-

COS 217: Introduction to Programming Systems

~

Crash Course in C (Part 2)

The Design of C Language Features and
Data Types and their Operations and Representations

% PRINCETON UNIVERSITY

)
o
Ll
©)
Ll
—
Z

43
-

https://unsplash.com/@photoshobby

[

Integer Data Types

44

Integer types of various sizes: {signed, unsigned} {char, short, int, long}
e charis 1 byte

 Number of bits per byte is unspecified!
(but in the 21st century, safe to assume it’s 8)

 Sizes of other integer types not fully specified but constrained:
* int was intended to be “natural word size” of hardware
e 2 < sizeof(short) £ sizeof(int) < sizeof(long)

On ArmLab:
e Natural word size: 8 bytes (“64-bit machine”)
e char: 1 byte /
e short: 2 bytes
* int: 4 bytes (compatibility with widespread 32-bit code)
* long;: 8 bytes

What decisions did the
designers of Java make?

-

Integer Literals

e Decimal int: 123

e Octal int: 0173 =123

* Hexadecimal int: Ox7B =123

» Use "L" suffix to indicate long literal

* No suffix to indicate char-sized or short integer literals; instead, cast

Examples
° int: 123,0173, 0x7B
* long: 123L, 0173L, Ox7BL
e short: (short)123, (short)0173, (short)Ox7B

-
Unsigned Integer Data Types

unsigned types: unsigned char, unsigned short, unsigned int, and unsigned long
* Hold only non-negative integers

Default for short, int, long is signed
e char is system dependent (on armlab char is unsigned)
* Use "U" suffix to indicate unsigned literal

Examples
* unsigned int:
e 123U, 0173U, 0x7BU
* Oftentimes the U is omitted for small values: 123, 0173, Ox7B /

e (Technically there is an implicit cast from signed to unsigned,
but in these cases it shouldn’t make a difference.)

* unsigned long:
e 123UL, 0173UL, Ox7BUL
46 e unsigned short:

g e (unsigned short)123, (unsigned short)0173, (unsigned short)Ox7B J

p
“Character” Data Type

The C char type
e char is designed to hold an ASCII character

e Should be used when you're dealing with characters:
character-manipulation functions we’ve seen (such as toupper) take and return char

e char might be signed (-128..127) or unsigned (0..255)
e But since O < ASCIl £ 127 it doesn’t really matter when used as an actual character
* If using chars for arbitrary one-byte data, good to specify as unsigned char

-

-
Character Literals

Single quote syntax: 'a’

Use backslash (the escape character) to express
special characters
e Examples (with numeric equivalents in ASCII):

'a' the a character (97, 01100001y, 61y)
'\141' the a character, octal form
'\x61' the a character, hexadecimal form
'b' the b character (98, 01100010z, 62y)
'A’ the A character (65, 01000001y, 41y)
'B' the B character (66, 01000010z, 42y)
"\0' the null character (0, 00000000z, Oy) //7
0! the zero character (48, 00110000z, 30y)
1 the one character (49, 00110001z, 31y)
"\n' the newline character (10, 00001010y, Ajy)
"\t' the horizontal tab character (9, 00001001y, 9y)
"\\' the backslash character (92, 01011100z, 5Cy)
48 "\"' the single quote character (96, 01100000z, 60y)

[

Unicode

49

Back in 1970s, English was the only language in the worldlcitation needed]
so we all used this alphabet leitation needed] -

ASCII:

American Standard Code I RHES
/1 fﬂ A M

for Information Interchange SEEERE l E ’ e
% 8 AN ¥
E L ;' \

* =z .
™ ¢ N
st i 2 7 3 -‘x.L -6 1.
In the 215 century, it turns out 'f:j, “ Wcope - 0T -
there are other languages! -] - PR ;_‘} 3 1
)) D 0 = = o = o= o= C
RER I,
BOREAAAEEEREE
..‘;P:.el;{j‘yt..\‘/..: .ﬁ
: momimim . 0l®alS
Pl A= e 2 82§
N 80 A m - - - 5 a) 6 ¢ j

-

Modern Unicode

50

When C was designed, it only considered ASCII, which fits in 7 bits,
so C’s chars are 8 bits long.

When Java was designed, Unicode fit into 16 bits,
so Java’s chars are 16 bits long.

Then this happened:

—1988:

MY “UNICODE" STANDARD
SHOULD HEWP REDUCE

PROBLEMS CAVSED BY
INCOMPATIBLE BINARY

TEXT ENCODINGS.

onn
]
| ¥ XN
W e
. N

GREAT NEWS FOR MAINE —WERE

GETTING A LOBSTER EMOJ1!!! THANKS
To @UNICODE FOR RECOGNIZING THE
IMPACT OF THIS CRITICAL CRUSTACEAN,
IN MAINE AND ACR0SS THE COUNTRY.

YOURS TRULY
SENATOR &5 8

2/7/18 Zl2pm

WHAT....WHAT HAPPENED
IN THOSE THIRTY YEARS?

THINGS GOT
A LITIE
WEIRD OKAY?

19

https://xkcd.com/1953/

https://xkcd.com/1953/

52

Integer Types in Java vs. C

Unsigned types char // 16 bits

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

Signed types

unsigned
unsigned
unsigned
unsigned
signed
(signed)
(signed)
(signed)

char /* Note 2 */
short

(int)

long

char /* Note 2 */
short

int

long

1. Not guaranteed by C, but on armlab, char = 8 bits, short = 16 bits, int = 32 bits, 1long = 64 bits

2. Not guaranteed by C, but on armlab, char is unsigned

To understand C, must consider the representation of these types!

A
- Jwa___/ _________Cc_

[

Representing Unsigned Integers

53

Mathematics
* Non-negative integers’ range is O to o

Computer programming
* Range limited by computer’s word size
e Word size is n bits = rangeisOto2n - 1
* Exceed range = overflow

Typical computers today
* n=32o0r 64, sorangeis 0to 232 - 1 (~4B) or 254 - 1 (huge ... ~1.8e19)

Pretend computer
en=4,sorangeis0to 2% -1 (15)

Hereafter, assume word size = 4
 All points generalize to word size = n (armlab: 64)

-

[

Representing Unsigned Integers
On 4-bit pretend computer :
Unsigned
Integer Rep
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
4 15 1111

[

Adding Unsigned Integers

55

Addition
1
3 0011,
+ 10 + 10104
13 1101,
111
7 0111,
+ 10 + 10104
1 0001,

Results are mod 24

How would you
detect overflow
programmatically?

Start at right column
Proceed leftward
Carry 1 when necessary

Beware f Qverﬂow

-

https://unsplash.com/@mbaumi

e
Subtracting Unsigned Integers

Subtraction

111 .
10 1010, Start at right column

-7 - 0111, Proceed leftward
- === Borrow when necessary

3 0011,
1
3 0011, Beware of overflow
- 10 - 10104

s 1001, a

How would you
detect overflow
programmatically?

Results are mod 24
56

(

Shifting Unsigned Integers

o7

10 >> 1 = 5
1010, 0101,

10 >> 2 = 2
1010, 0010,

5 << 1 = 10
0101, 1010,

3 << 2 2 12
0011, 1100,

3 <3 =218

Bitwise right shift (>> in C): fill on left with zeros

What is the effect
arithmetically?

Bitwise left shift (<< in C): fill on right with zeros

What is the effect
arithmetically?

0011, 1000, € Results are mod 24

-
Other Bitwise Operations on Unsigned Integers

Bitwise NOT (~ in C)
* Flip each bit

~10 = 5 ~5 = 10
10105 01014 0101y 10104

Bitwise AND (& in C)
 AND (1=True, O=False) corresponding bits

10 1010, 10 1010,
&7 & 0111, § 2 & 0010, a4

2 00104 2 00104

Useful for “masking” bits to O
58

-
Other Bitwise Operations on Unsigned Ints

Bitwise OR: (| in C)
e Logical OR corresponding bits

10 1010g Useful for “masking” bits to 1
| 1 | 0001,
11 1011,

Bitwise exclusive OR (* in C)
 Logical exclusive OR corresponding bits

10 10104
~ 10 ~ 1010 X M x sets
0 B— all bits to 0

59

[
oN i i
I/ A Bit Complicated

How do you set bit k (where the least significant bit is bit O)
of unsigned variable u to zero (leaving everything else in u unchanged)?

A. u &= (0 <<Kk); D:
B. u|=(1<<Kk); 1 << k = 0{n-1-k}10{k} 4
C. u|=~(1<<Kk) ~(1 << n) =2 1{n-1-k}01L{K}
D. u&=~(1<<Kk); u &= ~(1 << Kk); = u;{n-1-k}Ou,{k}
600 E. u=~u”(1<<Kk);

[

Aside: Using Bitwise Ops for Arith

X* 2¥==x<<y
¢ 3%4 =3%22=3<<2> 12

X/ 2Y==x>>y
e 13/4=13/22=13>>2=3

X% 2y ==x & (2¥-1)
e 13%4 = 13%22 = 13&(22-1)
=13&3 > 1

13 1101,
& 3 & 0011,

1 0001,

Syl

Can use <<, >>, and & to do some arithmetic efficiently

Fast way to multiply
by a power of 2

Fast way to divide
unsigned by power of 2

Fast way to mod
by a power of 2

-

Many compilers will
do these transformations
automatically!

-

Unfortunate reminder: negative numbers exist

[

Sign-Magnitude

64

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition

High-order bit indicates sign
0 = positive
1 = negative

Remaining bits indicate magnitude
0101, = 101, = 5
1101, = -101; = -5

/

Sign-Magnitude (cont.)

65

Integer Rep

—7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative

neg(x) = flip high order bit of x
neg(0101;) = 1101,
neg(1101;) = 0101,

Pros and cons

+ easy to understand, easy to negate

+ symmetric

- two representations of zero

- need different algorithms to add
signed and unsigned numbers

-

p
Ones’ Complement

Integer Rep

-7 1000
-6 1001
-5 1010

-4 1011 | Definition
-3 1100 High-order bit has weight —(2°1-1)

:i 1123 10105 = (1*-7)+(0*4)+(1*2)+(0*1)
-0 1111 = -5
0 0000 0010, = (0*-7)+(0*4)+(1*2)+(0*1)
1 0001 = 9 /
2 0010 -
3 0011
4 0100 . .
5 0101 S_lmllar pro_s and cons to
6 o0110| sign-magnitude

66 7 0111

> y

-
Two’s Complement

Integer Rep

-8 1000
-7 1001
-6 1010

-5 1011 | Definition
-4 1100 | High-order bit has weight —(2°1)

-3 1101 - :
2 1110| *910s = (2? 8)+(0*4)+(1*2)+(0*1)

-1 1111
0 0000 00105 = (0*-8)+(0*4)+(1*2)+(0*1)
1 0001 = 5 e
2 0010

3 0011
4 0100
5

6

7

0101
0110
0111

67

e
Two’s Complement (cont.)

Integer Rep

-8 1000 | i ti
2 1001 | Computing negative

-6 1010 | heg(x) = ~x + 1
-5 1011 neg(x) = onescomp(x) + 1

5 1101 neg(0101;) = 10105 + 1 = 1011,
-2 1110 neg(1011lg) = 0100z + 1 = 01014
-1 1111
0 0000

ooo1 | Pros and cons e

1

2 0010 | - not symmetric

3 0011 11 7 H

P (“extra negatlvg number)
5 0101 | + one representation of zero
6 0110 | + sgme algorithm adds

7

0111 . . .
68 signed and unsigned integers

-

Adding Signed Integers

pos + pos pos + pos (overflow)
11 111
3 0011; 7 0111;
+ 3 + 0011, + 1 + 0001;
6 01105 -8 10005
pos + neg
1111 How would you
3 0011;

detect overflow

+ -1 + 1111, _
programmatically?

2 00103 /
neg + neg neg + neg (overflow)
11 11
-3 11013 -6 1010g
+ -2 + 11104 + -5 + 1011,
69 -5 1011, 5 0101,
- J

[

Subtracting Signed Integers

Perform subtraction Compute two’ s comp
with borrows or and add
11
3 0011 3 0011
4 - 0100, ‘ + -4+ 1100,
-1 1111, -1 1111,
11 1
-5 1011 -5 1011,
--2 - 11104 ‘ + 2 + 00105
-3 1101, -3 1101,
70
N\ Y,

-

Negating Signed Ints: Math

71

Question: Why does two’s comp arithmetic work?

Answer: [-b] mod 24 = [twoscomp(b)] mod 24

[-b] mod 24
[2? - b] mod 24

[2- 1 - b + 1] mod 24
[(2¢= 1 - b) + 1] mod 24
[onescomp (b) + 1] mod 24
[twoscomp (b)] mod 24

A

: [a - b] mod 24 = [a + twoscomp(b)] mod 24

L | I | I | I | e

V)]
|

b] mod 24

+ 24 - b] mod 24

24 =1 - b + 1] mod 24
(22 - 1 - b) + 1] mod 24
onescomp (b) + 1] mod 24

+
+
+
+ twoscomp (b)] mod 24

-

Pithier Rationale: Math

72

Ring theory.

If n > 0, Z/(n) is a finite commutative ring, with properties:

Gn+ by = (a+b),;a, — b, = (a—0b),;anb, = (abd),

-

[

Shifting Signed Integers

73

Bitwise left shift (<< in C): fill on right with zeros

3<< 1> 6
0011, 0110,

3 << 1> -6
1101, 10104

-3 <K< 2 =>4
1101, 0100,

Results are mod 24

Bitwise right shift: fill on left with ??7?

What is the effect
arithmetically?

[

Shifting Signed Integers (cont.)

74

Bitwise arithmetic right shift: fill on left with sign bit

6 > 1 = 3
0110, 0011,

What is the effect
arithmetically?

-6 >> 1 = -3
1010, 1101,

Bitwise logical right shift: fill on left with zeros

6 > 1 => 3
0110, 0011,

What is the effect
arithmetically???

-6 >> 1 =>5
1010, 0101,

In C, right shift (>>) could be logical or arithmetic
* Not specified by standard (happens to be arithmetic on armlab)

» Best to avoid shifting signed integers

-

Other Operations on Signed Ints

75

Bitwise NOT (~ in C)
e Same as with unsigned ints

Bitwise AND (& in C)
e Same as with unsigned ints

Bitwise OR: (] in C)
e Same as with unsigned ints

Bitwise exclusive OR (" in C)
e Same as with unsigned ints

Best to avoid with signed integers

-

Special-Purpose Assignment

76

Issue: Should C provide tailored assignment operators?

Thought process
e The construct a = b + c is flexible
* The constructi =i+ ¢ is somewhat common
* The constructi =i+ 1is very common
e Special-purpose operators make code more expressive
* Might reduce some errors
* May complicate the language and compiler

Decisions
* Introduce += operator to do things like i += ¢
e Extend to -= *= /= ~= &: |= N <= >>=

e Special-case increment and decrement: i++ i--
* Provide both pre- and post-inc/dec: x = ++i;y = i++;

(
N
I/ Plusplus Playfulness

77

Q: What are i and j set to in the following code?

i=25;
j = i++;
J 4= ++i;
A.b, 7 D
B.7,5 j
C.7,11 i=5; ?
E.7,13 j += ++i; 12

-

g o O

[
o\ i
I/ Incremental Iffiness

78

Q: What does the following code print?

22
33

m o o W »
w

int i = 1;
switch (i++) {
case 1: printf("%d", ++i);
case 2: printf ("%d", i++);
}

E!
I++ increments i to 2, but evaluates to i's old value: 1
So switch on 1, not 2!

++i evaluates to new value, so 3 is printed
FALL THROUGH GOTCHA!

i++ evaluates to old value, so 3 is printed again

-

[
o\ '
I/ Incremental Iteration

79

Q: What does the following code print?

22
33

m o o W »
w

int i = 1;
switch (i=i++) {
case 1: printf("%d", ++i);
case 2: printf("%d", i++);
}

D
I++ increments i to 2, but evaluates to i's old value: 1
i = 1 overwrites our just-incremented 2 back to 1

... Switch on 1, so now continue into case 1 with i as 1,
so we end up printing 22.

-

-

sizeof Operator

80

Issue: How to determine the sizes of data?

Thought process
* The sizes of most primitive types are un- or under-specified
* Provide a way to find size of a given variable programmatically

Decisions
* Provide a sizeof operator
e Applied at compile-time
e Operand can be a data type

e Operand can be an expression,
from which the compiler infers a data type

Examples, on armlab using gcc217
e sizeof(int) evaluates to 4
* sizeof(i) - where i is a variable of type int - evaluates to 4

p
|> iIClicker Question

Q: What is the value of the following sizeof expression on the armlab machines?

int 1 = 1;

sizeof (i + 2L)

A. 3 C
B. Promote i to long, add 1L + 2L. /
C. 8 Result, 3L, is a long.
D. 12 longs are 8 bytes on armlab.
81 E. error
- Y,

LOGICAL TYPES

https://unsplash.com/@lunarts

-

Logical Data Types

83

* No separate logical or Boolean data type

* Represent logical data using type char or int
e Or any primitive type! :/

* Conventions:
e Statements (if, while, etc.) use O = FALSE, #0 = TRUE

* Relational operators (<, >, etc.) and logical operators (!, &&, | |)
produce the result O or 1, specifically

_ogical Data Type Shortcuts

84

Using integers to represent logical data permits shortcuts

It also permits some really bad code...

[

Logical Data Type Dangers

85

The lack of a logical data type hampers
compiler's ability to detect some errors

int i;

i=20;

if (i = 5)
statementl;

What happens
in Java?

What happens
in C?

(

Logical vs. Bitwise Ops

86

Logical AND (&&) vs. bitwise AND (&)

e 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

Decimal
2

&& 1

1

Binary
00000000
00000000

00000000
00000000

00000000
00000000

00000010
00000001

00000000

00000000

00000000

00000001

2 (TRUE) & 1 (TRUE) => O (FALSE)

Decimal
2

&1

0

Binary
00000000
00000000

00000000
00000000

00000000
00000000

00000010
00000001

00000000

00000000

00000000

00000000

Implication:

» Use logical AND to control flow of logic
* Use bitwise AND only when doing bit-level manipulation

e Same for OR and NOT

-

Agenda

87

Thus far:
Integer types in C
Finite representation of unsigned integers
Finite representation of signed integers
Logical types (or lack thereof) in C

Up next:

Finite representation of rational (floating-point) numbers

88

FLOATING POINT

https://unsplash.com/@tylerleeeaston

-

Rational Numbers

89

Mathematics

* A rational number is one that can be expressed
as the ratio of two integers

* Unbounded range and precision

Computer science
* Finite range and precision
e Approximate using floating point number

-

Floating Point Numbers

90

Like scientific notation: e.g., c is
2.99792458 x 108 m/s

This has the form
(multiplier) x (base)Power

In the computer,
e Multiplier is called mantissa
* Base is almost always 2
* Power is called exponent

-

Floating-Point Data Types

91

C specifies:
* Three floating-point data types:
float, double, and long double
 Sizes unspecified, but constrained:
* sizeof(float) < sizeof(double) < sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)

e float: 4 bytes
e double: 8 bytes

On ArmLab (but varying across architectures)
* long double: 16 bytes

-

-
Floating-Point Literals

How to write a floating-point number?
 Either fixed-point or “scientific” notation
* Any literal that contains decimal point or "E" is floating-point
* The default floating-point type is double
* Append "F" to indicate float
* Append "L" to indicate long double

Examples
e double: 123.456, 1E-2,-1.23456E4
* float: 123.456F, 1E-2F, -1.23456E4F
* long double: 123.456L, 1E-2L, -1.23456E4L /

92

[

IEEE Floating Point Representation

93

Common finite representation: IEEE floating point
* More precisely: ISO/IEEE 754 standard

Using 32 bits (type £loat in C):
e 1 bit: sign (O=positive, 1=negative)
e 8 bits: exponent + 127
e 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type double in C):
e 1 bit: sign (O=positive, 1=>negative)
e 11 bits: exponent + 1023

e 52 bits: binary fraction of the form
1.bb

-

When was floating-point invented?

94

from Latin mantisa

mantissa (noun): decimal part of a logarithm, 1865, €Answer: long before computers!
“a worthless addition, makeweight”

COMMON LOGARITHMS logiox
’ 1 2
x 0 x 2 3 4 1 6 v & S. O >
4
50 | 6990 | 6998 7007 7016 | 7024 7033 7042 | 7050 7059 7067 | 9 [1 23
81 | +7076 | 7084 7093 7101 | 7110 7118 7126 | 7135 7143 7152 § 8 | 1 2 2
83 | <7160 | 7168 7177 7185 | 7193 7202 7210 | 7218 7226 7235 § 8 |1 2 2
53 | 7243 | 7251 7259 7267 | 7275 7284 7292 | 7300 7308 7316 | 8 | 1 2 2
54 | *7324 | 7332 7340 7348 | 7356 7364 7372 | 7380 7388 7396 | 8 | 1 2 2
55 | 7404 | 7412 7419 7427 | 7435 7443 7451 | 7459 7466 7474 | 8 | 1 2 2

-

Floating Point Example

95

Sign (1 bit):

Exponent (8 bits):
« 100000115 =131
e 131 -127=4

Mantissa (23 bits):
* 1.101101100000000000000005

o 1+ (1*21)+(0*22)+(1*23)+(1*24)+(0*2°)+
(1*20)+(1*2°7) +(0*2+)=1.7109375

Number:
e -1.7109375 * 24=-27.375

1000001110110110000000000000000

32-bit representation

[

Floating Point Consequences

96

“Machine epsilon”: smallest positive number you can
add to 1.0 and get something other than 1.0

For float: ¢ =~ 10-7
e No such number as 1.000000001
* Rule of thumb: “almost 7 digits of precision”

For double: ¢ =2 x 10-16
* Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers

(

Floating Point Consequences, cont

97

Just as decimal number system can
represent only some rational
numbers with finite digit count...

* Example: 1/3 cannot be represented

Binary number system can
represent only some rational
numbers with finite digit count

* Example: 1/5 cannot be represented

Beware of round-off error

e Error resulting from inexact
representation

e Can accumulate

Decimal Rational

Approx Value

.3 3/10

.33 33/100
.333 333/1000
Binary Rational
Approx Value
0.0 0/2
0.01 1/4
0.010 2/8
0.0011 3/16
0.00110 6/32
0.001101 13/64
0.0011010 26/128
0.00110011 51/256

* Be careful when comparing two floating-point numbers for equality

o
N '
I/ Floating away ...

What does the following code print? |double sum = 0.0;
double 1i;
for (i = 0.0; i !'= 10.0; i++)
sum += 0.1;
if (sum == 1.0)
printf ("All good!\n") ;
else
printf ("Yikes!\n") ;

All good! B: Yikes!

Yikes! ... loop terminates, because we /
can represent 10.0 exactly by

(Infinite loop) adding 1.0 at a time.

o 0 w P

1ati
(Compilation error) _but sum isn’t 1.0 because we

99| can’t represent 1.0 exactly by
- adding 0.1 at a time. Y,

[

Summary

Integer types in C

Finite representation of unsigned integers
Finite representation of signed integers
Logical types in C (or lack thereof)
Floating point types in C

Finite representation of rational (floating-point) numbers

Essential for proper understanding of
e C primitive data types
* Assembly language
* Machine language

(00T

