COS 109 Lecture 2: What is a computer?

What's in a computer?

- logical or functional organization: "architecture"
 - what the pieces are, what they do, how they work
 - how they are connected, how they work together
 - what their properties are
- physical structure
 - what they look like, how they are made
- major pieces
 - processor ("central processing unit" or CPU) does the work, controls the rest
 - primary memory (RAM = random access memory) stores instructions and data while computer is running
 - secondary memory (disk, drive, SSD)
 stores everything even when computer is turned off
 - other devices ("peripherals")

Freshman SCI computer for class of 2023

Apple - MacBook Air 13.3" Laptop with Touch ID - Intel Core i5 - 8GB Memory - 256GB Solid State Drive (Latest Model) - Space Gray

Model: MVFJ2LL/A SKU: 6356923

2009 freshman offering:

Apple iBook

- 1.33Ghz G4 PowerPC processor
- 12.1" viewable display
- ATI Mobility Radeon 9550 with 32MB
- 512MB RAM, 1 DIMMs
- 60GB hard drive, 4200RPM
- 4.9 lbs.
- AirPort Extreme Card included (802.11 b/g)
- Bluetooth included
- DVD/CD-RW Combo drive
- up to 6 hours of battery life
- Built-in Ethernet and Modern
- Built-in sound and speakers

Block diagram of a typical laptop computer

Processor or CPU (Central Processing Unit)

- can perform a small set of basic operations ("instructions")
 - arithmetic: add, subtract, multiply, divide, ...
 - memory access:
 - fetch information from memory, store results back into memory
 - decision making: compare numbers, letters, ...
 decide what to do next depending on result of previous computations
 - control the rest of the machine tell memory to send data to display; tell disk to read data from network; ...
- operates by performing sequences of simple operations <u>very</u> fast
- instructions to be performed are stored in the same memory as the data is
 - instructions are encoded as numbers: e,g., Add = 1, Subtract = 2, ...
- the processor is a general-purpose device: putting different instructions into the memory makes it do a different task
 - this is what happens when you run different programs

"I wish to God these calculations had been executed by steam." (1821)

Charles Babbage 1791-1871

Ada Byron, Countess Lovelace

the world's first programmer?

John von Neumann and the Johnniac (1953)

How fast is fast?

- CPU uses an internal "clock" (like a heartbeat) to step through instructions
- 900 MHz, 2.5 GHz, etc., is the number of clock ticks per second
 - 1 Hertz = 1 tick per second; abbreviated 1 Hz
 - mega = million
 - giga = billion
 - -1 MHz = 1 megaHertz = 1 million ticks per second
 - 1 GHz = 1 gigaHertz = 1 billion ticks per second = 1000 MHz
- one instruction (like adding two numbers) might take one, two or several ticks, depending on design of the CPU
 might even complete more than one instruction in one tick
 - might even complete more than one instruction in one tick
- modern processors execute several billion instructions/sec

Primary Memory (Random Access Memory = "RAM")

- a place to store information while the computer is running
 - the programs that are running
 - their data
 - the operating system (Windows, Mac OS X, Unix/Linux, ...)
- volatile: forgets everything when power is turned off
- limited (though large) capacity
- logically, a set of numbered boxes ("pigeonholes"? mailboxes?)
 - each capable of storing one byte = 8 bits of information
 a small number or a single character like A or part of a larger value
 - random access

CPU can access any location as quickly as any other location

What's a bit? What's a byte?

- a bit is the smallest unit of information
- represents one 2-way decision or a choice out of two possibilities
 - $-\,$ yes / no, true / false, on / off, up / down, \ldots
- abstraction of all of these is represented as 0 or 1
 - enough to tell which of TWO possibilities has been chosen
 - a single digit with one of two values
 - hence "binary digit"
 - hence bit
- binary is used in computers because it's easy to make
 - fast, reliable, small devices that have only two states
 - high voltage/low voltage, current flowing/not flowing (chips)
 - electrical charge present/not present (Flash)
 - magnetized this way or that (disks)
 - light bounces off/doesn't bounce off (cd-rom, dvd)
- all information in a computer is stored and processed as bits
- a byte is 8 bits that are treated as a unit

Disks

- · a place to store information when the power is turned off
- was based on magnetic surfaces, rotating machinery
 - today, more often solid-state Flash memory (SSD)
- · logical / functional structure: folders (directories) and files
 - your information: papers, mail, music, web page, ...
 - programs and their data: Firefox, Word, iTunes, ...
 - operating system(s): Windows, MacOS, Unix, Linux, ...
 - bookkeeping info: where things are physically located

Other views of a disk: Windows, Unix/Linux

S Z:\cos109								
File Edit View Favorites Tools Help								
🗢 Back 🔹 🔿 🕤 🔯 Search 📴 Folders 🧭 🎬 🧏 🗙 🖍 📰 🖬								
Address 🔁 Z:\cos109								
Folders	×	Name 🛆	Size	Туре	Modified			
😑 🔂 cos109	-	🚞 VB		File Folder	9/25/2005 1:48 PM			
Ē 🗋 00		101intro.ppt	5,224 KB	Microsoft PowerPoi	9/7/2007 3:36 PM			
Ē 🚺 01		🕙 02inside.ppt	1,193 KB	Microsoft PowerPoi	9/7/2007 4:29 PM			
Ē <u> </u> 02		🗐 06labs.tar.gz	6,981 KB	WinZip File	9/2/2007 5:22 PM			
Ē <u> </u> 03		🥘 ascii.gif	11 KB	GIF Image	9/21/2000 9:13 PM			
Ē 🗋 04		🥘 ascii0.gif	9 KB	GIF Image	10/10/2004 5:41 PM			
		🥘 ascii0. jpg	63 KB	JPEG Image	10/10/2004 5:41 PM			
		🥘 ascii2.gif	6 KB	GIF Image	9/21/2000 9:23 PM			

bash-3.00\$ ls -ltr tail -8								
-rw-rr	1	bwk	fac	3283	Sep	19	08:10	survey.html
-rw-rr	1	bwk	fac	6034432	Sep	20	10:43	Olintro.ppt
-rw-rr	1	bwk	fac	6870	Sep	20	10:54	psl.html
-rw-rr	1	bwk	fac	2803	Sep	21	08:09	rita.09
-rw-rr	1	bwk	fac	7101	Sep	21	09:49	ideas.09
-rw-rr	1	bwk	fac	21766	Sep	21	13:55	index.html
-rw-rr	1	bwk	fac	143872	Sep	22	15:35	grades09.xls
-rw-rr	_1	bwk	fac	3161	Sep	22	15:44	surveyresults.html

2.5" laptop disk

Wrapup on components

- the logical or functional components of computer hardware
- how they fit together, what the numbers measure
- some Greek/Latin/... prefixes:
 - (...,) nano, micro, milli, kilo, mega, giga, tera, (peta, ...)
- what the basic physical pieces look like
- one logical organization can have different physical forms
- logical organization hasn't changed much in 60+ years
- physical form has changed rapidly for the entire time
 - many tradeoffs among physical forms (size, weight, power, ...)

Some numeric prefixes you should know

	0
nano	10^{-9}
micro	10^{-6}
milli	10^{-3}
-	10^{0}
kilo	10^{3}
mega	10^{6}
giga	10^{9}
tera	10^{12}
peta	10 ¹⁵
	. =

billionth millionth thousandth

thousand million billion trillion quadrillion

