
COS 217: Introduction to Programming Systems

Crash Course in C (Part 3)

The Design of C Language Features and
Data Types and their Operations and Representations

POINTERS

2

Pointer Design Decisions

Issue: Why would a variable reference another variable or memory location?
• x=y is a one-time copy: if y changes, x doesn’t “update”
• copying large data structures is inefficient
• we need a handle to access dynamically allocated memory

Decision points:
• Typed or generic?
• How to represent a reference?
• What operations are necessary?

• Create a reference
• Access the referenced value
• Reference comparisons?
• Arithmetic operators for references?3

Straight to the Point
• Types are target-dependent

• We’ll see “generic” pointers later

• Values are memory addresses
• so size is architecture-dependent
• but not target-dependent

• Pointer-specific operators
• create: address-of operator (&)
• access: dereference operator (*)

• Other pointer operators
• Logical operators (e.g. !, ==, >=)
• + and – (including +=, ++, etc.)

int cyclic = 142857;
double las = 1.303577;
int* pi = NULL;
double* pd = &las;
pi = &cyclic;
*pi = (int) *pd;

4

cyclic

pi

142857 1

1.303577

0 k

k+4

las

pd

k

k+4

k+12

k+20

Illustrate the Point

int life = 42;
int jackie = 42;
int* adams = &life;
int* bkn = &jackie;
int** meta = &adams;

printf("%d %d\n",
adams == bkn,
*adams == *bkn);

printf(”%d %d %d %d %d\n",
meta == &adams,
meta == &bkn,
*meta == adams,
*meta == bkn,
**meta == *bkn);5

jackie

bkn

42

k

k+4

k+8

adams

meta

k+4

k+8

k+16

k+24

life 42 k

0 1
1 0 1 0 1

jackie

bkn

42

k

k+4

k+8

adams

meta

k+4

k+8

k+16

k+24

life 42 k

adams = bkn;

printf("%d %d\n",
adams == bkn,
*adams == *bkn);

printf("%d %d %d %d %d\n",
meta == &adams,
meta == &bkn,
*meta == adams,
*meta == bkn,
**meta == *bkn);6

jackie

bkn

42

k k+4

k+4

k+8

adams

meta

k+4

k+8

k+16

k+24

life 42 k

1 1
1 0 1 1 1

I ran out of verbal puns … have an alternate definition
@rbw500

https://unsplash.com/@rbw500

ARRAYS

7

@zburival

https://unsplash.com/@zburival

Array Design Decisions

Issue: How should C represent arrays?

Decision points:
• How to represent collections of elements of the same type?

• Natural to have a data type corresponding to this
• Useful to have a single name for the group with

iterable naming for individual elements
• Useful to have them contiguous in memory

• What operations should be possible on arrays?
• In particular, how to determine length?

• Pass by reference or pass by value?
8

Refresher: Java Arrays
• Always dynamically allocated

(in the Heap)
• Even when the values are known at

compile time (e.g. initializer lists)

• Access via a reference variable

public static void arrays() {
int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];
for(int c = 0;

c < arr2.length; c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

9
1 2 3

3length
0 4 8

3length
arr1

arr2

arr3

stack heap

C Arrays
• Can be statically allocated

(in the Stack, BSS, or Data)
• Length must be known at compile time

• Can also be dynamically allocated
(in the Heap)
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
for(c = 0; c <

sizeof(arr2)/sizeof(int);
c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

10

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

{low address
.
stack
.
high address

C Arrays
• Can be statically allocated

(in the Stack, BSS, or Data)
• Length must be known at compile time

• Can also be dynamically allocated
(in the Heap)
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
for(c = 0; c <

sizeof(arr2)/sizeof(int);
c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

11

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

{low address
.
stack
.
high address

C Arrays
• Can be statically allocated

(in the Stack, BSS, or Data)
• Length must be known at compile time

• Can also be dynamically allocated
(in the Heap)
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
for(c = 0; c <

sizeof(arr2)/sizeof(int);
c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

12

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

{low address
.
stack
.
high address

C Arrays
• Can be statically allocated

(in the Stack, BSS, or Data)
• Length must be known at compile time

• Can also be dynamically allocated
(in the Heap)
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
for(c = 0; c <

sizeof(arr2)/sizeof(int);
c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

13

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

{low address
.
stack
.
high address

C Arrays
• Can be statically allocated

(in the Stack, BSS, or Data)
• Length must be known at compile time

• Can also be dynamically allocated
(in the Heap)
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
for(c = 0; c <

sizeof(arr2)/sizeof(int);
c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

14

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

{low address
.
stack
.
high address

Pointer/Array Interplay
Array name alone is an implicit pointer:
&arr[0]

15

int* pArr3 = arr1;

Implicitly &arr1[0]

int arr1[] = {…};
int[] arr3 = arr1;

Pointer/Array Interplay
Array name alone is an implicit pointer:
&arr[0]

Pointers can use the array index operator.

16

int* pArr3 = arr1;
pArr3[i] = ...;

Implicitly &arr1[0]

int arr1[] = {…};
int[] arr3 = arr1;

Pointer/Array Interplay
Array name alone is an implicit pointer:
&arr[0]

Pointers can use the array index operator.

Pointer arithmetic is on elements, not bytes:
ptr ± k is implicitly
ptr ± (k * sizeof(*ptr)) bytes

Array indexing is actually a pointer operation!
arr[k] is syntactic sugar for

*(arr + k)
17

int* pArr3 = arr1;
pArr3[i] = ...;

Implicitly &arr1[0]

Really *(pArr3 + i)

int arr1[] = {…};
int[] arr3 = arr1;

Arrays with Functions
• Pass an array to a function

• Arrays “decay” to pointers
(the function parameter gets the
address of the array)

• Array length in signature is ignored
• sizeof “doesn’t work”

• Return an array from a function
• C doesn’t permit functions to have

arrays for return types
• Can return a pointer instead
• Be careful not to return an address

from the function’s stack!

/* completely equivalent
function signatures */

size_t count(int numbers[]);
size_t count(int* numbers);
size_t count(int numbers[5]);
/* always 8 */
return sizeof(numbers);

int[] getArr();
int* getArr();

18

STRINGS

19

String Design Decisions

Issue: How should C represent strings and string literals?

Decision Points:
• Natural to represent a string as a sequence of contiguous chars

• Even if we just saw how chars can be insufficient
• How to know where char sequence ends?

• Store length together with char sequence?
• Store special “sentinel” char after char sequence?

20

Strings and String Literals
Decisions

• Adopt a convention
• String is a sequence of contiguous chars
• String is terminated with null char (‘\0’)

• Use double-quote syntax (e.g., "hello") to represent a string literal
• Allow string literals to be used as special-case initializer lists

• Provide no other language features for handling strings
• Delegate string handling to standard library functions

Examples
• 'a' is a char literal
• "abcd" is a string literal
• "a" is a string literal

21

How many
bytes?

What decisions did the
designers of Java make?

Lemon Gelatin Dessert
char string[10] =
{'H','e','l','l','o',0};

(or, equivalently)
char string[10] = "Hello";

char* pc = string+1;

printf(”Y%s ", &string[1]);
printf("J%s!", pc);

22

string[0]

string[9]

‘h’

‘e’

‘l’
‘l’

‘o’

’\0’

Standard String Library
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {
char h[] = "Hello, ";
char w[] = "world!";
char msg[LENGTH];
int found;
if(sizeof(msg) <= strlen(h) + strlen(w))
return EXIT_FAILURE;

strcpy(msg, h);
strcat(msg, w);
if(strcmp(msg,

"Hello, world!"))
return EXIT_FAILURE;

found = strstr(msg, ", ");
if(found – msg != 5)
return EXIT_FAILURE;

return EXIT_SUCCESS;
}

23

strlen(h) + strlen(w)

strcpy(msg, h);
strcat(msg, w);

strcmp(msg)

strstr(msg, ”, “);

24

DIY (x2)

