
Lecture 13: Python

Programming language components

•  syntax: grammar rules for defining legal statements
–  what's grammatically legal? how are things built up from smaller things?

•  semantics: what things mean
–  what do they compute?

•  statements: instructions that say what to do
–  compute values, make decisions, repeat sequences of operations

•  variables: places to hold data in memory while program is running
–  numbers, text, ...

•  most languages are higher-level and more expressive than the assembly
language for the toy machine
–  statements are much richer, more varied, more expressive
–  variables are much richer, more varied
–  grammar rules are more complicated
–  semantics are more complicated

•  but it's basically the same idea

What is Python?

•  a comparatively simple language that scales well
 to large(ish) programs

•  designed & implemented in 1990
 by Guido van Rossum at CWI in Amsterdam

•  very widely used
–  standard language for many intro courses (though not here)
–  standard language for data science
–  arguably the best choice for a first language

•  use version 3, not version 2 (if possible)

Python components
•  Python language

–  statements that tell the computer what to do
get user input, display output, set values, do arithmetic,
test conditions, repeat groups of statements, …

•  libraries, built-in functions
–  pre-fabricated pieces that you don't have to create yourself

print, input, math functions, text manipulation, ...
•  access to the environent

–  file system, network, ...

•  you are not expected to remember syntax or other details
•  you are not expected to write code in exams

(though a bit in problem sets and labs)

•  you are expected to understand the ideas
–  how programming and programs work
–  figure out what a tiny program does or why it's broken

Basic example 0: Hello world (hello.py)

•  this is the basic example for most programming languages

print("Hello world")

•  how we run it:

–  commandline interactive
–  commandline from a file
–  browser with local files
–  on the web with Colab or other cloud service

Basic example 1: echo a name (name.py)

•  read some input, print it back

name = input("What's your name? ")
print("hello," name)

Basic example 2: join 2 names (name2.py)

•  shows variables

firstname = input("Enter first name: ")
secondname = input("Enter lastname: ")
result = firstname + secondname
print ("hello, ", result)

Basic example 2: add 2 numbers (add2.py)

•  dialog boxes, variables, arithmetic, conversion

num1 = input('Enter first number: ')
num2 = input('Enter second number: ')
sum = int(num1) + int(num2)
print ('Sum = ' + str(sum))

int(...) converts a sequence of characters into its integer value

use float(...) for floating point numbers

Adding up lots of numbers: addup.py
•  variables, operators, expressions, assignment statements
•  while loop, relational operator (!= means "not equal to")

sum = 0
num = int(input("Enter new value, or 0 to end: "))
while num != 0:
 sum += num
 num = int(input("Enter new value, or 0 to end: "))
print(sum)

Find the largest number: max.py

•  needs an If to test whether new number is bigger
•  needs another relational operator
•  needs int() or float() to treat input as a number

max = 0
num = float(input("Enter new value, or 0 to end: "))
while num != 0:
 if num > max:
 max = num
 num = float(input("Enter new value, or 0 to end: "))
print(max)

Variables, constants, expressions, operators

•  a variable is a place in memory that holds a value
–  has a name that the programmer gave it, like sum or Area or n
–  in Python, can hold any of multiple types, most often

 numbers like 1 or 3.14, or
 sequences of characters like "Hello" or "Enter new value"

–  always has a value
–  has to be set to some value initially before it can be used
–  its value will generally change as the program runs
–  ultimately corresponds to a location in memory
–  but it's easier to think of it just as a name for information

•  a constant is an unchanging literal value like 3 or "hello"
•  an expression uses operators, variables and constants
 to compute a value

 3.14 * rad * rad
•  operators include + - * /

Computing area: area.py

import math

rad = input("Enter radius: ")
while rad != "":
 area = math.pi * float(rad) * float(rad)
 print("radius = ", rad, ", area = ", area)
 rad = input("Enter radius: ")

•  how to terminate the loop?
–  0 is a valid data value
–  input() returns "" for empty input

•  there is no exponentiation operator so we use multiplication

•  note use of the math library

Types, declarations, conversions

•  variables have to be declared in a var statement

•  each variable holds information of a specific type
–  really means that bits are to be interpreted as info of that type
–  internally, 3 and 3.00 and "3.00" are represented differently

•  Python sometimes infers types from context and does conversions
automatically

•  usually we have to be explicit:
–  int(...)
–  float(...)
–  str(...)

Making decisions and repeating statements

•  if-else statement makes decisions
–  the Python version of decisions written with ifzero, ifpos, ...

if condition is true:
do this group of statements

else:
 do this group of statements instead

•  while statement repeats groups of statements
–  a Python version of loops written with ifzero and goto

while condition is true:
 do this group of statements

if-else examples (sign.py)

•  can include else-if sections for a series of decisions:

num = input("Enter number: ")
while num != "":
 num = int(num)
 if num > 0:
 print(str(num) + " is positive")
 elif num < 0:
 print(str(num) + " is negative")
 else:
 print (str(num) + " is zero")
 num = input("Enter number: ")

"while loop" examples
•  counting or "indexed" loop:
 i = 1
 while i <= 10:

 # do something (maybe using the current value of i)
 i = i + 1

•  "nested" loops (while.py):

n = input("Enter number: ")
while n != "":
 i = 0
 while i <= int(n):
 print (str(i) + " " + str(i * i))
 i += 1
 n = input("Enter number: ")

Functions

•  a function is a group of statements that does some computation

–  the statements are collected into one place and given a name
–  other parts of the program can "call" the function

 that is, use it as a part of whatever they are doing
–  can give it values to use in its computation (arguments or parameters)
–  the function computes a value that can be used in expressions
–  the value need not be used

•  Python provides some useful built-in functions
–  e.g., print, input, ...

•  you can write your own functions

Function examples

•  syntax
 def name (list of "arguments"):

 the statements of the function

•  function definition:

 def area(r):
 return 3.14 * r * r;

•  using ("calling") the function:
 rad = input("Enter radius ");
 print("radius = " + rad + ", area = " + area(rad))

 print("area of CD =" + area(2.3) - area(0.8))

Ring.py
def area(r):
 return 3.14 * r * r

r1 = input("Enter radius 1: ")
while r1 != "":
 r2 = input("Enter radius 2: ")
 print("Area = " + str(area(float(r1)) - area(float(r2))))
 r1 = input("Enter radius 1: ")

Why use functions?

•  if a computation appears several times in one program
–  a function collects it into one place

•  breaks a big job into smaller, manageable pieces
–  that are separate from each other

•  defines an interface
–  implementation details can be changed as long as it still does the same job
–  different implementations can interoperate

•  multiple people can work on the program
•  a way to use code written by others long ago and far away

–  most of Python's library of useful stuff is accessed through functions
•  a good library encourages use of the language

Summary: elements of (most) programming languages

•  constants: literal values like 1, 3.14, "Error!"
•  variables: places to store data and results during computing
•  declarations: specify name (and type) of variables, etc.
•  expressions: operations on variables and constants to produce new

values
•  statements: assignment, conditional, loop, function call

–  assignment: store a new value in a variable
–  conditional: compare and branch; if-else
–  loop: repeat statements while a condition is true

•  functions: package a group of statements so they can be called / used
from other places in a program

•  libraries: functions already written for you

How Python works

•  recall the process for Fortran, C, etc.:
 compiler -> assembler -> machine instructions

•  Python is analogous, but differs significantly in details

•  Python compiler
–  checks for errors
–  compiles the program into instructions for something like the toy machine,

but richer, more complicated, higher level
–  runs a simulator program (like the toy) that interprets these instructions

•  simulator is often called an "interpreter" or a "virtual machine"
–  probably written in C or C++ but could be written in anything

The process of programming

•  what we saw with Python or Toy is like reality, but very small

•  figure out what to do
–  start with a broad specification
–  break into smaller pieces that will work together
–  spell out precise computational steps in a programming language

•  build on a foundation (rarely start from scratch)
–  a programming language that's suitable for expressing the steps
–  components that others have written for you

functions from libraries, major components, ...
–  which in turn rest on others, often for several layers
–  runs on software (the operating system) that manages the machine

•  it never works the first time
–  test to be sure it works, debug if it doesn't
–  evolve as get a better idea of what to do, or as requirements change

Real-world programming

•  the same thing, but on a grand scale
–  programs may be millions of lines of code

typical productivity: 1-10K lines/year/programmer
–  thousands of people working on them
–  lifetimes measured in years or even decades

•  big programs need teams, management, coordination, meetings, …
•  schedules and deadlines
•  constraints on how fast the program must run, how much memory it can

use
•  external criteria for reliability, safety, security, interoperability with other

systems, …

•  maintenance of old ("legacy") programs is hard
–  programs must evolve to meet changing environments and requirements
–  machines and tools and languages become obsolete
–  expertise disappears

