
Lecture 11: Interfaces

Midterm rules and advice ...

•  community auditors welcome; I will grade you too
•  open book: notes, text, old exams, etc., all ok
•  90 minutes in a single sitting

•  read the rules (posted on web page)

•  scan and return as soon as possible after completion
•  by 9 PM Friday at the latest – no exceptions, no extensions

•  I'm trying to see if you understand; it's not meant to be tricky
•  think straightforwardly; don't deconstruct; think about course topics
•  if you're writing or computing a lot, you're on the wrong track
•  know the powers of 2, powers of 10 and hex digits
•  don't make careless arithmetic errors

Problem sets 1-4 (cumulative, out of 100)

Interfaces

•  In computing, an interface is a shared boundary across which two
or more separate components of a computer system exchange
information. The exchange can be between software, computer
hardware, peripheral devices, humans and combinations of
these.
–  (Wikipedia, the source of all truth)

•  there has to be agreement about what information is exchanged
and how

•  lots of technical issues
•  surprisingly, some important legal issues

Reprise: what an operating system does

•  manages CPU(s), schedules and coordinates running programs
–  switches CPU among programs that are actually computing
–  suspends programs that are waiting for something (e.g., disk, network)
–  keeps individual programs from hogging resources

•  manages memory (RAM)
–  loads programs in memory so they can run
–  swaps them to disk and back if there isn’t enough RAM (virtual memory)
–  keeps separate programs from interfering with each other
–  and with the operating system itself (protection)

•  manages and coordinates input/output to devices
–  disks, display, keyboard, mouse, buses, network, ...
–  provides fairly uniform interface to disparate devices

•  manages files on disk (file system)
–  provides hierarchy of folders/directories and files for storing information

How applications use the operating system

•  operating system provides services to be accessed
 by application programs

–  Unix "system calls", Windows Application Programming Interface ("API")
"what is the exact time?"
"allocate M more bytes of RAM to me"
"read N bytes from file F into memory starting at location M"
"write N bytes from memory locations starting at M into file F"
"set up a network connection to www.princeton.edu"
"write N bytes to the network connection"
“I’m all done; get rid of me”

•  operating system provides an interface for applications to use
–  programs access machine capabilities only through this interface
–  different physical hardware can provide the same interface
–  programs can be moved to any system that provides the same interface
–  different operating systems can provide the same interface
–  one operating system can simulate the interface provided by another

•  operating system hides details of specific hardware

Example of system-call level coding

•  C program to copy input to output ("copy" command)
•  read, write, exit are system calls

 main() {
 char buf[8192];
 int n;
 while ((n = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, n);
 exit(0);
 }

Software is organized into "layers"

•  each layer presents an interface that higher layers can use
–  defines a "platform" for putting more on top
–  insulates the higher layer from how the lower layer is implemented
–  often called "Application Programming Interface" or API

•  operating system ("kernel")
–  lowest software layer, on top of hardware

(usually: virtual machine is on top of another program, e.g., an operating system)
–  presents its capabilities as system calls

•  libraries
–  code to be used as building blocks in programs
–  present their capabilities as APIs

•  applications
–  e.g., browser, word processor, mailer, compiler, directory lister, ...
–  use libraries and system calls through APIs

Layering
•  an application generally calls

multiple libraries
–  might not make direct system

calls
•  a library generally calls other

libraries
•  library and system call levels

define interfaces (APIs)
•  programmers may not know

what is "library" and what is
"system call"

applications

hardware

operating system

libraries

system calls

library calls

What's an API?

 Operating systems perform many functions, including allocating
computer memory and controlling peripherals such as printers
and keyboards. Operating systems also function as platforms for
software applications. They do this by "exposing" — i.e., making
available to software developers — routines or protocols that
perform certain widely-used functions. These are known as
Application Programming Interfaces, or "APIs."

Excerpted from Final Judgment
State of New York, et al v. Microsoft Corporation
US District Court, District of Columbia, Nov 1, 2002

Sample Python API

Sample Java API (tiny excerpt)

Independent implementations of an interface

•  can interfaces be owned?  

•  company A sells something (hardware or software)
•  company A publishes (widely) the API for programming it

–  with the intent that third parties will develop applications for the thing
–  and thus make it more attractive so company A will sell more

•  company B uses A's interface definition to make a cheaper version
of the thing that works the same
–  so all the third-party applications will run on B's cheaper version
–  thus cutting into A's market

•  company A sues company B for copying A's interface

•  who should win?

Oracle v Google

•  August 2010: Oracle sues Google for use of Java API
–  partly patent, partly copyright
–  patent part: jury said “non-infringing”, eventually thrown out

•  remaining copyright part mostly about Java APIs:
 did Google violate Oracle’s copyright by re-using the Java APIs

verbatim?
–  re-implementing the code behind them was not at issue

Android phone organization

apps

hardware

Linux operating system

libraries

system calls

library calls

virtual machine

Java APIs written in Java

Oracle v Google (from the decision in May, 2012)

 The Java language, like C and C++, is a human-readable
language. Code written in a human-readable language
— “source code” — is not readable by computer
hardware.

 Only “object code,” which is not human-readable, can be
used by computers. Most object code is in a binary
language, meaning it consists entirely of 0s and 1s.
Thus, a computer program has to be converted, that is,
compiled, from source code into object code before it
can run, or “execute". In the Java system, source code is
first converted into “bytecode,” an intermediate form,
before it is then converted into binary machine code by
the Java virtual machine.

RangeCheck

private static void rangeCheck(int arrayLen,
 int fromIndex, int toIndex) {
 if (fromIndex > toIndex)
 throw new IllegalArgumentException("fromIndex(”
 + fromIndex + ") > toIndex(" + toIndex+")");
 if (fromIndex < 0)
 throw new ArrayIndexOutOfBoundsException(fromIndex);
 if (toIndex > arrayLen)
 throw new ArrayIndexOutOfBoundsException(toIndex);
}

RangeCheck (simpler version, in Python)

def rangeCheck(len, from, to):
 if from > to or from < 0 or to > len:
 return 0
 else:
 return 1

Cloud computing APIs

•  'Cloud' has been a go-to metaphor for almost as long as the Internet
has existed, conveying a sense that the Internet was intangible and
bigger than the sum of its parts."

(Wall Street Journal, 9/23/08)

•  software services delivered via the Internet
–  Gmail, ...
–  Facebook, Twitter, Instagram, …
–  Google Docs, calendar,
–  Windows Live, Office 360
–  Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform

•  most cloud services have an API for access by programs

Google APIs

Facebook APIs

