Lecture 7 (more or less)
Algorithms

Software: how we tell a computer what to do

- hardware: a general purpose computer
— capable of doing instructions repetitively and very fast
— doesn't do anything itself unless we tell it what to do

- software: the instructions we want it to perform
— different set of instructions
=> different program
=> machine behaves differently
— program and data are stored in the same memory and
manipulated by the same instructions

- to tell a computer what to do,
— we have to spell out the steps in excruciating detail
— programming languages help handle a lot of the details

Software roadmap

algorithms
— precise but abstract descriptions of how to do a task
— how to describe algorithm speed or efficiency
° programs
— complete concrete descriptions of how to do a task on a real computer
- programming languages
— precise notations for describing how to do tasks on a computer
e.g., Toy, Javascript, Python
- real programs (big software)
— operating systems
— applications

- social / political / economic / legal issues
— intellectual property: patents, copyrights, interfaces
— standards
— open source

DEAR VARlQUS PARENTS, GRANDPARENTS, CO-WORKERS,
AND OTHER “NOT COMPUTER PEOPLE."

WE DON'T MAGICALLY KNOW HOW TO DO EVERYTHING IN EVERY

Algorith m for PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

becoming a

computer

expert D e
(xkcd.com/627) BUTEN L LOOKS : THEM AL

YOU WANT
Do.

GOOGLE THE NAME
OF THE PROGRAM
PLUS A FEW WORDS
RELATEDTO WHAT YOu
WANTTO DO, Fouow
ANY INSTRUCTIONS.

YOu BEEN
TRYING THIS FOR

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT NEAR YOUR SCREEN.
CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

A real-world algorithm

50

51
52
53
54
55
56
57
58
59
60

61
62
63

64

65

Enter your qualified 5-year gain, if any, from
Schedule D (Form 1040), line 35 (as refigured for
the AMT, if necessary) (see page 8 of the
instructions) .

Enter the smaller of line 49 or I|ne 50
Multiply line 51 by 8% (.08) .
Subtract line 51 from line 49
Multiply line 53 by 10% (.10)
Subtract line 47 from line 46
Subtract line 45 from line 44
Enter the smaller of line 55 or line 56
Multiply line 57 by 15% (.15)
Subtract line 57 from line 56
Multiply line 59 by 20% (.20)

50

51

A
53 | |
>
55

56

57

¢ owe w t mH w B
59 | |

If line 38 is zero or blank, sKip lines 61 and 62 and go to line 63. Otherwise, go to line 61.

Subtract line 44 from line 40
Multiply line 61 by 25% (.25) ;
Add lines 42, 48, 52, 54, 58, 60, and 62 .

[61] |

. >

If line 36 is $175,000 or less ($87,500 or less if married filing separately), multiply line 36 by 26% (.26).
Otherwise, multiply line 36 by 28% (.28) and subtract $3,500 ($1,750 if married filing separately) from the

result .

Enter the smaller Of Ilne 63 or Ilne 64 here and on Ilne 31

)

Form 6251

Algorithms

an algorithm is the computer science version of a
really careful, precise, unambiguous recipe or procedure

- asequence of steps that performs some computation

- each step is expressed in terms of basic operations whose meaning
is completely specified
— basic operations or "primitive operations" are given
e.g., arithmetic operations
- all possible situations are covered

— the algorithm never gets to a situation where it doesn't know what to do
next

- guaranteed to stop
— does not run forever

Linear time algorithms
- lots of algorithms have this same basic form:

look at each item in turn

do the same simple computation on each item:
does it match something (looking up a name in a list of names)
count it (how many items are in the list)
count it if it meets some criterion (how many of some kind in the list)
remember some property of items found (largest, smallest, ...)
filter it (preserve items with some property)
transform it in some way (limit size, convert case of letters, ...)

- amount of work (running time) is proportional to amount of data
— twice as many items will take twice as long to process
— computation time is linearly/directly proportional to length of input

Log n algorithms

how do we find a name in a phone book?
— linear search requires looking at all the names

- if the names are sorted into alphabetical order,

we can use binary search, which is much faster than linear
— an example of a "divide and conquer" algorithm

- data has to be sorted
— have to be able to access any data item equally quickly
— "random access"

- why is binary search faster than linear searching?
— each test / comparison cuts the number of things to search in half

« how much faster is it?
— the number of comparison is approximately Iog2 n for n items

smbc-comics.com

WHY DO 9%% OF MATH TEACHERS DO THIS~

ADDITION 1€ PUTTING THINGS TOGETHER,
SUBTRACTION IS REMOVING THINGS,
MOULTIPLICATION IS REPEATED ADDITION,
DIVISION 1S DETERMINING HOW MUCH OF
ONE NUMBER 1S CONTAINED IN ANOTHER,
EXPONENTIATION IS REPEATED MULTIPLICATION
AND LOGARITHMS UNDO EXPONENTIATION
BY ONFATHOMABLE DARK SORCERY.

Logarithms for COS 109

all logs in 109 are base 2
all logs in 109 are integers

if N is a power of 2 like 2™, log, of N is m

if N is not a power of 2, log, of N is

the number of bits needed to represent N

the power of 2 that's bigger than N

the number of times you can divide N by 2 before it becomes 0

you don't need a calculator for these!
— just figure out how many bits or what's the right power of 2

logs are related to exponentials: log, 2N is N

it's the same as decimal, but with 2 instead of 10

Algorithms for sorting

binary search needs sorted data

how do we sort names into alphabetical order?
how do we sort numbers into increasing or decreasing order?
how do we sort a deck of cards?

how many comparison operations does sorting take?

"selection sort":

— find the smallest/earliest
using a variant of the "find the largest" algorithm

— repeat on the remaining names
— this is what bridge players typically do when organizing a hand

what other algorithms might work?

How fast do these run?

searching an unordered/unsorted list of names

— time is proportional to length of the list
because you might have to go all the way to the end

— twice as many items takes twice as long to search
searching a sorted list of names with binary search

— time is much faster (proportional to logarithm of length)
because you can use divide-and-conquer to narrow the search

— twice as many items needs only one more probe

sorting n items takes time proportional to n? with simple sorting
algorithms like selection sort

— twice as many items takes 4 times as long to sort

there are much faster sorting algorithms (e.g., Quicksort)
— time proportional to n log n

Quicksort: an n log n sorting algorithm

make one pass through data, putting all small items in one pile and all
large items on another pile

— there are now two piles, each with about 1/2 of the items

— and each item in the first pile is smaller than any item in the second

make a second pass; for each pile, put all small items in one pile and all
larger items in another pile

— there are now four piles, each with about 1/4 of the items

— and each item in a pile is smaller than any item in later piles

repeat until there are n piles
— each item is now smaller than any item in a later pile

each pass looks at n items

each pass divides each pile about in half; stops when pile size is 1
— number of divisions is log n

n log n operations

Object of the game is to move all the disks over to Tower 3 (with your mouse).
But you cannot place a larger disk onto a smaller disk.

Discs: | 8 |(v)(A| Moves:0 (Restart) (Solvel)

— _I_

Complexity hierarchy (or part of it)

log n

logarithmic

linear

quadratic
cubic

exponential

(sub-polynomial?)
polynomial
polynomial
polynomial
polynomial

(not polynomial)

COUAT neuseE

VEITINOAS
COURT HOuSE

wOoPFoAD
MEITANGAA

COURT ROusSE

{ COUNTY~SEAT THMANGED i
PROM TARMONE TO MU

@L00MEAGTON

JCO6GE DAVIS
CEVIS A UNGSLY wERE
e OnLr WEN 10 COVER
ML ENTIRL ClmouiT
N 'R0

IR S covmp » warws papege

TAYLOAVILLE
CARISTTAN

INELRYVILLE
SkELSY

& 1850

{

|
CHavRaGN [YDRNLRW
LR8N GanveiL

UNCDLN & =faannN
LAw CFfct SFEAChHED

[~

&

=4

s

VAREENS
MEAG BT DRCMT
AAARAN LUINCOLN
TRAVELED TS waY
AS =i #ODL YHE QML

-

o s 0 w0 3¢ 46

COUNTIES W ITAUCS o COuNTY SEaTS IN VEATICALS # LINCT OF CIRCINT ABDLT 450 Mnls

., JHE 8TH CIRCUIT AS TRAVELED BY MR. LINCOLN IN 1850

OF THE EIGHTH JUBIC AL
DISTRICT 104T~1059

®

SCAMLE N NILES

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EYENTS AVWARDS

P vs NP Problem

Suppose that you are organizing housing accommodations for a group of four
hundred university students, Space is limited and only one hundred of the
students will receive places in the dormitory. To complicate matters, the Dean
has provided you with a list of pairs of incompatible students, and requested
that no pair from this list appear in your final choice. This is an example of
what computer scientists call an NP-problem, since it is easy to check if a given
choice of one hundred students proposed by a coworker is satisfactory (i.e., no
pair taken from your coworker's list also appears on the list from the Dean's
office), however the task of generating such a list from scratch seems to be so
hard as to be completely impractical. Indeed, the total number of ways of
choosing one hundred students from the four hundred applicants is greater
than the number of atoms in the known universe! Thus no future civilization
could ever hope to build a supercomputer capable of solving the problem by
brute force; that is, by checking every possible combination of 100 students,
However, this apparent difficulty may only reflect the lack of ingenuity of your
programmer, In fact, one of the outstanding problems in computer science is
determining whether questions exist whose answer can be quickly checked, but
which require an impossibly long time to solve by any direct procedure.
Problems like the one listed above certainly seem to be of this kind, but so far
no one has managed to prove that any of them really are so hard as they
appear, i.e., that there really is no feasible way to generate an answer with the
help of a computer. Stephen Cook and Leonid Levin formulated the P {i.e.,
easy to find) versus NP {i.e., easy to check) problem independently in 1971,

SCHOLARS PUBLICATIONS

* The Millennium Problems

» Official Problermn Description —
Stephen Cook

* Lecture by Vijaya Ramachandran
at University of Texas (video)

* Minesweeper

% = -
S
o 5
S S s
, 5444/‘{444%%,— =

A A A S
AP A I
Gzt e
g
- T L e i
e
T e
s
L e
LA Iy
G
B]

Z s
[

Algorithms in Computer Science

- study and analysis of algorithms is a major component of CS courses
— what can be done (and what can't)
— how to do it efficiently (fast, compact memory)
— finding fundamentally new and better ways to do things
— basic algorithms like searching and sorting
— plus lots of applications with specific needs

 big programs are usually a lot of simple, straightforward parts, often
intricate, occasionally clever, very rarely with a new basic algorithm,
sometimes with a new algorithm for a specific task

Algorithms versus Programs

- An algorithm is the computer science version of a really careful,
precise, unambiguous recipe
— defined operations (primitives) whose meaning is completely known
— defined sequence of steps, with all possible situations covered
— defined condition for stopping

— an idealized recipe

- A program is an algorithm converted into a form that a computer can
process directly

— like the difference between a blueprint and a building

— has to worry about practical issues like finite memory, limited speed,
erroneous data, etc.

— a guaranteed recipe for a cooking robot

