
COS 217: Introduction to Programming Systems

Crash Course in C (Part 2)

The Design of C Language Features and
Data Types and their Operations and Representations

INTEGERS

43

@photoshobby

https://unsplash.com/@photoshobby

Integer Data Types
Integer types of various sizes: {signed, unsigned} {char, short, int, long}

• char is 1 byte
• Number of bits per byte is unspecified!

(but in the 21st century, safe to assume it’s 8)
• Sizes of other integer types not fully specified but constrained:

• int was intended to be “natural word size” of hardware
• 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On ArmLab:
• Natural word size: 8 bytes (“64-bit machine”)
• char: 1 byte
• short: 2 bytes
• int: 4 bytes (compatibility with widespread 32-bit code)
• long: 8 bytes

44
What decisions did the

designers of Java make?

Integer Literals

• Decimal int: 123
• Octal int: 0173 = 123
• Hexadecimal int: 0x7B = 123
• Use "L" suffix to indicate long literal
• No suffix to indicate char-sized or short integer literals; instead, cast

Examples
• int: 123, 0173, 0x7B
• long: 123L, 0173L, 0x7BL
• short: (short)123, (short)0173, (short)0x7B

Unsigned Integer Data Types
unsigned types: unsigned char, unsigned short, unsigned int, and unsigned long

• Hold only non-negative integers

Default for short, int, long is signed
• char is system dependent (on armlab char is unsigned)
• Use "U" suffix to indicate unsigned literal

Examples
• unsigned int:

• 123U, 0173U, 0x7BU
• Oftentimes the U is omitted for small values: 123, 0173, 0x7B

• (Technically there is an implicit cast from signed to unsigned,
but in these cases it shouldn’t make a difference.)

• unsigned long:
• 123UL, 0173UL, 0x7BUL

• unsigned short:
• (unsigned short)123, (unsigned short)0173, (unsigned short)0x7B

46

“Character” Data Type
The C char type

• char is designed to hold an ASCII character
• Should be used when you’re dealing with characters:

character-manipulation functions we’ve seen (such as toupper) take and return char
• char might be signed (-128..127) or unsigned (0..255)

• But since 0 ≤ ASCII ≤ 127 it doesn’t really matter when used as an actual character
• If using chars for arbitrary one-byte data, good to specify as unsigned char

Character Literals
Single quote syntax: 'a'

Use backslash (the escape character) to express
special characters
• Examples (with numeric equivalents in ASCII):

48

'a' the a character (97, 01100001B, 61H)
'\141' the a character, octal form
'\x61' the a character, hexadecimal form
'b' the b character (98, 01100010B, 62H)
'A' the A character (65, 01000001B, 41H)
'B' the B character (66, 01000010B, 42H)
'\0' the null character (0, 00000000B, 0H)
'0' the zero character (48, 00110000B, 30H)
'1' the one character (49, 00110001B, 31H)
'\n' the newline character (10, 00001010B, AH)
'\t' the horizontal tab character (9, 00001001B, 9H)
'\\' the backslash character (92, 01011100B, 5CH)
'\'' the single quote character (96, 01100000B, 60H)

Unicode
Back in 1970s, English was the only language in the world[citation needed]

so we all used this alphabet [citation needed] :

ASCII:
American Standard Code
for Information Interchange

In the 21st century, it turns out
there are other languages!

49

When C was designed, it only considered ASCII, which fits in 7 bits,
so C’s chars are 8 bits long.

When Java was designed, Unicode fit into 16 bits,
so Java’s chars are 16 bits long.

Then this happened:

Modern Unicode

50

https://xkcd.com/1953/

https://xkcd.com/1953/

Integer Types in Java vs. C
` Java C

Unsigned types char // 16 bits

unsigned char /* Note 2 */
unsigned short
unsigned (int)
unsigned long

Signed types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

signed char /* Note 2 */
(signed) short
(signed) int
(signed) long

52

1. Not guaranteed by C, but on armlab, char = 8 bits, short = 16 bits, int = 32 bits, long = 64 bits
2. Not guaranteed by C, but on armlab, char is unsigned

To understand C, must consider the representation of these types!

Representing Unsigned Integers
Mathematics

• Non-negative integers’ range is 0 to ∞

Computer programming
• Range limited by computer’s word size
• Word size is n bits ⇒ range is 0 to 2n – 1
• Exceed range ⇒ overflow

Typical computers today
• n = 32 or 64, so range is 0 to 232 – 1 (~4B) or 264 – 1 (huge … ~1.8e19)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = n (armlab: 64)

53

Representing Unsigned Integers
On 4-bit pretend computer

54

Unsigned
Integer Rep

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Adding Unsigned Integers
Addition

Results are mod 24
55

111
7 0111B

+ 10 + 1010B
-- ----
1 0001B

1
3 0011B

+ 10 + 1010B
-- ----
13 1101B

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

How would you
detect overflow
programmatically?

@mbaumi

https://unsplash.com/@mbaumi

Subtracting Unsigned Integers
Subtraction

Results are mod 24
56

1
3 0011B

- 10 - 1010B
-- ----
9 1001B

111
10 1010B

- 7 - 0111B
-- ----
3 0011B

Start at right column
Proceed leftward
Borrow when necessary

Beware of overflow

How would you
detect overflow
programmatically?

Shifting Unsigned Integers
Bitwise right shift (>> in C): fill on left with zeros

Bitwise left shift (<< in C): fill on right with zeros

57

10 >> 1 ⇒ 5

10 >> 2 ⇒ 2

5 << 1 ⇒ 10

3 << 2 ⇒ 12

What is the effect
arithmetically?

What is the effect
arithmetically?

1010B 0101B

1010B 0010B

0101B 1010B

0011B 1100B

3 << 3 ⇒ 8
0011B 1000B ç Results are mod 24

Other Bitwise Operations on Unsigned Integers
Bitwise NOT (~ in C)

• Flip each bit

Bitwise AND (& in C)
• AND (1=True, 0=False) corresponding bits

58

~10 ⇒ 5

10 1010B
& 7 & 0111B
-- ----
2 0010B

Useful for “masking” bits to 0

1010B 0101B

~5 ⇒ 10

0101B 1010B

10 1010B
& 2 & 0010B
-- ----
2 0010B

Other Bitwise Operations on Unsigned Ints
Bitwise OR: (| in C)

• Logical OR corresponding bits

Bitwise exclusive OR (^ in C)
• Logical exclusive OR corresponding bits

59

10 1010B
| 1 | 0001B

-- ----
11 1011B

Useful for “masking” bits to 1

10 1010B
^ 10 ^ 1010B

-- ----
0 0000B

x ^ x sets
all bits to 0

60

A Bit Complicated
How do you set bit k (where the least significant bit is bit 0)

of unsigned variable u to zero (leaving everything else in u unchanged)?

A. u &= (0 << k);

B. u |= (1 << k);

C. u |= ~(1 << k);

D. u &= ~(1 << k);

E. u = ~u ^ (1 << k);

D:

1 << k è 0{n-1-k}10{k}

~(1 << n) è1{n-1-k}01{k}

u &= ~(1 << k); è ui{n-1-k}0ui{k}

Aside: Using Bitwise Ops for Arith
Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y
• 3*4 = 3*22 = 3<<2 ⇒ 12

x / 2y == x >> y
• 13/4 = 13/22 = 13>>2 ⇒ 3

x % 2y == x & (2y-1)
• 13%4 = 13%22 = 13&(22-1)

= 13&3 ⇒ 1

61

Fast way to multiply
by a power of 2

Fast way to divide
unsigned by power of 2

Fast way to mod
by a power of 2

13 1101B
& 3 & 0011B
-- ----
1 0001B

Many compilers will
do these transformations
automatically!

Unfortunate reminder: negative numbers exist

63

Sign-Magnitude

64

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit indicates sign

0 ⇒ positive
1 ⇒ negative

Remaining bits indicate magnitude
0101B = 101B = 5
1101B = -101B = -5

Sign-Magnitude (cont.)

65

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = flip high order bit of x

neg(0101B) = 1101B
neg(1101B) = 0101B

Pros and cons
+ easy to understand, easy to negate
+ symmetric
- two representations of zero
- need different algorithms to add

signed and unsigned numbers

Ones’ Complement

66

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight –(2b-1-1)
1010B = (1*-7)+(0*4)+(1*2)+(0*1)

= -5
0010B = (0*-7)+(0*4)+(1*2)+(0*1)

= 2

Similar pros and cons to
sign-magnitude

Two’s Complement

67

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight –(2b-1)
1010B = (1*-8)+(0*4)+(1*2)+(0*1)

= -6
0010B = (0*-8)+(0*4)+(1*2)+(0*1)

= 2

Two’s Complement (cont.)

68

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = ~x + 1
neg(x) = onescomp(x) + 1

neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons
- not symmetric

(“extra” negative number)
+ one representation of zero
+ same algorithm adds

signed and unsigned integers

Adding Signed Integers

69

11
3 0011B

+ 3 + 0011B
-- ----
6 0110B

111
7 0111B

+ 1 + 0001B
-- ----
-8 1000B

pos + pos pos + pos (overflow)

1111
3 0011B

+ -1 + 1111B
-- ----
2 0010B

pos + neg

11
-3 1101B

+ -2 + 1110B
-- ----
-5 1011B

neg + neg
1 1

-6 1010B
+ -5 + 1011B
-- ----
5 0101B

neg + neg (overflow)

How would you
detect overflow
programmatically?

Subtracting Signed Integers

70

11
3 0011B

- 4 - 0100B
-- ----
-1 1111B

3 0011B
+ -4 + 1100B
-- ----
-1 1111B

11
-5 1011B
--2 - 1110B
-- ----
-3 1101B

1
-5 1011B

+ 2 + 0010B
-- ----
-3 1101B

Perform subtraction
with borrows

Compute two’s comp
and addor

Negating Signed Ints: Math
Question: Why does two’s comp arithmetic work?

Answer: [–b] mod 24 = [twoscomp(b)] mod 24

So: [a – b] mod 24 = [a + twoscomp(b)] mod 24

71

[–b] mod 24

= [24 – b] mod 24

= [24 – 1 - b + 1] mod 24

= [(24 – 1 - b) + 1] mod 24

= [onescomp(b) + 1] mod 24

= [twoscomp(b)] mod 24

[a – b] mod 24

= [a + 24 – b] mod 24

= [a + 24 – 1 – b + 1] mod 24

= [a + (24 - 1 – b) + 1] mod 24

= [a + onescomp(b) + 1] mod 24

= [a + twoscomp(b)] mod 24

Pithier Rationale: Math

72

Shifting Signed Integers
Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

Bitwise right shift: fill on left with ???
73

3 << 1 ⇒ 6

-3 << 1 ⇒ -6

What is the effect
arithmetically?

0011B 0110B

1101B 1010B

-3 << 2 ⇒ 4
1101B 0100B

Shifting Signed Integers (cont.)
Bitwise arithmetic right shift: fill on left with sign bit

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical or arithmetic
• Not specified by standard (happens to be arithmetic on armlab)
• Best to avoid shifting signed integers

74

6 >> 1 => 3

-6 >> 1 => 5

What is the effect
arithmetically???

0110B 0011B

1010B 0101B

6 >> 1 ⇒ 3

-6 >> 1 ⇒ -3

What is the effect
arithmetically?

0110B 0011B

1010B 1101B

Other Operations on Signed Ints
Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)
• Same as with unsigned ints

Bitwise OR: (| in C)
• Same as with unsigned ints

Bitwise exclusive OR (^ in C)
• Same as with unsigned ints

Best to avoid with signed integers

75

Special-Purpose Assignment
Issue: Should C provide tailored assignment operators?

Thought process
• The construct a = b + c is flexible
• The construct i = i + c is somewhat common
• The construct i = i + 1 is very common
• Special-purpose operators make code more expressive

• Might reduce some errors
• May complicate the language and compiler

Decisions
• Introduce += operator to do things like i += c
• Extend to -= *= /= ~= &= |= ^= <<= >>=
• Special-case increment and decrement: i++ i--
• Provide both pre- and post-inc/dec: x = ++i; y = i++;

76

77

Plusplus Playfulness
Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

D

j i

i=5; ? 5

j = i++; 5 6

j += ++i; 12 7

i = 5;
j = i++;
j += ++i;

78

Incremental Iffiness
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

E!

i++ increments i to 2, but evaluates to i’s old value: 1

So switch on 1, not 2!

++i evaluates to new value, so 3 is printed

FALL THROUGH GOTCHA!

i++ evaluates to old value, so 3 is printed again

int i = 1;
switch (i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}

79

Incremental Iteration
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

D

i++ increments i to 2, but evaluates to i’s old value: 1

i = 1 overwrites our just-incremented 2 back to 1

… switch on 1, so now continue into case 1 with i as 1,
so we end up printing 22.

int i = 1;
switch (i=i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}

sizeof Operator
Issue: How to determine the sizes of data?

Thought process
• The sizes of most primitive types are un- or under-specified
• Provide a way to find size of a given variable programmatically

Decisions
• Provide a sizeof operator

• Applied at compile-time
• Operand can be a data type
• Operand can be an expression,

from which the compiler infers a data type

Examples, on armlab using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) – where i is a variable of type int – evaluates to 4 80

81

iClicker Question
Q: What is the value of the following sizeof expression on the armlab machines?

A. 3

B. 4

C. 8

D. 12

E. error

C

Promote i to long, add 1L + 2L.

Result, 3L, is a long.

longs are 8 bytes on armlab.

int i = 1;

sizeof(i + 2L)

LOGICAL TYPES

82

@lunarts

https://unsplash.com/@lunarts

Logical Data Types

• No separate logical or Boolean data type

• Represent logical data using type char or int
• Or any primitive type! :/

• Conventions:
• Statements (if, while, etc.) use 0 ⇒ FALSE, ≠0 ⇒ TRUE
• Relational operators (<, >, etc.) and logical operators (!, &&, ||)

produce the result 0 or 1, specifically

83

Logical Data Type Shortcuts
Using integers to represent logical data permits shortcuts

It also permits some really bad code…

84

…
int i;
…
if (i) /* same as (i != 0) */

statement1;
else

statement2;
…

i = (1 != 2) + (3 > 4);

Logical Data Type Dangers
The lack of a logical data type hampers

compiler's ability to detect some errors

85

…
int i;
…
i = 0;
…
if (i = 5)

statement1;
…

What happens
in Java?

What happens
in C?

Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation
• Same for OR and NOT86

Decimal Binary
2 00000000 00000000 00000000 00000010

&& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

1 00000000 00000000 00000000 00000001

Decimal Binary
2 00000000 00000000 00000000 00000010

& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

0 00000000 00000000 00000000 00000000

Agenda

Thus far:

Integer types in C

Finite representation of unsigned integers

Finite representation of signed integers

Logical types (or lack thereof) in C

Up next:

Finite representation of rational (floating-point) numbers

87

FLOATING POINT

88

@tylerleeeaston

https://unsplash.com/@tylerleeeaston

Rational Numbers

Mathematics
• A rational number is one that can be expressed

as the ratio of two integers
• Unbounded range and precision

Computer science
• Finite range and precision
• Approximate using floating point number

89

Floating Point Numbers
Like scientific notation: e.g., c is

2.99792458 ´ 108 m/s

This has the form
(multiplier) ´ (base)(power)

In the computer,
• Multiplier is called mantissa
• Base is almost always 2
• Power is called exponent

90

Floating-Point Data Types
C specifies:

• Three floating-point data types:
float, double, and long double

• Sizes unspecified, but constrained:
• sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer using the IEEE standard)
• float: 4 bytes
• double: 8 bytes

On ArmLab (but varying across architectures)
• long double: 16 bytes

91

Floating-Point Literals
How to write a floating-point number?

• Either fixed-point or “scientific” notation
• Any literal that contains decimal point or "E" is floating-point
• The default floating-point type is double
• Append "F" to indicate float
• Append "L" to indicate long double

Examples
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

92

IEEE Floating Point Representation
Common finite representation: IEEE floating point

• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0⇒positive, 1⇒negative)
• 8 bits: exponent + 127
• 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type double in C):
• 1 bit: sign (0⇒positive, 1⇒negative)
• 11 bits: exponent + 1023
• 52 bits: binary fraction of the form

1.bb

93

When was floating-point invented?

94

çAnswer: long before computers!mantissa (noun): decimal part of a logarithm, 1865,
from Latin mantisa “a worthless addition, makeweight”

Floating Point Example

Sign (1 bit):
• 1 ⇒ negative

Exponent (8 bits):
• 10000011B = 131
• 131 – 127 = 4

Mantissa (23 bits):
• 1.10110110000000000000000B

• 1 + (1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+
(1*2-6)+(1*2-7) +(0*2-…)= 1.7109375

Number:
• -1.7109375 * 24 = -27.375

95

11000001110110110000000000000000

32-bit representation

Floating Point Consequences
“Machine epsilon”: smallest positive number you can

add to 1.0 and get something other than 1.0

For float: e » 10-7
• No such number as 1.000000001
• Rule of thumb: “almost 7 digits of precision”

For double: e » 2 ´ 10-16
• Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers

96

Floating Point Consequences, cont
Just as decimal number system can

represent only some rational
numbers with finite digit count…
• Example: 1/3 cannot be represented

Binary number system can
represent only some rational
numbers with finite digit count
• Example: 1/5 cannot be represented

Beware of round-off error
• Error resulting from inexact

representation
• Can accumulate
• Be careful when comparing two floating-point numbers for equality

97

Decimal Rational
Approx Value
.3 3/10
.33 33/100
.333 333/1000
...

Binary Rational
Approx Value
0.0 0/2
0.01 1/4
0.010 2/8
0.0011 3/16
0.00110 6/32
0.001101 13/64
0.0011010 26/128
0.00110011 51/256
...

99

Floating away …
What does the following code print?

A. All good!

B. Yikes!

C. (Infinite loop)

D. (Compilation error)

B: Yikes!

… loop terminates, because we
can represent 10.0 exactly by
adding 1.0 at a time.

… but sum isn’t 1.0 because we
can’t represent 1.0 exactly by
adding 0.1 at a time.

double sum = 0.0;
double i;
for (i = 0.0; i != 10.0; i++)

sum += 0.1;
if (sum == 1.0)

printf("All good!\n");
else

printf("Yikes!\n");

Summary
Integer types in C

Finite representation of unsigned integers

Finite representation of signed integers

Logical types in C (or lack thereof)

Floating point types in C

Finite representation of rational (floating-point) numbers

Essential for proper understanding of
• C primitive data types
• Assembly language
• Machine language

100

