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A procedure for automatic evaluation of total/partial de- 
rivatives of arbitrary algebraic functions is presented. The 
technique permits computation of numerical values of deriva- 
tives without developing analytical expressions for the deriva- 
tives. The key to the method is the decomposition of the given 
function, by introduction of intermediate variables, into a series 
of elementary functional steps. A library of elementary func- 
tion subroutines is provided for the automatic evaluation and 
differentiation of these new variables. The final step in this 
process produces the desired function's derivative. 

The main feature of this approach is its simplicity. It can be 
used as a quick-reaction tool where the derivation of analytical 
derivatives is laborious and also as a debugging tool for 
programs which contain derivatives. 

Related approaches develop analytical expressions for 
total or partial derivatives of arbitrary algebraic functions 
through application of rather elaborate scanning proce- 
dures on the entire function. The technique reported here, 
instead, generates numerical values of derivatives and is 
made simple by inputting the given complex function as a 
series of elementary function evaluations. 

Proposed Technique 

TOTAL DERIVATIVES. To demonstrate the technique 
for obtaining total derivatives, consider the following 
example. Compute ], where 

f ~ Xl 
X22X~ " 

Numerical values for x~, x2, x3,21,22,23 are given. 
The total derivative ] is evaluated indirectly. 0nly the 

function itself is explicitly programmed. The calculation 
of the given "complex" expression is decomposed, by in- 
troduction of intermediate variables, into a string of ele- 
mentary functional steps using a predeveloped subroutine 
library. These subroutines, examples of which may be 
found in the Appendix, automatically provide derivatives 
for the intermediate variables. As the computation pro- 
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ceeds, the desired derivative emerges as a by-product of the 
function evaluation. In the given example, decomposition 
might proceed as follows. 

First call the exponentiation subroutine to evaluate the 
elementary function Zl = x22 and its derivative i~ = 2x222 • 

Next call the product subroutine to evaluate z2 = zlx3 
and its derivative i2 = z123 + ~lX3. Note this uses the pre- 
viously computed results zl, i l .  

Finally, call the division subroutine to evaluate f - x~ 
Z2 

and its derivative ] - Z2Xl -- i2Xl. This directly uses the 
Z22 

previously computed results z2, i2, and implicitly Zl and 

The same procedure is used for any function, no matter 
how complex. Note that we do not attempt to directly 
evaluate the derivative of the complex function. Instead 
we proceed in a sequential fashion, evaluating derivatives 
of elementary functions. The end of the sequence is the 
desired derivative of the original complex function. 

Higher order total derivatives are treated in exactly 
the same manner. I t  is only necessary to have library 
subroutines for evaluating higher order derivatives of the 
elementary functions. 

PARTIAL DERIVATIVES. The proposed method may 
also be used to compute partial derivatives. 

By the chain rule of differentiation, if 

f = f ( x l , x 2 ,  " "  , z~) ,  

then f can be expressed as 

Of Of Of / = + + . . .  + 

By computing, as before, the total derivative ], but 
with the input derivatives changed to 2~ = 1, 

2j = 0, j ~ i, 

we will, in effect, have computed Of/Ox~. 
Hence a partial derivative subroutine can be con- 

structed to act as a control routine which appropriately 
sets the input derivatives to zero or one. For each set of 
input derivatives (one of which is unity and the others 
are zero), the function subroutine outputs assume the 
value of the function and one of its partial derivatives. 

HIGHER ORDER PARTIAL DERIVATIVES. To obtain 
higher order partial derivatives of the given function, first 
examine the functional form of higher order total deriva- 
tives. To do this, we start by restating the chain rule in a 
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more convenient notation, which is used hereafter. 

= f(z  , , . . .  , x , ) ,  

j" = f i21, 

where fi = Of/Ox,, and the subscript-summation conven- 
tion is used, "products are to be smnmed over repeated 
subscripts ;" e.g., 

J'ijkxi~i = ~ o  f o'kXi.~j . 

Successive t ime  differentiat ion then  yields the higher 
order t ime der ivat ives :  

] = fi#i -k fij~¢2i 

where 

f~ik == Oaf/Ox~OxjOxk. 

By evaluating ], ], and ]', with appropriate values of the 
input derivatives, and equating to the corresponding 
chain-rule derivative expressions, a sufficient number of 
independent linear equations can be generated to enable 
solution for the desired higher order partial derivatives. 
For example, some alternate solutions for f~q (p ~ q) are: 

where all input derivatives (aFs, 2's, ~'s) not explicitly 
indicated to be unity are set to zero. 

PARTIAL DERIV~kTIVES OF TIME DERIVATIVES. Partial 
derivatives of time derivatives are readily obtained by 
combination of the partial derivatives, obtained as above, 
with the input thne derivatives. For instance, suppose we 
wish to evaluate the first and second partials of the first 
and second time derivatives of the input function. Straight- 
forward partial differentiation, starting with ] and ] as 
given previously, :yields the following relations for corn- 
puting the desired partial derivatives. 

First Partials Second Partials 

First Time De- i}p = fip2i ]pq = fipqJ31 
rivati~es 4 = f~ ] ~  = L~ = f,a 

Second Time De- :(p = f lp~  + ]vq = fevq~i + 
rivatives f~ivki2~" fiipqXi2i 

}~ = f~ ] ~  = L~ = ½}.. = 
f~  

where unlisted partials are zero, and e.g., f~q = 02f/O2vOXq. 
C o n c l u s i o n  

Programs based upon this technique have  been found 
to be both easy to prepare and easy to use. To  differentiate 
even extremely complex functions, the user need write 
only a function evaluation subroutine calling sequence. 

The  main requirement is merely a subroutine library for 

elementary functions and frequently recurring composite 
functions. 

Aclcnowledgments. The author appreciates the efforts 
of Messrs. C. Arabadjis, C. Conover, 1~. Fagan and R. 
Wilkins in crystallizing the original concept. 

SUBROUTINE ADD (U, V, W) 
DIMENSION U(2), V(2), W(2) 
w(1) = U(1) + v(1) 
w(2) = u(2) + v(2) 
RETURN 
END 

A P P E N D I X .  Example Subrou t ines  

This appendix contains sample FORTRAN eodings of subroutines 
for: (1) three elementary functions, (2) a sample problem using 
these elementary functions, (3) a partial derivative generator for 
the sample problem. Note that "(1)" indicates function value, 
and "(2)" indicates derivative value. 

A main frame I/O routine would also be required, but is omitted 
for simplicity. 

Elementary Functions 

SUBROUTINE SINE (U, W) 
DIMENSION U(2), W(2) 
W(1) = SIN FF (U(1)) 
w(2) = u(2) * cosFF (u0)) 
RETURN 
END 

SUBROUTINE PROD (U, V, W) 
DIMENSION U(2), V(2), W(2) 
W(1) = U(1) * V(1) 
W(2) = U(2) * V(1) -1- U(1) * V(2) 
RETURN 
END 

Sample Problem 

Find y for y = xlx2 -4- siu(x2xa). 

SUBROUTINE FUN (X1, X2, X3, Y) 
DIMENSION X1 (2), X2(2), 

X3(2), Y(2), Zl(2), Z2(2), Z3(2) 
CALL PROD (X1, X2, Z1) 
CALL PROD (X2, X3, Z2) 
CALL SINE (Z2, Z3) 
CALL ADD (Z1, Z3, Y) 
RETURN 
END 

Partial Derivative Generator 

SUBROUTINE PART (X1, X2, X3, F, P) 
DIMENSION X1 (2), X2 (2), X3 (2), FF (2), P (3) 
CALL FFUN1 (X1, X2, X3, FF) 
X1 (2) = 1.0 
X2(2) = 0.0 
X3(2) = O.0 

CALL FFUN1 (X1, X2, X3, FF) 

P(1) = F(2) 

Xl(2) = 0.0 
X2(2) = 1.0 

CALL FFUN1 (X1, X2, X3, FF) 

P(2) = FF(2) 
x2(2) = 0.0 
X3(2) = 1.0 

CALL gUN1 (Xl, X2, X3, FF) 

P(3) = FF(2) 
X3(2) = 0.0 
RETURN 
END 
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