9/17/20

(7 (7
COS 217: Introduction to Programming Systems v
Crash Course in C (Part 3)
The Design of C Language Features and
Data Types and their Operations and Representations
POINTERS
L ¥ PRINCETON UNIVERSITY) \2
1 2
() ()
Pointer Design Decisions v Straight to the Point v
« Types are target-dependent int cyclic = 142857;
Issue: Why would a variable reference another variable or memory location? + We'll see “generic” pointers later gg:gleilisNaLi: 303577;
« x=yis a one-time copy: if y changes, x doesn’t “update” . Val dd p ’
* copying large data structures is inefficient a ue; are memory addresses dQUble* pd _=.&1aS;
* we need a handle to access dynamically allocated memory * sosize is architecture-dependent p1 .= &CYCU'C ’
« but not target-dependent *#pi = (int) *pd;
- . . . cyclior 342857 1 |k
Decision points:) « Pointer-specific operators las
+ Typed or generic? « create: address-of operator (&) 1.303577 |k+4
* How to represent a reference?
« What operations are necessary? * access: dereference operator (*) pi
« Create a reference .« Oth int t — @ K|k+12
* Access the referenced value er_ pointer operators
« Reference comparisons? * Logical operators (e.g. !, ==, >=) pq N
3 « Arithmetic operators for references? 4 ¢ +and - (including +=, ++, etc.) k+4 | k+20
- J -
3 4
() (
lllustrate the Point v I ran out of verbal puns ... have an alternate definition v
0
int life = 42; -
int jackie = 42; s .
intx adams = &life; life 42 k life 42
intx bkn = &jackie; jacki 42 k+4 jacki 42
intsk meta = &adams; adams = bkn;
adamg \ Kkl kes adam: ~— k44
printf("%d sd\n", printf("sd sd\n",
adams == bkn, bkn adams == bkn, bkn
*adams == xbkn); " k+4|k+16 sadams == *bkn); I k+4
printf(”sd %d %d %d %sd\n", meta printf("sd %d %d %d %d\n", meta
meta == &adams, N~— k+8| k+24 meta == &adams, N— k+8
meta
*meta
*meta 01 11
9 skmeta == xbkn);
§ 10101 y § 10111

https://unsplash.com/@rbw500

9/17/20

ARRAYS

Va

Array Design Decisions

®

Issue: How should C represent arrays?

Decision points:
* How to represent collections of elements of the

+ Natural to have a data type corresponding to this
+ Useful to have a single name for the group with

iterable naming for individual elements
* Useful to have them contiguous in memory

* What operations should be possible on arrays?
« In particular, how to determine length?

* Pass by reference or pass by value?

same type?

~

Refresher: Java Arrays

3

Always dynamically allocated

(in the Heap)

= Even when the values are known at
compile time (e.g. initializer lists)

* Access via a reference variable

public static void arrays() {
int[] arrl = {1, 2, 3};
int[] arr2 = new int[3];
for(int ¢ = 0;
c < arr2.length; c++)
arr2[cl = 4xc;
int[] arr3 = arrl;

Vs

C Arrays

3

» Can be statically allocated
(in the Stack, BSS, or Data)

« Length must be known at compile time

* Can also be dynamically allocated
(in the Heap)
* We won't see this until Lecture 8
arrife]l| 1

void arrays() {

int c;

int arri[] = {1, 2, 3};

int arr2[3];

for(c = 0; ¢ <
sizeof(arr2)/sizeof(int);

4*c,

low address H 3—=
1 stack : heap arrl[l])
- .stack arrlm
arr2 arr2[0]
q arr3 1 high address arr2[1]
L J I\ arr2[2]
9 10
() (")
C Arrays v C Arrays v
« Can be statically allocated void arrays() { « Can be statically allocated void arrays() {
(in the Stack, BSS, or Data) i:i ;;rrl[] -, 2, 3% (in the Stack, BSS, or Data) iﬂ: g;rr1[] -, 2, 3
« Length must be known at compile time int arr2(3]; L ’ « Length must be known at compile time int arr2[3]' roer 4
+ Can also be dynamically allocated ~ for(c = 0; ¢ + Can also be dynamically allocated ~ for(c = 0;
(in the Heap) 51zeof(arr2)/51zeof(1nt) (in the Heap) 51zeof(arr2)/51zeof(1nt)
* We won't see this until Lecture 8 c+t) _ * We won't see this until Lecture 8 c++) _
[1] arr2[c]l = 4xc; [1] arr2[cl = 4xc;
low address arrife]| 1 it a3 arrls low address arrife]l| 1 PR E
arrl[l] } arrl[l] }
) arrl[Z]) arri[2] 3
stack arr2[0] stack arrZ[O]
11 high address arr2011/4] 4 high address arr2111/ 4 |
U arr2[2] Y, 4 arr2[2] Y,
11 12

https://unsplash.com/@zburival

9/17/20

Ve
C Arrays

=

» Can be statically allocated
(in the Stack, BSS, or Data)
* Length must be known at compile time

int

* Can also be dynamically allocated
(in the Heap)

void arrays() {

[*H

int arrif]
int arr2[3]1;

for(c = 0; ¢ <
sizeof(arr2)/sizeof(int);

={1, 2, 3%

-

=

C Arrays

void arrays() {

int c;

int arri[]l = {1, 2, 3};

int arr2[3];

for(c = 0; c <
sizeof(arr2)/sizeof(int);

« Can be statically allocated
(in the Stack, BSS, or Data)
* Length must be known at compile time

* Can also be dynamically allocated
(in the Heap)

* We won't see this until Lecture 8 gtt; [c] = dkc; * We won't see this until Lecture 8 ;::% [c] = dkc;
low address arriiol sactarra—arrl; low address arritelf1] intl} ared = arel;
arri[1] y arrl[l])
i arrl[2]) arr1[2]
stack arr2[e] stack arr2[0]
13 high address arr2(11/4] 14 high address arr2011[4|
L arr2[2] n q arr2[2]
13 14
(\ 4)
Pointer/Array Interplay v Pointer/Array Interplay v
Array name alone is an implicit pointer: int arrl(] = L1 Array name alone is an implicit pointer: int arri[] = L3
Sarr[o] ‘ Sarr[o] ‘
intkx pArr3 = Pointers can use the array index operator. intx pArr3 -
pArr3[il = ...;
Implicitly &rrllo Implicitly &arrllo
15| 16
N\ N
15 16
(N\ e)
Pointer/Array Interplay v Arrays with Functions v
Array name alone is an implicit pointer: int arri(] = L3 + Pass an array to a function /% completely equivalent
&arr(o] W « Arrays “decay” to pointers Si;g"gtégzni%gﬂitﬁgﬁgetg);
. X (the function parameter gets the — ’
Pointers can use the array index operator. intx pArr3 = arrl: address of the array) s;ze_t count(int* numbers) ;
pArr3[i] = ; « Array length in signature is ignored Size_t count(int numbers([5]);

Pointer arithmetic is on elements, not bytes:

ptr = kisimplicitly
ptr = (k *x sizeof(*ptr)) bytes

Array indexing is actually a pointer operation!

arr[k] is syntactic sugar for

Implctly &arrllo

=

sizeof “doesn’t work” /* alwayg 8 */
return sizeof(numbers);
* Return an array from a function
* Cdoesn’t permit functions to have

arrays for return types

¢ Can return a pointer instead

intx getArr();

* Be careful not to return an address
x(arr + k
o (a) Really *(pArr3 + 1) 1d from the function’s stack!
. \

9/17/20

STRINGS

06060 C

e

String Design Decisions

N

Issue: How should C represent strings and string literals?

Decision Points:

+ Natural to represent a string as a sequence of contiguous chars
* Even if we just saw how chars can be insufficient

* How to know where char sequence ends?
* Store length together with char sequence?
« Store special “sentinel” char after char sequence?

19

20

e

Strings and String Literals

-

Lemon Gelatin Dessert

. . i in
Decisions char st ring [10] = string[@] h
* Adopt a convention |H| |e| '1' |-L| |0. 0 . ‘e’
 String is a sequence of contiguous chars { ' ! ! 4 ! } 4
« String is terminated with null char ("\0") (or, eQuNaIe‘nUy) " " ‘1
« Use double-quote syntax (e.g., "hello") to represent a string literal char st ring [10] = "Hello H o
+ Allow string literals to be used as special-case initializer lists
« Provide no other language features for handling strings = 3 . ‘o’
* Delegate string handling to standard library functions char* pC str1ng+1,
o'
i - ’ i ’
Examples - rintf(”Y%s ", &string[1]);
* 'a'is a char literal - low many . Hoc 1 .
« "abcd" is a string literal bytes? p rintf (J%s ! ’ PC) ’ I
* "a"is a string literal
What decisions did the
21 designers of Java make? 22]
g i\ string[9]
() (A
Standard String Library ~ DIY (x2) 1~
. y . §§2§ {532 :ziﬂi‘;gh;> @ www.cs.princeton.edu/courses/archive/fall20/cos217/asgts/02str/indexhtml
#include <assert.h>
M #include <stdlib.h>
i::”mgléf[“]ﬂ” - i‘i ¥ Princeton University
char = "Hello, "; . .
char wl) = "world!"; COS 217: Introduction to Programming Systems
char msg[LENGTH] ;
int found;
£(f(msg) <= StFlen(h) + strien(w)) i 4 i i
if(siseatinsg) < strl Assignment 2: A String Module and Client
strcpy(msg, h);
§trcat(n|§?, Wi
if (§EFEMp(msg)
"Hello, world!"))
return EXIT_FAILURE;
found = strstr(msg, ",)}
if(found — msg != 5)
return EXIT_FAILURE;
return EXIT_SUCCESS; 24
. _

23

24

