4)
COS 217: Introduction to Programming Systems
Crash Course in C (Part 3)
The Design of C Language Features and
Data Types and their Operations and Representations
- % PRINCETON UNIVERSITY)

POINTERS

-

Pointer Design Decisions

Issue: Why would a variable reference another variable or memory location?
* X=Yyis a one-time copy: if y changes, x doesn’t “update”
e copying large data structures is inefficient
 we need a handle to access dynamically allocated memory

Decision points:
e Typed or generic?

e How to represent a reference? /
 What operations are necessary?

e Create a reference

e Access the referenced value

e Reference comparisons?

e Arithmetic operators for references?

-

Straight to the Point

4 o

* Types are target-dependent
* We'll see “generic” pointers later

 Values are memory addresses
* SO Size is architecture-dependent
* but not target-dependent

 Pointer-specific operators
 create: address-of operator (&)
e access: dereference operator (*)

e Other pointer operators
 Logical operators (e.g. !, ==, >=)
+ and - (including +=, ++, etc.)

int cyclic 142857;
double las = 1.303577;
intx p1 = NULL;
doublex pd = &las;

p1 = &cyclic;

xpi = (int) *pd;
cyclica 142857 1 |k
@ 1.303577 |4

' 4

- — @ Kk |k+12
d
P ~—— K+4 | k+20

-
lllustrate the Point

int life = 42;
int jackie = 42; .
intx adams = &life; life 42 K
intx bkn = &jackie; jacki 42 k+4
intx*x meta = &adams;

adamy \ k| kes
printf("%d %d\n",

adams == bkn, bkn

xadams == xbkn): ~— k+4 | k+16

printf(”%sd %d %d %d %d\n'", meta //>

meta == &adams, ~— K+8 | k+24
meta == &bkn,

*meta == adams,

xmeta == bkn, @ 1

5| xxmeta == *xbkn);
- 10101 y

-

| ran out of verbal puns ... have an alternate definition
life
jackie
adams = bkn;
adam
printf("%d %d\n",
adams == bkn, bkn
xadams == xbkn);
printf("%sd %d %d %d %d\n", meta
meta == &adams,
meta == &bkn,
*meta == adams,
xmeta == bkn, 1 1
6 xxmeta == *xbkn);
8 10111 y

https://unsplash.com/@rbw500

/]

ARRAYS /I”
/

(@zburival

https://unsplash.com/@zburival

-

Array Design Decisions

Issue: How should C represent arrays?

Decision points:
* How to represent collections of elements of the same type?
* Natural to have a data type corresponding to this

e Useful to have a single name for the group with
iterable naming for individual elements

e Useful to have them contiguous in memory

 What operations should be possible on arrays?
 |In particular, how to determine length?

e Pass by reference or pass by value?

-

Refresher: Java Arrays

« Always dynamically allocated public static void arrays() A
(inthe Heap) int[] arrl = {1, 2, 3};
int[] arr2 = new int[3];
for(int c = 0;
Cc < arr2.length; c++)
 Access via a reference variable arr2[c] = 4xc;
int[] arr3 = arrl;

 Even when the values are known at
compile time (e.g. initializer lists)

stack hea
arrl | — [P

arr2

arr3

[

C Arrays
« Can be statically allocated void arrays() 1
(in the Stack, BSS, or Data) 1nt C;

int arrl[] = {1, 2, 3};
int arr2[3];:

e Can also be dynamically allocated for(c = 0; c <

* Length must be known at compile time

(in the Heap) sizeof(arr2)/sizeof(int);
« We won’t see this until Lecture 8 C++)
o arr2[c]l = 4xc;:
low address arrilel| 1 int[}l arr3 = arrl;
arrl[1]] 2
.StaCk arrl[2]| 3 b
arr2[0]| 0
| high address § 2714
\ arr2l2]| 8 44/

[

C Arrays
« Can be statically allocated void arrays() 1
(in the Stack, BSS, or Data) 1nt C;

int arrl[] = {1, 2, 3};
int arr2[3];:

e Can also be dynamically allocated for(c = 0; c <

* Length must be known at compile time

(in the Heap) sizeof(arr2)/sizeof(int);
« We won’t see this until Lecture 8 C++)
o arr2[c]l = 4xc;:
low address arrilel| 1 int[}l arr3 = arrl;
arrl[1]] 2
.StaCk arrl[2]| 3 b
arr2[0]| 0
14 high address § 221114
\ arr2l2]| 8 44/

[

C Arrays
« Can be statically allocated void arrays() 1
(in the Stack, BSS, or Data) 1nt C;

int arrl[] = {1, 2, 3};
int arr2[3];

e Can also be dynamically allocated for(c = 0; c <

* Length must be known at compile time

(in the Heap) sizeof(arr2)/sizeof(int);
« We won’t see this until Lecture 8 C++)
o arr2[c]l = 4xc;:
low address arrilel| 1 int[}l arr3 = arrl;
arrl[1]] 2
.StaCk arrl[2]| 3 b
arr2[0]| 0
12 high address § 2 21114
\ arr2l2]| 8 44/

[

C Arrays
« Can be statically allocated void arrays() 1
(in the Stack, BSS, or Data) 1nt C;

int arrl[] = {1, 2, 3};
int arr2[3];

e Can also be dynamically allocated for(c = 0; c <

* Length must be known at compile time

(in the Heap) sizeof(arr2)/sizeof(int);
« We won’t see this until Lecture 8 C++)
o arr2[c]l = 4xc;
low address arrilel| 1 int[}l arr3 = arrl;
arrl[1]] 2
.StaCk arrl[2]| 3 b
arr2[0]| 0
14 high address § 22114
\ arr2l2]| 8 44/

[

C Arrays
« Can be statically allocated void arrays() 1
(in the Stack, BSS, or Data) 1nt C;

int arrl[] = {1, 2, 3};
int arr2[3];:

e Can also be dynamically allocated for(c = 0; c <

* Length must be known at compile time

(in the Heap) sizeof(arr2)/sizeof(int);
« We won’t see this until Lecture 8 C++)
o arr2[c]l = 4xc;:
low address arrilel| 1 int[}l arr3 = arrl;
arrl[1]] 2
.StaCk arrl[2]| 3 b
arr2[0]| 0
. high address § 2714
\ arr2l2]| 8 44/

-

Pointer/Array Interplay

15|

Array name alone is an implicit pointer:
Sarr[o]

int arri]]

intHarr3

||

intx pArr3

arril;

{

Implicitly &arrl[0]

-

-

Pointer/Array Interplay

16|

Array hname alone is an implicit pointer:
Sarr[0]

Pointers can use the array index operator.

int arril[]

arril;

intx pArr3
pArr3[i] = .. /

Implicitly &arrl[0]

-

-
Pointer/Array Interplay

Array name alone is an implicit pointer: int arrll] Sy
intHlarr3 =arrl;
Sarr[0]

Pointers can use the array index operator. arrl:
’

Pointer arithmetic is on elements, not bytes: - /

ptr + kisimplicitly Implicitly &arrll0]
ptr = (k x sizeof(xptr)) bytes

intx pArr3
pArr3[i] =

Array indexing is actually a pointer operation! 4
arr [kl is syntactic sugar for

x(arr + k) .
Really x(pArr3 + i)

17

-
Arrays with Functions

« Pass an array to a function /* completely equivalent
* Arrays “decay” to pointers ‘function signatures */
(the function parameter gets the ~ S1Z€_t count(int numbersl]);
address of the array) size_t count(intx numbers);

size t count(int numbers[5]);
/* always 8 x/
return sizeof(numbers);

* Array length in signature is ignored
« sizeof “doesn’t work”

 Return an array from a function

* Cdoesn’t permit functions to have ipt[] getArr{); e

arrays for return types intx getArr();
« (Canreturn a pointer instead

e Be careful not to return an address
from the function’s stack!

18|

STRINGS

-

String Design Decisions

20

Issue: How should C represent strings and string literals?

Decision Points:
e Natural to represent a string as a sequence of contiguous chars
e Even if we just saw how chars can be insufficient
e How to know where char sequence ends?
e Store length together with char sequence?
e Store special “sentinel” char after char sequence?

(

Strings and String Literals

21

Decisions
e Adopt a convention
e String is a sequence of contiguous chars
e String is terminated with null char ("\0")
* Use double-quote syntax (e.g., "hello") to represent a string literal
» Allow string literals to be used as special-case initializer lists
e Provide no other language features for handling strings
* Delegate string handling to standard library functions

Examples
* 'a'is a char literal
e "abcd" is a string literal
* "a" is a string literal

How many
bytes?

What decisions did the
designers of Java make?

(

Lemon Gelatin Dessert

22

char string[10] =
{IHI,IeI’I-LI’I-LI’IOI’@};

(or, equivalently)

char string[10] = "Hello";

charx pc = string+1;

printf(”Y%s ", &stringl[1]);

pr1ntf("J°s'", pc);

string[0]

string[9]

-

Standard String Library

The header shall define the following:
NULL Null pointer constant.

As described in

The following shall be declared as functions and may also be defined as
macros. Function prototypes shall be provided.

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {

char h[] = "Hello, ";

char w[] = "world!";
char msg[LENGTH];
int found;

if(sizeof(msg) <= strlen(h) + strlen(w))

return EXIT_FAILURE;
strcpy(msg, h);
strcat(msg, w);
if(strcmp(msg)

"Hello, world!"))

return EXIT_FAILURE;
found = strstr(msg, ", ");
if(found — msg !'= 5)

return EXIT_FAILURE;
return EXIT_SUCCESS;

-~

DIY (x2)

24

& www.cs.princeton.edu/courses/archive/fall20/cos217/asgts/02str/index.htmi

COS 217: Introduction to Programming Systems

Princeton University

Assignment 2: A String Module and Client

-

