
C. L. McCARTY, JR., Editor

A Simple Automatic Derivative
Evaluation Program

R. E. WENGERT
General Electric Company,* Syracuse, New Yor/c

A procedure for automatic evaluation of total/partial de-
rivatives of arbitrary algebraic functions is presented. The
technique permits computation of numerical values of deriva-
tives without developing analytical expressions for the deriva-
tives. The key to the method is the decomposition of the given
function, by introduction of intermediate variables, into a series
of elementary functional steps. A library of elementary func-
tion subroutines is provided for the automatic evaluation and
differentiation of these new variables. The final step in this
process produces the desired function's derivative.

The main feature of this approach is its simplicity. It can be
used as a quick-reaction tool where the derivation of analytical
derivatives is laborious and also as a debugging tool for
programs which contain derivatives.

Related approaches develop analytical expressions for
total or partial derivatives of arbitrary algebraic functions
through application of rather elaborate scanning proce-
dures on the entire function. The technique reported here,
instead, generates numerical values of derivatives and is
made simple by inputting the given complex function as a
series of elementary function evaluations.

Proposed Technique

TOTAL DERIVATIVES. To demonstrate the technique
for obtaining total derivatives, consider the following
example. Compute], where

f ~ Xl
X22X~ "

Numerical values for x~, x2, x3,21,22,23 are given.
The total derivative] is evaluated indirectly. 0nly the

function itself is explicitly programmed. The calculation
of the given "complex" expression is decomposed, by in-
troduction of intermediate variables, into a string of ele-
mentary functional steps using a predeveloped subroutine
library. These subroutines, examples of which may be
found in the Appendix, automatically provide derivatives
for the intermediate variables. As the computation pro-

* Radio Guidance Operation.

V o l u m e 7 / N u m b e r 8 / Augus t , 1964

ceeds, the desired derivative emerges as a by-product of the
function evaluation. In the given example, decomposition
might proceed as follows.

First call the exponentiation subroutine to evaluate the
elementary function Zl = x22 and its derivative i~ = 2x222 •

Next call the product subroutine to evaluate z2 = zlx3
and its derivative i2 = z123 + ~lX3. Note this uses the pre-
viously computed results zl, i l .

Finally, call the division subroutine to evaluate f - x~
Z2

and its derivative] - Z2Xl -- i2Xl. This directly uses the
Z22

previously computed results z2, i2, and implicitly Zl and

The same procedure is used for any function, no matter
how complex. Note that we do not attempt to directly
evaluate the derivative of the complex function. Instead
we proceed in a sequential fashion, evaluating derivatives
of elementary functions. The end of the sequence is the
desired derivative of the original complex function.

Higher order total derivatives are treated in exactly
the same manner. I t is only necessary to have library
subroutines for evaluating higher order derivatives of the
elementary functions.

PARTIAL DERIVATIVES. The proposed method may
also be used to compute partial derivatives.

By the chain rule of differentiation, if

f = f (x l , x 2 , " " , z~) ,

then f can be expressed as

Of Of Of / = + + . . . +

By computing, as before, the total derivative], but
with the input derivatives changed to 2~ = 1,

2j = 0, j ~ i,

we will, in effect, have computed Of/Ox~.
Hence a partial derivative subroutine can be con-

structed to act as a control routine which appropriately
sets the input derivatives to zero or one. For each set of
input derivatives (one of which is unity and the others
are zero), the function subroutine outputs assume the
value of the function and one of its partial derivatives.

HIGHER ORDER PARTIAL DERIVATIVES. To obtain
higher order partial derivatives of the given function, first
examine the functional form of higher order total deriva-
tives. To do this, we start by restating the chain rule in a

C o m m u n i c a t i o n s o f t h e ACMM 463

more convenient notation, which is used hereafter.

= f(z , , . . . , x ,) ,

j" = f i21,

where fi = Of/Ox,, and the subscript-summation conven-
tion is used, "products are to be smnmed over repeated
subscripts ;" e.g.,

J'ijkxi~i = ~ o f o'kXi.~j .

Successive t ime differentiat ion then yields the higher
order t ime der ivat ives :

] = fi#i -k fij~¢2i

where

f~ik == Oaf/Ox~OxjOxk.

By evaluating],], and]', with appropriate values of the
input derivatives, and equating to the corresponding
chain-rule derivative expressions, a sufficient number of
independent linear equations can be generated to enable
solution for the desired higher order partial derivatives.
For example, some alternate solutions for f~q (p ~ q) are:

where all input derivatives (aFs, 2's, ~'s) not explicitly
indicated to be unity are set to zero.

PARTIAL DERIV~kTIVES OF TIME DERIVATIVES. Partial
derivatives of time derivatives are readily obtained by
combination of the partial derivatives, obtained as above,
with the input thne derivatives. For instance, suppose we
wish to evaluate the first and second partials of the first
and second time derivatives of the input function. Straight-
forward partial differentiation, starting with] and] as
given previously, :yields the following relations for corn-
puting the desired partial derivatives.

First Partials Second Partials

First Time De- i}p = fip2i]pq = fipqJ31
rivati~es 4 = f~] ~ = L~ = f,a

Second Time De- :(p = f lp~ +]vq = fevq~i +
rivatives f~ivki2~" fiipqXi2i

}~ = f~] ~ = L~ = ½}.. =
f~

where unlisted partials are zero, and e.g., f~q = 02f/O2vOXq.
C o n c l u s i o n

Programs based upon this technique have been found
to be both easy to prepare and easy to use. To differentiate
even extremely complex functions, the user need write
only a function evaluation subroutine calling sequence.

The main requirement is merely a subroutine library for

elementary functions and frequently recurring composite
functions.

Aclcnowledgments. The author appreciates the efforts
of Messrs. C. Arabadjis, C. Conover, 1~. Fagan and R.
Wilkins in crystallizing the original concept.

SUBROUTINE ADD (U, V, W)
DIMENSION U(2), V(2), W(2)
w(1) = U(1) + v(1)
w(2) = u(2) + v(2)
RETURN
END

A P P E N D I X . Example Subrou t ines

This appendix contains sample FORTRAN eodings of subroutines
for: (1) three elementary functions, (2) a sample problem using
these elementary functions, (3) a partial derivative generator for
the sample problem. Note that "(1)" indicates function value,
and "(2)" indicates derivative value.

A main frame I/O routine would also be required, but is omitted
for simplicity.

Elementary Functions

SUBROUTINE SINE (U, W)
DIMENSION U(2), W(2)
W(1) = SIN FF (U(1))
w(2) = u(2) * cosFF (u0))
RETURN
END

SUBROUTINE PROD (U, V, W)
DIMENSION U(2), V(2), W(2)
W(1) = U(1) * V(1)
W(2) = U(2) * V(1) -1- U(1) * V(2)
RETURN
END

Sample Problem

Find y for y = xlx2 -4- siu(x2xa).

SUBROUTINE FUN (X1, X2, X3, Y)
DIMENSION X1 (2), X2(2),

X3(2), Y(2), Zl(2), Z2(2), Z3(2)
CALL PROD (X1, X2, Z1)
CALL PROD (X2, X3, Z2)
CALL SINE (Z2, Z3)
CALL ADD (Z1, Z3, Y)
RETURN
END

Partial Derivative Generator

SUBROUTINE PART (X1, X2, X3, F, P)
DIMENSION X1 (2), X2 (2), X3 (2), FF (2), P (3)
CALL FFUN1 (X1, X2, X3, FF)
X1 (2) = 1.0
X2(2) = 0.0
X3(2) = O.0

CALL FFUN1 (X1, X2, X3, FF)

P(1) = F(2)

Xl(2) = 0.0
X2(2) = 1.0

CALL FFUN1 (X1, X2, X3, FF)

P(2) = FF(2)
x2(2) = 0.0
X3(2) = 1.0

CALL gUN1 (Xl, X2, X3, FF)

P(3) = FF(2)
X3(2) = 0.0
RETURN
END

RECEIVED FFEBRUARY, 1964

Evaluate f

Compute Of
Oxl

Compute o f
0x2

Compute Of
Oxa

464 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 7 / N u m b e r 8 / A u g u s t , 1964

