing

Reactive mode…
• Find a bug ⇒ create a test case that catches it

Proactive mode…
• Do fault injection

• Intentionally (temporarily!) inject a bug
• Make sure testing mechanism catches it
• Test the testing!

17

Is This the Best Way?

Limitations of whole-program testing:

•Requires program to have one right answer
•Requires knowing that one right answer

•Requires having enough tests
•Requires rewriting the tests when specifications change

18

Is This the Best Way?

Modularity!

•One of the main lessons of COS 217:
Writing large, nontrivial programs is best done by composing simpler,
understandable components

•Testing large, nontrivial programs is best done by
testing simpler, understandable components

19

Who Does the Testing?
Programmers

• White-box testing
• Pro: Know the code ⇒ can test all statements/paths/boundaries
• Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers
• Black-box testing
• Pro: Do not know the code ⇒ unbiased by code design
• Con: Do not know the code ⇒ unlikely to test all statements/paths/boundaries

Customers
• Field testing
• Pros: Use code in unexpected ways; “debug” specs
• Cons: Often don’t like “participating”; difficult to generate enough cases

Exploiting structure of code
makes this strategy more

efficient

20

INTERNAL TESTING
WITH ASSERTIONS

21

@snapsbyclark

https://unsplash.com/@snapsbyclark

The assert Macro

#include <assert.h>

…

assert(expr)

• If expr evaluates to TRUE (non-zero):
• Do nothing

• If expr evaluates to FALSE (zero):
• Print message to stderr: “line x: assertion expr failed”
• Exit the process

• Many uses…

22

1. Validating Parameters
At beginning of function, make sure parameters are valid

/* Return the greatest common
divisor of positive integers
i and j. */

int gcd(int i, int j)
{

assert(i > 0);
assert(j > 0);
...

}

23

2. Validating Return Value
At end of function, make sure return value is plausible

/* Return the greatest common
divisor of positive integers
i and j. */

int gcd(int i, int j)
{

...
assert(value > 0);
assert(value <= i);
assert(value <= j);
return value;

}
24

3. Checking Array Subscripts
Check out-of-bounds array subscript: it causes
vast numbers of security vulnerabilities in C programs!

#include <stdio.h>
#include <assert.h>

#define N 1000
#define M 1000000
int a[N];

int main(void) {
int i,j, sum=0;
for (j=0; j<M; j++)
for (i=0; i<N; i++) {
assert (0 <= i && i < N);
sum += a[i];
}

printf ("%d\n", sum);
}

25

4. Checking Function Values
Check values returned by called functions
(but not with assert – this is not a programming bug)

Example:
• scanf() returns number of values read
• Caller should check return value

int i, j;
…
if (scanf("%d%d", &i, &j) != 2)

/* Handle the error */

int i, j;
…
scanf("%d%d", &i, &j);

Bad code

Good code

26

5. Checking Invariants
At function entry, check aspects of data structures that shouldn't vary; maybe at
function exit too

int isValid(MyType object)
{ …

/* Code to check invariants goes here.
Return 1 (TRUE) if object passes
all tests, and 0 (FALSE) otherwise. */

…
}

void myFunction(MyType object)
{ assert(isValid(object));

…
/* Code to manipulate object goes here. */
…
assert(isValid(object));

}
27

UNIT TESTING

28

@polarmermaid

https://unsplash.com/@polarmermaid

Testing Modular Programs
Any nontrivial program built up out of modules, or units.

Example: Assignment 2.

29

str.h (excerpt)
/* Return the length of src */
size_t Str_getLength(const char *src);
/* Copy src to dest. Return dest.*/
char *Str_copy(char *dest, const char *src);
/* Concatenate src to the end of dest. Return dest. */
char *Str_concat(char *dest, const char *src);

stra.c (excerpt)
#include "str.h"
size_t Str_getLength(const char *src){
... you write this code ...
}
char *Str_copy(char *dest, const char *src) {
... you write this code ...
}
char *Str_concat(char *dest, const char *src) {
... you write this code ...
}

replace.c (excerpt)
#include "str.h"
/* Write line to stdout with each occurrence

of from replaced with to. */
size_t replaceAndWrite(

char *line, char *from, char *to) {
... you write this code ...
calls Str_getLength, Str_copy,

Str_concat, etc.
}
int main(int argc, char **argv) {...}

Unit Testing Harness

Function 2

Function 3 Function 4

Function 1

Scaffold: Temporary
code that calls code
that you care about

(Optional) Stub:
Temporary code
that is called by
code that you
care about

Code that
you care about

Write a new program that combines
one module with additional code that
tests it

30

teststr.c
/* Test the Str_getLength() function. */
static void testGetLength(void) {
size_t result;
printf(" Boundary Tests\n");
{ char src[] = {'\0', 's'};

result1 = Str_getLength(acSrc);
assert(result == 0);

}
printf(" Statement Tests\n");
{ char src[] = {'R', 'u', 't', 'h', '\0', '\0'};

result = Str_getLength(src);
assert(result == 4);

}
{ char src[] = {'R', 'u', 't', 'h', '\0', 's'};

result = Str_getLength(src);
assert(result == 4);

}
{ char src[] = {'G', 'e', 'h', 'r', 'i', 'g', '\0', 's'};

result = Str_getLength(src);
assert(result == 6);

}
}

31

TEST
COVERAGE

32

Statement Testing

(1) Statement testing

• “Testing to satisfy the criterion that each statement in a program be executed at least once during
program testing.”

From the Glossary of Computerized System and Software Development Terminology

33

Statement Testing Example
Example pseudocode:

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Statement testing:

Should make sure both if
statements, and all 4 numbered
statements in their consequents
and alternatives are executed in
the testing suite.

34

Unbiased Coverage
Q: How many passes of testing are required to get full statement coverage?

A. 1

B. 2

C. 3

D. 4

E. 5

B

For example, these two cases:
1. {condition1:T, condition2:T}
2. {condition1:F, condition2:F}

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

35

Path Testing

(2) Path testing

• “Testing to satisfy coverage criteria that each logical path through the program be tested. Often
paths through the program are grouped into a finite set of classes. One path from each class is
then tested.”

From the Glossary of Computerized System and Software Development Terminology

37

Path Testing Example
Example pseudocode:

• Simple programs ⇒ maybe reasonable
• Complex program ⇒ combinatorial explosion!!!

• Path test code fragments

Some code coverage tools can also assess path coverage.

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Path testing:

Should make sure all logical
paths are executed

38

39

Not just the path of least resistance
Q: How many passes of testing are required to get full path coverage?

A. 1

B. 2

C. 3

D. 4

E. 5

D, 4 passes are required:
condition1 && condition2,

condition1 && !condition2,

!condition1 && condition2,

!condition1 && !condition2

if (condition1)
statement1;

else
statement2;

…
if (condition2)

statement3;
else

statement4;
…

Boundary Testing

(3) Boundary testing (or corner case testing)

• “A testing technique using input values at, just below, and just above, the defined limits of an
input domain; and with input values causing outputs to be at, just below, and just above, the
defined limits of an output domain.”

From the Glossary of Computerized System and Software Development Terminology

40

Boundary Testing Example

How would you boundary-test this function?

/* Where a[] is an array of length n,
return the first index i such that a[i]==x,
or -1 if not found */

int find(int a[], int n, int x);

int a[10];
for (i=0;i<10;i++) a[i]=1000+i;
assert (find(a,10,1000)==0);
assert (find(a,10,1009)==9);
assert (find(a,9,1009)== -1);
assert (find(a+1,9,1000)== -1);

41

Stress Testing

Should stress the program or module with respect to:
• Quantity of data

• Large data sets
• Variety of data

• Textual data sets containing non-ASCII chars
• Binary data sets
• Randomly generated data sets

Consider using computer to generate test data
• Arbitrarily repeatable
• Avoids human biases

42

Is this “cheating”?
Maybe, maybe not.

Stress Testing

enum {STRESS_TEST_COUNT = 10};
enum {STRESS_STRING_SIZE = 10000};

static void testGetLength(void) {

. . .

printf(" Stress Tests\n");
{int i;
char acSrc[STRESS_STRING_SIZE];
for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(acSrc, STRESS_STRING_SIZE);
result = Str_getLength(acSrc);
assert(result == strlen(acSrc));

}
}
}

43

When you don’t have a reference
implementation to give you “the answer”

printf(" Stress Tests\n");
{int i,j;
char acSrc[STRESS_STRING_SIZE];
for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(acSrc, STRESS_STRING_SIZE);
result = Str_getLength(acSrc);

}
}
}

Think of as many properties as you can
that the right answer must satisfy.

44

When you don’t have a reference
implementation to give you “the answer”

printf(" Stress Tests\n");
{int i,j;
char acSrc[STRESS_STRING_SIZE];
for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(acSrc, STRESS_STRING_SIZE);
result = Str_getLength(acSrc);

assert(0 <= result);
assert(result < STRESS_STRING_SIZE);
for (j = 0; j < result; j++)

assert(acSrc[j] != '\0');
assert(acSrc[result] == '\0’);

}
}
}

Think of as many properties as you can
that the right answer must satisfy.

45

Testing Takeaways: You can …
. . . combine unit testing and regression testing

. . . write your unit tests (teststr.c) before you write your client code (replace.c)

. . . write your unit tests (teststr.c) before you begin writing what they will test (stra.c)

. . . use your unit-test design to refine your interface specifications
(i.e., what’s described in comments in the header)

another reason to write the unit tests before writing the code!

. . . avoid relying on the COS 217 repository to provide all your unit tests

46

POST-TESTING

47 @bundo

https://unsplash.com/@bundo

Leave Testing Code Intact!
Examples of testing code:
• unit test harnesses (entire module, teststr.c)
• assert statements
• entire functions that exist only in context of asserts (isValid() function)

Do not remove testing code when program is finished
• In the “real world” no program ever is “finished”

If you suspect that the testing code is inefficient:
• Test whether the time impact is significant
• Leave assert() but disable at compile time
• Disable other code with #ifdef…#endif preprocessor directives

48

The assert Macro
If testing code is affecting efficiency, it is possible to
disable assert() calls without removing them

• Define NDEBUG in code…

• … or when compiling:

/*------------------------------------*/
/* myprogram.c */
/*------------------------------------*/
#define NDEBUG

#include <assert.h>

…
/* Asserts are disabled here. */
…

$ gcc217 –D NDEBUG myprogram.c –o myprogram
50

#ifdef
Beyond asserts: using #ifdef…#endif

• To enable testing code:

• To disable testing code:

…
#ifdef TEST_FEATURE_X
/* Code to test feature

X goes here. */
#endif
…

$ gcc217 –D TEST_FEATURE_X myprog.c –o myprog

myprog.c

$ gcc217 myprog.c –o myprog

51

#ifndef
Or just piggyback on NDEBUG

• To enable testing code:

• To disable testing code:

…
#ifndef NDEBUG
/* Code to test feature

X goes here. */
#endif
…

$ gcc217 myprog.c –o myprog

myprog.c

$ gcc217 –D NDEBUG myprog.c –o myprog

52

Summary

Testing is expensive but necessary – be efficient
• External testing with scripts
• Internal testing with asserts
• Unit testing with harnesses
• Checking for code coverage

Test the code—and the tests!

Leave testing code intact, but disable as appropriate

53

