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Optimization and Generalization in Deep Learning via Trajectories

Optimization

Fitting training data by minimizing an objective (loss) function
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Optimization and Generalization in Deep Learning via Trajectories

Generalization

Controlling gap between train and test errors, e.g. by adding regularization
term/constraint to objective

Overfitting
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Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!
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Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
@ Single global minimum, efficiently attainable

@ Choice of algorithm affects only speed of convergence
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Optimization and Generalization in Deep Learning via Trajectories

Classical Machine Learning

Theme: make sure objective is convex!

Optimization
@ Single global minimum, efficiently attainable

@ Choice of algorithm affects only speed of convergence

Generalization
Bias-variance trade-off:
regularization | train/test gap | train err
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Optimization and Generalization in Deep Learning via Trajectories

Deep Learning (DL)

Theme: allow objective to be non-convex ‘
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Deep Learning (DL)

Theme: allow objective to be non-convex

Optimization
@ Multiple minima, a-priori not efficiently attainable

@ Variants of gradient descent (GD) somehow reach global min
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Optimization and Generalization in Deep Learning via Trajectories

Deep Learning (DL)

Theme: allow objective to be non-convex

Optimization
@ Multiple minima, a-priori not efficiently attainable

@ Variants of gradient descent (GD) somehow reach global min
Generalization

@ Some global minima generalize well, others don't

@ With typical data, solution found by GD often generalizes well

@ No bias-variance trade-off — regularization implicitly induced by GD
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Optimization and Generalization in Deep Learning via Trajectories

Analysis via Trajectories of Gradient Descent

Perspective
@ Language of classical learning theory may be insufficient for DL
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Optimization and Generalization in Deep Learning via Trajectories

Analysis via Trajectories of Gradient Descent

Perspective
@ Language of classical learning theory may be insufficient for DL

@ Need to carefully analyze course of learning, i.e. trajectories of GD!
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Optimization and Generalization in Deep Learning via Trajectories

Analysis via Trajectories of Gradient Descent

Perspective
@ Language of classical learning theory may be insufficient for DL

@ Need to carefully analyze course of learning, i.e. trajectories of GD!

AN
N
SO RN
?“‘\\\\\\ - /II""',...:Q“\\\\\\:QQ\%{(

: RO\

We will demonstrate this for deep linear neural networks
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Case Study: Linear Neural Networks
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Case Study: Linear Neural Networks
Sources

On the Optimization of Deep Networks:
Implicit Acceleration by Overparameterization
Arora + C + Hazan
International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Arora + C + Golowich + Hu
International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization
Arora + C + Hu + Luo
Conference on Neural Information Processing Systems (NeurlPS) 2019
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Case Study: Linear Neural Networks

Collaborators

Go\)gle

Sanjeev Arora

Yuping Luo Wei Hu Noah Golowich
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Case Study: Linear Neural Networks

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with
linear (no) activation

X%W]

%

Wzﬁ "'%WN% y=W ---W2W1X
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http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf
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Case Study: Linear Neural Networks
Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with
linear (no) activation

X AW A WL « o« —{Wy— y=Wy... W,W,; x

LNN realize only linear mappings, but are highly non-trivial in terms of
optimization and generalization
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Case Study: Linear Neural Networks
Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with
linear (no) activation

X%W]

%

Wz% e —) WN% y=WN---W2W1X

LNN realize only linear mappings, but are highly non-trivial in terms of
optimization and generalization

Studied extensively as surrogate for non-linear neural networks:

Saxe et al. 2014

@ Kawaguchi 2016 °
@ Advani & Saxe 2017 @ Ji & Telgarsky 2019
@ Hardt & Ma 2017 °

Laurent & Brecht 2018
Gunasekar et al. 2018

Lampinen & Ganguli 2019
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Case Study: Linear Neural Networks = Trajectory Analysis
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Case Study: Linear Neural Networks Trajectory Analysis

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size — 0):

La(t) = —Vf(a(t)) ,teRsg
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Case Study: Linear Neural Networks Trajectory Analysis

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size — 0):

La(t) = —Vf(a(t)) ,teRsg

Admits use of theoretical tools from differential geometry/equations
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories

X AW Wy - o« =AWy y=Wy-.. W, Wy x
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories

X AW Wy - o« =AWy y=Wy-.. W, Wy x

Loss ¢(-) for linear model induces overparameterized objective for LNN:
¢(W1)' ) WN) = E(WN o WZWI)
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X AW Wy - o« =AWy y=Wy-.. W, Wy x

Loss ¢(-) for linear model induces overparameterized objective for LNN:
¢(W1)' ) WN) = E(WN o WZWI)

Definition
Weights Wi ... Wy are balanced if lel Wit1 = VVJWJ—r V).
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Holds approximately under = 0 init, exactly under residual (/y) init
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Case Study: Linear Neural Networks

Balanced Trajectories

Trajectory Analysis

X —>

1z

W,

Wy

—> y:WN-o-W2W1X

Loss ¢(-) for linear model induces overparameterized objective for LNN:
-y WN) = E(WN” . W2W1)

Definition

(Wi, ..

Weights Wi ... Wy are balanced if Wﬁrl Wit1 = Vl/JWJ—r V).

Holds approximately under = 0 init, exactly under residual (/y) init

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Nadav Cohen (TAU)
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories — Proof

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Proof
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories — Proof

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Proof

GF over LNN:
S = —gmo(Wale).... Wa(b))

Princeton COS 597B, Dec'19
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories — Proof

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Proof

GF over LNN:
SWi(t)

—%(b(W(t) WN(t))
—H ()T w(WN(t)--.Wl(t))- W)

Princeton COS 597B, Dec'19
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories — Proof

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Proof
GF over LNN:
2W(e) = —5o0(VA(D),..., Wa(®))
= —H,.N:j+1 Wie)" - we(Wae)- wa(e)) - T, wie)”

= (SWEO)W(O)T = Wa ()T (EWsa(0))
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories — Proof

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Proof
GF over LNN:
2W(e) = —5o0(VA(D),..., Wa(®))
= —H,.N:j+1 Wie)" - we(Wae)- wa(e)) - T, wie)”

= (SWEO)W(O)T = Wa ()T (EWsa(0))

Take transpose of eq, add to itself, and integrate (w.r.t. t):
WOWH(E)T = Wy (6) Wyia(t) + const
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Case Study: Linear Neural Networks = Trajectory Analysis

Balanced Trajectories — Proof

Trajectories of GF over LNN preserve balancedness: if Wy ... Wy are
balanced at init, they remain that way throughout GF optimization

Proof
GF over LNN:
2W(e) = —5o0(VA(D),..., Wa(®))
= —H,.N:j+1 Wie)" - we(Wae)- wa(e)) - T, wie)”

= (SWEO)W(O)T = Wa ()T (EWsa(0))

Take transpose of eq, add to itself, and integrate (w.r.t. t):
WOWH(E)T = Wy (6) Wyia(t) + const

Balance at init = const =0 O
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning
Question

How does end-to-end matrix Wy.p:=Wy---W; move on GF trajectories?

Linear Neural Network Equivalent Linear Model
M - % <:> -
Gradient flow over ¢(Wy,..., Wy) ?
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning
Question

How does end-to-end matrix Wy.p:=Wy---W; move on GF trajectories?

Linear Neural Network Equivalent Linear Model

... <:>

. Preconditioned
Gradient flow over ¢(Wy,..., Wy) gradient flow over /(W)

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:
9 vec [Wan(t)] = —Pwy o) - vec [VE(Wan(t))]

where Py, (v is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning
Question

How does end-to-end matrix Wy.p:=Wy---W; move on GF trajectories?

Linear Neural Network Equivalent Linear Model

... <:> WI:N

. Preconditioned
Gradient flow over ¢(Wy,..., Wy) gradient flow over /(W)

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:
9 vec [Wan(t)] = —Pwy o) - vec [VE(Wan(t))]

where Py, (v is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Pusty - vee [VO(Wan(1)] = )
vec{sz:l [Wan()Wan(t)T] ™ - VU Wan(t)) - [Wan(t)] Wl;N(t)}/T}
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning
Question

How does end-to-end matrix Wy.p:=Wy---W; move on GF trajectories?

Linear Neural Network Equivalent Linear Model

... <:>

. Preconditioned
Gradient flow over ¢(Wy,..., Wy) gradient flow over /(W)

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:
Gvec [Wan(t)] = =Py y(e) - vee [VE(Wan(1))]

where Py, (v is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Adding (redundant) linear layers to classic linear model induces
preconditioner promoting movement in directions already taken!
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:

Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:

%VeC[W]_:N( )] - PW1N t) vec [ve(Wl N( ))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
SVD: W(t) = Uj()Si(t)V;(t)T
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Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:
Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
SVD: W(t) = Uj()Si(t)V;(t)T

Balance (W,(£)W;(t) = W,1(1) Wy (£) = Si(E)=Sp4a(t) A Ui()=Vjua (1)
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:

Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
SVD: W(t) = Uj()Si(t)V;(t)T

Balance (W,(£)W;(t) = W,1(1) Wy (£) = Si(E)=Sp4a(t) A Ui()=Vjua (1)

Products of weights thus simplify, yielding:

%Wl:N(t) =
N i=N i=j—1
STTIwie) - Ewie) - [T wio)
j=1j+1 1

Nadav Cohen (TAU) Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 17 / 39



Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:

Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
SVD: W(t) = Uj()Si(t)V;(t)T

Balance (W,(£)W;(t) = W,1(1) Wy (£) = Si(E)=Sp4a(t) A Ui()=Vjua (1)

Products of weights thus simplify, yielding:

%Wl:N(t) =
N =N =j-1
STTIWie) - (= s o(Wace), . wa) - T wie)
Jj=1 j+1 1

Nadav Cohen (TAU) Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 17 / 39



Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:

Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)
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Products of weights thus simplify, yielding:

in_N( ) =
N i=N j-1 =j-1
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:

Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
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Balance (W,(£)W;(t) = W,1(1) Wy (£) = Si(E)=Sp4a(t) A Ui()=Vjua (1)

Products of weights thus simplify, yielding:
% Wl:N(t) =

N Nej izt
=Y [Wanewan()T] T v Wan(e) - [Wan(e) Wan(e)] "
j=1
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Case Study: Linear Neural Networks = Trajectory Analysis

Implicit Preconditioning — Proof Sketch

If Wy ... Wy are balanced at init, Wy.p follows end-to-end dynamics:
Sivec [Wan(8)] = —Puygy(e) - vec [VE(Wan(t))]
where Py, \(+) is a preconditioner (PSD matrix) that “reinforces” Wi.y(t)

Proof Sketch
SVD: W(t) = Uj()Si(t)V;(t)T

Balance (W,(£)W;(t) = W,1(1) Wy (£) = Si(E)=Sp4a(t) A Ui()=Vjua (1)

Products of weights thus simplify, yielding:
% Wl:N(t) =

N Nej izt
=Y [Wanewan()T] T v Wan(e) - [Wan(e) Wan(e)] "
j=1

Vectorizing gives end-to-end dynamics (with closed-form expression for Py, ,(s)
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Case Study: Linear Neural Networks = Trajectory Analysis

Trajectories Cannot Be Emulated via Regularization

End-to-end dynamics (implicit preconditioning):

e [Wan(t)] = —Pw, (o) - vee [VE(Wan(t))]
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Case Study: Linear Neural Networks = Trajectory Analysis
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End-to-end dynamics (implicit preconditioning):

%V&'C[Wl:,v(t)] = _PWLN(t) - vec [V@(Wl/v(t))} 3_'5 —vec [VF( Wl;/\/(t))]

If V£(0) #0 then # function F(W) s.t. vec [VF(W)] = Py - vec[VL(W)]

‘Trajectories with LNN cannot be emulated by regularizing objective! ‘
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Case Study: Linear Neural Networks = Trajectory Analysis

Trajectories Cannot Be Emulated via Regularization

End-to-end dynamics (implicit preconditioning):

%V&'C[Wl:,v(t)] = _PWLN(t) - vec [V@(Wl/v(t))} 3_'5 —vec [VF( Wl;/\/(t))]

If V£(0) #0 then # function F(W) s.t. vec [VF(W)] = Py - vec[VL(W)]

‘Trajectories with LNN cannot be emulated by regularizing objective! ‘

| contradicts gradient theorem!

f Py - vec[VE(W)] # 0
r
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Case Study: Linear Neural Networks Optimization

Outline

© Case Study: Linear Neural Networks

@ Optimization
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

Good local minimum Poor local minimum Strict saddle Non-strict saddle
(=global minimum)
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

(2)

Good local minimum Poor local minimum Strict saddle Non-strict saddle
(=global minimum)

Result (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

(2)

Good local minimum Poor local minimum Strict saddle Non-strict saddle
(=global minimum)

Result (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min

Motivated by this, many ! studied the validity of (1) and/or (2)

b e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018
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Case Study: Linear Neural Networks Optimization

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical
learning theory) is via critical points in the objective

(2)

Good local minimum Poor local minimum Strict saddle Non-strict saddle
(=global minimum)

Result (cf. Ge et al. 2015; Lee et al. 2016)

If: (1) there are no poor local minima; and (2) all saddle points are strict,
then GD converges to global min

Motivated by this, many ! studied the validity of (1) and/or (2)

Limitation: deep (> 3 layer) models violate (2) (consider all weights =0)!

! e.g. Haeffele & Vidal 2015; Kawaguchi 2016; Soudry & Carmon 2016; Safran & Shamir 2018
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Applying Our Trajectory Analysis
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Case Study: Linear Neural Networks = Optimization

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

%VGC[Wl;N(t)] = _PW1:N(t) - vec [Vf(WlN(t))]
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Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

%VGC[Wl;N(t)] = _PW1:N(f) - vec [Vf(WlN(t))]

Pw,y(t) = 0 when Wi.n(t) has full rank = loss decreases until:
(1) Ve(Wan(t)) =0 or  (2) Wi.n(t) is singular
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Case Study: Linear Neural Networks ~ Optimization

Applying Our Trajectory Analysis

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

%VGC[Wl;N(t)] = _PW1:N(f) - vec [Vf(WlN(t))]

Pw,y(t) = 0 when Wi.n(t) has full rank = loss decreases until:
(1) Vg(Wl;N(t)) =0 or (2) Wl;/\/(t') is singular

£(+) is typically convex = (1) means global min was reached

Corollary

Assume £(-) is convex and LNN is init such that:
Q ((Wi.n) < UW) for any singular W
Q@ Wi... W) are balanced

Then, GF converges to global min

4
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Case Study: Linear Neural Networks Optimization

From Gradient Flow to Gradient Descent
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Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Corollary

Assume ((-) is convex and LNN is init such that:
Q ((Wi.n) < U(W) for any singular W
Q@ Wi... Wy are balanced

Then, GF converges to global min
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Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Corollary

Assume ((-) is convex and LNN is init such that:
Q (Win) <lUW) YW s.t. omin(W) =0
Q@ Wi... Wy are balanced

Then, GF converges to global min
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From Gradient Flow to Gradient Descent

Corollary

Assume ((-) is convex and LNN is init such that:
Q@ (Win) < UW) YW s.t. opmin(W) =0
@ W Wi =WW v

Then, GF converges to global min

Nadav Cohen (TAU) Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 22 /39



Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Corollary

Assume ((-) is convex and LNN is init such that:
Q@ (Win) < UW) YW s.t. opmin(W) =0
Q@ W Wi —WW|p=0 V]

Then, GF converges to global min
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Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Theorem
Assume ((-) is convex and LNN is init such that:

(1) f(Wl;N) < E(W) , VW s.t. Um,'n(W) =0
@ |WL W1 - WW[lr=0 V]

Then, GF converges to global min
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Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Theorem
Assume L(-) = {3 loss and LNN is init such that:

(1) f(Wl;N) < E(W) , VW s.t. Um,'n(W) =0
@ |WL W1 - WW[lr=0 V]

Then, GF converges to global min
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Theorem
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Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Theorem
Assume L(-) = {3 loss and LNN is init such that:

QO (Win) <l(W) YW s.t. omin(W) < ¢
@ W W1 — WiWT|[F < O(c?) V)

Then, GF converges to global min
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Case Study: Linear Neural Networks = Optimization

From Gradient Flow to Gradient Descent

Theorem
Assume L(-) = {3 loss and LNN is init such that:

QO (Win) <l(W) YW s.t. omin(W) < ¢
@ W W1 — WiWT|[F < O(c?) V)

Then, GD with step size ) < O(c*) gives: loss(iteration t) < e~ *nt)
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Case Study: Linear Neural Networks ~ Optimization

From Gradient Flow to Gradient Descent

Theorem

Assume L(-) = {3 loss and LNN is init such that:
QO (Win) <l(W) YW s.t. omin(W) < ¢
@ W W1 — WiWT|[F < O(c?) V)

Then, GD with step size ) < O(c*) gives: loss(iteration t) < e~ *nt)

Claim

| A\

Our assumptions on init:

Nadav Cohen (TAU) Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 22 /39



Case Study: Linear Neural Networks ~ Optimization

From Gradient Flow to Gradient Descent

Theorem

Assume L(-) = {3 loss and LNN is init such that:
QO (Win) <l(W) YW s.t. omin(W) < ¢
@ W W1 — WiWT|[F < O(c?) V)

Then, GD with step size ) < O(c*) gives: loss(iteration t) < e~ *nt)

Claim

| A\

Our assumptions on init:

o Are necessary (violating any of them can lead to divergence)
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Case Study: Linear Neural Networks ~ Optimization

From Gradient Flow to Gradient Descent

Theorem

Assume L(-) = {3 loss and LNN is init such that:
QO (Win) <l(W) YW s.t. omin(W) < ¢
@ W W1 — WiWT|[F < O(c?) V)

Then, GD with step size ) < O(c*) gives: loss(iteration t) < e~ *nt)

Claim

| A\

Our assumptions on init:

o Are necessary (violating any of them can lead to divergence)

@ For out dim 1, hold with const prob under random “balanced” init
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Case Study: Linear Neural Networks ~ Optimization

From Gradient Flow to Gradient Descent

Theorem

Assume L(-) = {3 loss and LNN is init such that:
(] ﬁ(Wl;/\/) < /(W) VW s.t. O’m,'n(W) <c
@ W W1 — WiWT|[F < O(c?) V)

Then, GD with step size ) < O(c*) gives: loss(iteration t) < e~ *nt)

Claim

| \

Our assumptions on init:

o Are necessary (violating any of them can lead to divergence)

@ For out dim 1, hold with const prob under random “balanced” init

Guarantee of efficient (linear rate) convergence to global min!
Most general guarantee to date for GD efficiently training deep net.
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Case Study: Linear Neural Networks Optimization

Effect of Depth on Optimization
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Case Study: Linear Neural Networks Optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:

o Convex optimization is easier than non-convex
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Case Study: Linear Neural Networks Optimization

Effect of Depth on Optimization

Viewpoint of classical learning theory:

o Convex optimization is easier than non-convex

Our trajectory analysis reveals: not always true...
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Case Study: Linear Neural Networks Optimization

Acceleration by Depth
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Case Study: Linear Neural Networks Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:
vec[Wy.n(t + 1) = vec[Wyn(t)] — 7 - Py a(e) - vec [VL(Wy.n(t))]
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Case Study: Linear Neural Networks = Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:
vec[Wy.n(t + 1) = vec[Wyn(t)] — 7 - Py a(e) - vec [VL(Wy.n(t))]

Vp > 2, 3 settings where £(-) = £, loss (i.e. ((W) = L 57 || Wx;— yill5)
and disc end-to-end dynamics reach global min arbltrarlly faster than GD
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Case Study: Linear Neural Networks = Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:
vec[Wy.n(t + 1) = vec[Wyn(t)] — 7 - Py a(e) - vec [VL(Wy.n(t))]

Vp > 2, 3 settings where £(-) = £, loss (i.e. ((W) = L 57 || Wx;— yill5)
and disc end-to-end dynamics reach global min arbltrarlly faster than GD

Experiment
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Case Study: Linear Neural Networks = Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:

vec [Win(t 4 1)] = vec [Win(t)] —n- Py (o) - vec [VE(Win(t))]

Vp > 2, 3 settings where £(-) = £, loss (i.e. ((W) = L 57 || Wx;— yill5)
and disc end-to-end dynamics reach global min arbltrarlly faster than GD

Experiment
Regression problem from UCI ML Repository ; ¢4 loss
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Case Study: Linear Neural Networks = Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:
vec[Wy.n(t + 1) = vec[Wyn(t)] — 7 - Py a(e) - vec [VL(Wy.n(t))]

Vp > 2, 3 settings where (-) = {, loss (i.e. ((W) = L7 | Wx;—yill?)
and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment
Regression problem from UCI ML Repository ; ¢4 loss

— GD @ 1-layer
— GD @ 2-layer | |
— GD @ 3-layer

10°

L4 loss

1071 E

1072

300000 100000 600000 800000 1000000
iteration
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Case Study: Linear Neural Networks ~ Optimization

Acceleration by Depth

Discrete version of end-to-end dynamics for LNN:
vec[Wy.n(t + 1) = vec[Wyn(t)] — 7 - Py a(e) - vec [VL(Wy.n(t))]

Vp > 2, 3 settings where ((-) = £, loss (i.e. (W)= L7 | Wx;—yill?)

‘m i=1

and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment
Regression problem from UCI ML Repository ; ¢4 loss

— GD @ 1-layer
o — GD @ 2-layer | |
10
— GD® 3layer Depth can speed-up GD,
8 even without any gain in
g 1 expressiveness, and despite
introducing non-convexity!
10721
0 217()‘(![!“ l[ll)‘(]l]l) (;YH)‘(!UU Sll[b‘(")(? 1000000
iteration
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Case Study: Linear Neural Networks Generalization

Outline

© Case Study: Linear Neural Networks

@ Generalization
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

NOW YOU g5 e
1

Bob
Alice 2 4 ?
Joe 2 2 2
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

NOW YOU g5 e
1

Can be viewed as classification (regression) problem:

observed entries <—  training data
unobserved entries — test data
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

NOW YOU g5 e
1

Can be viewed as classification (regression) problem:
observed entries <—  training data
unobserved entries ~ <— test data

Standard Assumption
Matrix to recover (ground truth) has low rank
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Case Study: Linear Neural Networks Generalization

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

NOW YOU g5 e
1

Can be viewed as classification (regression) problem:
observed entries <—  training data
unobserved entries ~ <— test data

Standard Assumption
Matrix to recover (ground truth) has low rank

Classical Result (cf. Candes & Recht 2008)
Nuclear norm minimization (convex program) perfectly recovers (“almost
any") low rank matrix if observations are sufficiently many
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Case Study: Linear Neural Networks Generalization

Two-Layer Network <— Matrix Factorization

Matrix completion via two-layer LNN:

o Parameterize ground truth as WoWj

4177
5(4|?]| = W, * w;
?15]?]|°?
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Case Study: Linear Neural Networks Generalization

Two-Layer Network <— Matrix Factorization

Matrix completion via two-layer LNN:

o Parameterize ground truth as WoWj

NEE
slaf?| =] w, | = w;
ABEEHE

e Known as matrix factorization (MF)
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Case Study: Linear Neural Networks Generalization

Two-Layer Network <— Matrix Factorization

Matrix completion via two-layer LNN:
o Parameterize ground truth as WoWj

4177
215147 = Wz * W1
?15]?]|°?

e Known as matrix factorization (MF)

Empirical Phenomenon
GD (with step size < 1 and init ~ 0) over MF recovers low rank matrices,
even when shared dim of Wi, W, doesn't constrain rank!
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Case Study: Linear Neural Networks Generalization

Two-Layer Network <— Matrix Factorization

Matrix completion via two-layer LNN:
o Parameterize ground truth as WoWj

4177
215147 = Wz * W1
?15]?]|°?

e Known as matrix factorization (MF)

Empirical Phenomenon
GD (with step size < 1 and init ~ 0) over MF recovers low rank matrices,
even when shared dim of Wi, W, doesn't constrain rank!

Conjecture (Gunasekar et al. 2017)

GD (with step size < 1 and init = 0) over MF converges to solution with
min nuclear norm (among those fitting observations)
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Case Study: Linear Neural Networks Generalization

Two-Layer Network <— Matrix Factorization

Matrix completion via two-layer LNN:

o Parameterize ground truth as WoWj

4177
215147 = Wz * W1
?15]?]|°?

e Known as matrix factorization (MF)

Empirical Phenomenon
GD (with step size < 1 and init ~ 0) over MF recovers low rank matrices,
even when shared dim of Wi, W, doesn't constrain rank!

Conjecture (Gunasekar et al. 2017)

GD (with step size < 1 and init = 0) over MF converges to solution with
min nuclear norm (among those fitting observations)

Gunasekar et al. proved conjecture for certain restricted setting
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Case Study: Linear Neural Networks Generalization

N-Layer Network <— “Deep Matrix Factorization”

Matrix completion via N-layer LNN:
@ Parameterize ground truth as Wy --- Wo W,

41?(?|4
215147 = Wy * oo e % W, * w;

?5(?]7?
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Case Study: Linear Neural Networks Generalization

N-Layer Network <— “Deep Matrix Factorization”

Matrix completion via N-layer LNN:
@ Parameterize ground truth as Wy --- Wo W,

41?(?|4
215147 = Wy * oo e % W, * w;

?5(?]7?

o We refer to this as deep matrix factorization (DMF)

Nadav Cohen (TAU) Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19



Case Study: Linear Neural Networks Generalization

N-Layer Network <— “Deep Matrix Factorization”

Matrix completion via N-layer LNN:
@ Parameterize ground truth as Wy --- Wo W,

41?(?|4
215147 = Wy * oo e % W, * w;

?5(?]7?

o We refer to this as deep matrix factorization (DMF)

Experiment
Completion of low rank matrix via GD over DMF
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Case Study: Linear Neural Networks Generalization

N-Layer Network <— “Deep Matrix Factorization”

Matrix completion via N-layer LNN:
@ Parameterize ground truth as Wy --- Wo W,

41?(?|4
215147 = Wy * oo e % W, * w;

?5(?]7?

o We refer to this as deep matrix factorization (DMF)

Experiment
Completion of low rank matrix via GD over DMF

5 0.125

= —8— depth 2
© 0.100 § ~4— depth 3
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_S 0.075 1 —%— depth 4
1%
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I

.000 : — r . : .
2000 2200 2400 2600 2800 3000 3200 3400 3600
# of observations

Depth enhanced implicit regularization towards low rank!
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

implicit regularization . minimizing nuclear norm
with depth 2 LNN (MF) (surrogate for rank)
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

implicit regularization . minimizing nuclear norm
with depth 2 LNN (MF) (surrogate for rank)

In light of our experiment, natural to hypothesize:

implicit regularization minimizing other norm
with deeper LNN (DMF) closer to rank
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

implicit regularization . minimizing nuclear norm
with depth 2 LNN (MF) (surrogate for rank)

In light of our experiment, natural to hypothesize:

implicit regularization minimizing other norm
with deeper LNN (DMF) closer to rank
Example
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

implicit regularization . minimizing nuclear norm
with depth 2 LNN (MF) (surrogate for rank)

In light of our experiment, natural to hypothesize:

implicit regularization minimizing other norm
with deeper LNN (DMF) closer to rank
Example

Schatten-p quasi-norm to the power of p:

o W] =3, (W) where o,(W) are singular vals of W
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

implicit regularization . minimizing nuclear norm
with depth 2 LNN (MF) (surrogate for rank)

In light of our experiment, natural to hypothesize:

implicit regularization minimizing other norm
with deeper LNN (DMF) closer to rank
Example

Schatten-p quasi-norm to the power of p:
o W] =3, (W) where o,(W) are singular vals of W

@ p = 1: nuclear norm, corresponds to depth 2 by Gunasekar et al. 2017
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Case Study: Linear Neural Networks Generalization

Can the Implicit Regularization Be Captured by Norms?

Conjecture of Gunasekar et al. 2017 (in spirit of classical learning theory):

implicit regularization . minimizing nuclear norm
with depth 2 LNN (MF) (surrogate for rank)

In light of our experiment, natural to hypothesize:

implicit regularization minimizing other norm
with deeper LNN (DMF) closer to rank
Example

Schatten-p quasi-norm to the power of p:
o W] =3, (W) where o,(W) are singular vals of W
@ p = 1: nuclear norm, corresponds to depth 2 by Gunasekar et al. 2017

@ 0 < p < 1: closer to rank, may correspond to higher depths
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Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

Nadav Cohen Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 30/ 39


https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf
https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf

Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

In restricted setting where Gunasekar et al. proved depth 2 minimizes
nuclear norm, any depth > 2 does so as well
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Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

Theorem
In restricted setting where Gunasekar et al. proved depth 2 minimizes
nuclear norm, any depth > 2 does so as well

| A\

Proposition
3 instances of this setting where nuclear norm minimization contradicts
Schatten-p quasi-norm minimization (even locally) ¥p € (0,1)

.
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Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

Theorem
In restricted setting where Gunasekar et al. proved depth 2 minimizes
nuclear norm, any depth > 2 does so as well

| A\

Proposition
3 instances of this setting where nuclear norm minimization contradicts
Schatten-p quasi-norm minimization (even locally) ¥p € (0,1)

.

This implies:
implicit regularization for any depth # Schatten quasi-norm minimization
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Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

Theorem

In restricted setting where Gunasekar et al. proved depth 2 minimizes
nuclear norm, any depth > 2 does so as well

| A\

Proposition

3 instances of this setting where nuclear norm minimization contradicts
Schatten-p quasi-norm minimization (even locally) ¥p € (0,1)

.

This implies:
implicit regularization for any depth # Schatten quasi-norm minimization

Instead, adopting lens of Gunasekar et al. leads to conjecturing:
implicit regularization for all depths = nuclear norm minimization
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Case Study: Linear Neural Networks Generalization

Current Theory is Oblivious to Depth

Theorem

In restricted setting where Gunasekar et al. proved depth 2 minimizes
nuclear norm, any depth > 2 does so as well

| A\

Proposition

3 instances of this setting where nuclear norm minimization contradicts
Schatten-p quasi-norm minimization (even locally) ¥p € (0,1)

.

This implies:
implicit regularization for any depth # Schatten quasi-norm minimization

Instead, adopting lens of Gunasekar et al. leads to conjecturing:
implicit regularization for all depths = nuclear norm minimization

But our experiment shows depth changes implicit regularization!
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Experiments Testing Nuclear Norm Conjecture
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:
@ Completion of 100 x 100 rank 5 matrix

@ Observed entries chosen uniformly at random
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:
@ Completion of 100 x 100 rank 5 matrix

@ Observed entries chosen uniformly at random

Many (5K) Observations:

reconst err nuclear norm effective rank

nuclear norm min
depth 2 LNN
depth 3 LNN
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:
@ Completion of 100 x 100 rank 5 matrix

@ Observed entries chosen uniformly at random

Many (5K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 8e-07 221 5
depth 2 LNN
depth 3 LNN

@ Nuclear norm min recovers ground truth
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:
@ Completion of 100 x 100 rank 5 matrix

@ Observed entries chosen uniformly at random

Many (5K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 8e-07 221 5
depth 2 LNN 5e-06 221 5
depth 3 LNN 4e-06 221 5

@ Nuclear norm min recovers ground truth

@ LNN do so too
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture

Setup:
@ Completion of 100 x 100 rank 5 matrix

@ Observed entries chosen uniformly at random

Many (5K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 8e-07 221 5
depth 2 LNN 5e-06 221 5
depth 3 LNN 4e-06 221 5

@ Nuclear norm min recovers ground truth

@ LNN do so too

@ Correspondence, but can’t distinguish between nuclear norm min and
any bias leading to low rank
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

reconst err nuclear norm effective rank

nuclear norm min
depth 2 LNN
depth 3 LNN
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 2e-01 217 8
depth 2 LNN
depth 3 LNN

@ Nuclear norm min doesn't recover ground truth
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 2e-01 217 8
depth 2 LNN 6e-02 220 6
depth 3 LNN 3e-05 221 5

@ Nuclear norm min doesn't recover ground truth

@ LNN focus on lowering effective rank at expense of nuclear norm
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 2e-01 217 8
depth 2 LNN 6e-02 220 6
depth 3 LNN 3e-05 221 5

@ Nuclear norm min doesn't recover ground truth
@ LNN focus on lowering effective rank at expense of nuclear norm

@ Discrepancy!
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 2e-01 217 8
depth 2 LNN 6e-02 220 6
depth 3 LNN 3e-05 221 5

@ Nuclear norm min doesn't recover ground truth
@ LNN focus on lowering effective rank at expense of nuclear norm

@ Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!
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Case Study: Linear Neural Networks Generalization

Experiments Testing Nuclear Norm Conjecture (cont')

Few (2K) Observations:

reconst err nuclear norm effective rank
nuclear norm min 2e-01 217 8
depth 2 LNN 6e-02 220 6
depth 3 LNN 3e-05 221 5

@ Nuclear norm min doesn't recover ground truth
@ LNN focus on lowering effective rank at expense of nuclear norm

@ Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!

Hypothesis
Single norm (or quasi-norm) not enough to capture implicit regularization,
detailed account for trajectories is needed
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis — Dynamics of Singular Values
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis — Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

%vec[Wl;N( )] = —Pwyue) - vec [VE(Win(t))]
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis — Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

gevec [Win()] = —Puyy ) - vee [VE(Wan(t))]

Denote:
e {o,(t)}, — singular vals of Wj.n(t)
o {u,(t)},/{v.(t)}, — corresponding left/right singular vecs
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis — Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

gevec [Win()] = —Puyy ) - vee [VE(Wan(t))]

Denote:
e {o,(t)}, — singular vals of Wj.n(t)
o {u,(t)},/{v.(t)}, — corresponding left/right singular vecs

Interpretation

2
o Given Wh.n(t), depth affects evolution only via factors NV - o, "(t)
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis — Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

gevec [Win()] = —Puyy ) - vee [VE(Wan(t))]

Denote:
e {o,(t)}, — singular vals of Wj.n(t)
o {u,(t)},/{v.(t)}, — corresponding left/right singular vecs

Interpretation

2
o Given Wh.n(t), depth affects evolution only via factors NV - o, "(t)

e N =1 (classic linear model): factors reduce to 1
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Case Study: Linear Neural Networks Generalization

Trajectory Analysis — Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

gevec [Win()] = —Puyy ) - vee [VE(Wan(t))]

Denote:
e {o,(t)}, — singular vals of Wy.p(t)
o {u,(t)},/{v.(t)}, — corresponding left/right singular vecs

Interpretation

2
o Given Wh.n(t), depth affects evolution only via factors NV - o, "(t)

e N =1 (classic linear model): factors reduce to 1

e N > 2: factors speed up (slow down) large (small) singular vals,
more so for larger N (higher depth)
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch
SVD: Wl;N(f) = U(t)S(t)V(t)T (5 = diag(m.ng. ) U= [Ul. us, ] V = [V1.V2. ])

Nadav Cohen (TAU) Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 34 /39



Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch
SVD: Wl;N(f) = U(t)S(t)V(t)T (5 = diag(m.ng. ) U= [Ul. us, ] V = [V1.V2. ])
= LWin(t) = ZU(t)-S(t)- V(t)" + U(t)- S(t)- V()T + U(t)- S(t)- V()T
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch

SVD: Win(t) = U()S()V(t)T (S = diag(on,00,...) U =[ui,us, ] V= [vivo, )
= GWun(t) = SU(1)-S(2)- V()T + U(t) - §S(2) - V(1) " + U(t) - S(t) - & V()"
= U(t)" - GWan(t) - V(1) = U()" - GU(1) - S(t) + §S(1) + S(1) - V(1) - V(1)
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch

SVD: Win(t) = U()S()V(t)T (S = diag(on,00,...) U =[ui,us, ] V= [vivo, )
= GWun(t) = SU(1)-S(2)- V()T + U(t) - §S(2) - V(1) " + U(t) - S(t) - & V()"
= U(t)" - GWan(t) - V(1) = U()" - GU(1) - S(t) + §S(1) + S(1) - V(1) - V(1)

End-to-end dynamics: N -1

2 Wan(t) = —Z}’."Zl [Wl:N(t)Wl;N(t)T] e - Ve(Whn(t)) - [le,\,(t)T Wl:N(t)i| w
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch

SVD: Win(t) = U(D)S(e)V(t)T (S =diag(on,00,..) U=[ui,us, ] V =[vi,v,.])
= GWun(t) = SU(1)-S(2)- V()T + U(t) - §S(2) - V(1) " + U(t) - S(t) - & V()"
= U(t)" - GWan(t) - V(1) = U()" - GU(1) - S(t) + §S(1) + S(1) - V(1) - V(1)

End-to-end dynamics: N -1

GVa() = = S, [Waa(Wan(T| 7 VEWan(0) - [Wan(0) Wan(o)]
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch

SVD: Win(t) = U()S()V(t)T (S = diag(on,00,...) U =[ui,us, ] V= [vivo, )
= GWun(t) = SU(1)-S(2)- V()T + U(t) - §S(2) - V(1) " + U(t) - S(t) - & V()"
= U(t)" - GWan(t) - V(1) = U()" - GU(1) - S(t) + §S(1) + S(1) - V(1) - V(1)

End-to-end dynamics: N ;

2 Wain(t) = — ZjN:I u(t) {S(t)s(t)q Kl Uut)" - ve(Wan(t)) - V(1) [S(t)Ts(t)}

v v(e)"
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
Sor(t)=—N-o; (1) (VE(Wan(t)), ur(t)v] (1))

Proof Sketch

SVD: Wl;N(f) = U(t)S(t)V(t)T (5 = diag(nl.ng. ) U= [Ul. u?, ] V = [V1.V2. ])

= LWin(t) = ZU(t)-S(t)- V(t)" + U(t)- S(t)- V()T + U(t)- S(t)- V()T

— U(t)T . iWl;,\,(t) -V(t) = U(t)T . %U(t) -S(t) + %S(t) + 5(t) - % V(t)T -V(t)

End-to-end dynamics: i
() =~ 30, U [s050)7] 7 U0 W) - v [s07s0] 7 v
= U(t)" - LWin(t) V(t)

N—

o3, [stosT] T v - vamae - vio) st sw]

j—1

N
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
Sor(t)=—N-o; (1) (VE(Wan(t)), ur(t)v] (1))

Proof Sketch

SVD: Wl;N(f) = U(t)S(t)V(t)T (5 = diag(nl.ng. ) U= [Ul. u?, ] V = [V1.V2. ])

= LWin(t) = ZU(t)-S(t)- V(t)" + U(t)- S(t)- V()T + U(t)- S(t)- V()T

— U(t)T . iWl;,\,(t) -V(t) = U(t)T . %U(t) -S(t) + %S(t) + 5(t) - %V(L‘)T - V(t)

End-to-end dynamics: i
() =~ 30, U [s050)7] 7 U0 W) - v [s07s0] 7 v
= U(t)" - LWin(t)- V(t)

N—

o3, [stosT] T v - vamae - vio) st scw]

j—1

N
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
Sor(t)=—N-o; (1) (VE(Wan(t)), ur(t)v] (1))

Proof Sketch

SVD: Wl;N(f) = U(t)S(t)V(t)T (5 = diag(nl.ng. ) U= [Ul. u?, ] V = [V1.V2. ])

= LWin(t) = ZU(t)-S(t)- V(t)" + U(t)- S(t)- V()T + U(t)- S(t)- V()T

— U(t)T . iWl;,\,(t) -V(t) = U(t)T . %U(t) -S(t) + %S(t) + 5(t) - % V(t)T -V(t)

End-to-end dynamics: i
GWha(t) = - S, V() [S(9S(0)" } ()T VW) V() [s@7so)] " v
= U(t)" - ZU(t) S(t) + ZS(t) + S(t) 2v(t)" - Vv(t)

j—1
N

o3 [sst7] T ot - v - vio s sto] T
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Gon(t) = =N o7 " () (VE(Wan(2)), ur (e (1)

Proof Sketch

SVD: Win(t) = U()S()V(t)T (S = diag(on,00,...) U =[ui,us, ] V= [vivo, )
= GWun(t) = SU(1)-S(2)- V()T + U(t) - §S(2) - V(1) " + U(t) - S(t) - & V()"
= U(t)" - GWan(t) - V(1) = U()" - GU(1) - S(t) + §S(1) + S(1) - V(1) - V(1)

End-to-end dynamics:

Win(e) = -3 U(t){S(t)S(t) } T VZ(WLN(t))-V(t)[S(t) S(t)}
= U(t)T~EU(t)~5(t)+§S(t)+5(t) 2v(t)" - Vv(t) N
o3 [sst7] T ot - v - vio s sto] T

N

V()"

Restrict attention to r'th diagonal element:
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
Sor(t)=—N-o; (1) (VE(Wan(t)), ur(t)v] (1))
Proof Sketch
SVD: Win(t) = U(t)S(t)V(t)T (5 = diag(o1,02,...) U=Jur,u2,...] V =][vi,vz, ])
= GWun(t) = SU(1)-S(2)- V()T + U(t) - §S(2) - V(1) " + U(t) - S(t) - & V()"
= U(t)" - EWin(t)- V(t) = U(t)" - ZU(t)- S(t) + LS(t) +S(t) - LVv(t)" - V(t)

End-to-end dynamics: B
() =~ 30, U [s050)7] 7 U0 W) - v [s07s0] 7 v
= U(t)T~EU(t)~5(t)+§S(t)+5(t) 2v(t)" - Vv(t) B
o3 [sst7] T ot - v - vio s sto] T
Restrict attention to r'th diagonal element:
ur(t)T-%u,(t)~0r(t)+%m(t)+or(t) Su ()" -v(t) =
S T () u0) - VUWan(©) ur() ] T (1)

j= 1
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2|

(t) - (VEe(Wrn(t)), ur(t)";r(t»

D—
%U,(t) =—N-o;

Proof Sketch

SVD: Win(t) = U()S(t)V(t)" (S =diag(or,00,..) U=[uruo, ] V=[vi v, .])

= LWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t) " + U(t)- S(t) - LV ()T

= U(t)" - LWin(t) - V(t) = U(t)" - LU(t) S(t) + LS(t) + S(t) - LV ()T - V(¢)

End-to-end dynamics: .

GWan(e) = - X1, U()[s@s)” ]TU(r) VEWan(2) - V()| S() S(r)]

= U@t 2U(t)- S(t) +45(t)+ S(t) Lyv()" - V(t) 3
oy [sst7] ot - v - vio st sto)] ©

N

V()"

Restrict attention to r’'th diagonal element:
ur(t) - Fur(t) - or(t) + Gor(t) + Ur(f) ()T ve(t) =
ST () () UWan () - vilt)
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

o (t) = —N o ¥ (t) - (VE(Wan(8), u (E] (£))

Proof Sketch
SVD: Win(t) = U()S(t)V(t)" (S =diag(or.00...) U=[urus, ] V=[viv. .])
= GWun(t) = GU(t) - S(8)- V()T + U(t) - §S(2) - V()" + U(t) - S(t)- G V(t)"
= U(t)" - LWin(t) - V(t) = U(t)" - L2U(t) S(t) + LS(t) + S(t) - LV (t)T - V(t)
End-to-end dynamics: N
%Wm(t):—zj“lum [sts()” }Tum VUWan (1) V(0)[S(0) S(t)}
= U(t)" - 2U(t)- S(t) + £5(t) +N5(t) Lyv()T - V(t)

-3 [s@s@T] T o vewiae) - v s TS|

N

V()"

1

i

3

Restrict attention to r'th diagonal element:
ur(t) " - gue(t) - or(t) + dtffr(t)+ffr(f) Svr(®) " ve(t) =
NPT (t) - u(8) " - VE(Win(t)) - ve(t)
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
Do, (t) = =N -0 V(t)- (VE(Win(t)), u ()] (1))
Proof Sketch
SVD: W1;N(t) = U(t)S(t)V(t)T (5 = diag(m.r‘rz. ) U= [ul, uz, ] V = [V1.V2. ])
= SWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t)" + U(t)- S(t) - Lv(t)T
= U(t)" - LWin(t) - V(t) = U(t)" - LU(t) S(t)+ ZS(t)+ S(t) - LV (t)T - V(¢)

End-to-end dynamics: n i
GVha() = = S, U0 [SOS@T] T U VA - vo)[s@ 7S] T v
= U@ 2U(t)- S(t)+ 5(t)+5(t) Lv()T - V(t)

__ [S(t)S(t)T} U)" - VU Wan(t)) - V(t)[S(t)TS(t)}T

ji=1

Restrict attention to r’'th diagonal element:
()T Lun(t) - or(t) + Gor(t) + or(t) - Gvr(t)T - vi(t) =

SN0l () (VU Wan (D), u (e (8))
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
Do, (t) = =N -0 V(t)- (VE(Win(t)), u ()] (1))
Proof Sketch
SVD: W1;N(t) = U(t)S(t)V(t)T (5 = diag(m.r‘rz. ) U= [ul, uz, ] V = [V1.V2. ])
= SWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t)" + U(t)- S(t) - Lv(t)T
= U(t)" - LWin(t) - V(t) = U(t)" - LU(t) S(t)+ ZS(t)+ S(t) - LV (t)T - V(¢)

End-to-end dynamics: n i
GVha() = = S, U0 [SOS@T] T U VA - vo)[s@ 7S] T v
= U@ 2U(t)- S(t)+ 5(t)+5(t) Lv()T - V(t)

__ [S(t)S(t)T} U)" - VU Wan(t)) - V(t)[S(t)TS(t)}T

ji=1

Restrict attention to r’'th diagonal element:
ur(t) " - Gur(t) - or(t) + Gor(t) +or(t) - Gue(t) " - ve(t) =
N—1
—N- o7 T (8) - (VAWan (1)), ur (6] (1))
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

_2
Lon(t) = —N-o; V(1) (VE(Wan(D), ur ()] (1))
Proof Sketch
SVD: Win(t) = U()S(t)V(t)" (S =diag(or,00,..) U=[uruo, ] V= [vi v, .])
= LWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t) " + U(t)- S(t) - LV ()T
= U(t)" - LWin(t) V(t) = U(t)" - L2U(t) S(t) + LS(t) + S(t) - LV (t)T - V(¢)

End-to-end dynamics: N

SWan(t) = - X1, U@[S0S0)T] T U@ - veWiae) V(e[S S(r)]

= U@t 2U(t)- 5(t)+ 5(t)+5(t) Lyv()" - V(t) _
=~ [S(r)suf} U<r>T~W(W1:N(t))~V(r)[swsm}T

N

V()"

Restnct attention to r'th diagonal element: -
N1
5 lur(@)5-00(0)+ Gor(t)+or ()5 5 Ve (D)5 = =N-or ™ (£)- (VA Wan(2)), ur(e)v/] (1))
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

2
o, (t) = =N -0 V(t)- (VE(Win(t)), u ()] (1))

Proof Sketch

SVD: W1;N(t) = U(t)S(t)V(t)T (5 = diag(m.r‘rz. ) U= [ul, us, ] V = [V1.V2. ])

= LWin(t) = 2U(t) - S(t)- V(t)" + U(t)- £S(t)- V(t) T + U(t) - S(t) - LV(r)"

= U(t)" - LWin(t) - V(t) = U(t)" - LU(t) S(t)+ ZS(t)+ S(t) - LV ()T - V(¢)

End-to-end dynamics: N

GWan() = - S, V() [SOS()T] T U - ViWan()- V(r)[S(t)TS(t)FV(tF
= U@ 2U(t)- 5(t)+ 5(t)+5(t) Lv(t)T - V(t) i
__ [S(t)S(t)T} U - Ve(Wan(t)) - V(t)[S(t)TS(t)}T

ji=1

Restnct attention to r'th diagonal eIement

L2 a0 ()+ Gor(t)+or(8)-3 % v (8)]3 = —N-o7 (1) (VeWan(t)), ur(t)v, (1))

N—— ——"
=1 =1
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Lo,(t) = =N o7 "(£) - (VA Wan(t)), u ()] (1))

Proof Sketch

SVD: Win(t) = U()S(t)V(t)" (S =diag(or,00,..) U=[uruo, ] V= [vi v, .])
= LWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t) " + U(t)- S(t) - LV ()T
= U(t)" - GWan(t)- V(1) = U(e) T - S U(t) - S(2) + &S(8) + S(t) - V(1) T - V(1)

End-to-end dynamics: Noj
SWan(t) = - 3N, U(t) {S(t)S(t) } U ve(Wan(t)) - V(1) [S(t) S(t)}

= U@t 2U(t)- 5(t)+ 5(t)+5(t) Lyv()" - V(t) _
-y [S(r)S(r)T} uuf-vawl:m(t»V(r)[sufsm}T

N

V()"

Restrict attention to r’'th diagonal element
0-0/(t) + Lo (t) +0,(t) 0= —N -0, = (t) - (VE(Wan(D)), ur(t)v/ (1))
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

Lo,(t) = =N o7 "(£) - (VA Wan(t)), u ()] (1))

Proof Sketch

SVD: Win(t) = U()S(t)V(t)" (S =diag(or,00,..) U=[uruo, ] V= [vi v, .])
= LWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t) " + U(t)- S(t) - LV ()T
= U(t)" - GWan(t)- V(1) = U(e) T - S U(t) - S(2) + &S(8) + S(t) - V(1) T - V(1)

End-to-end dynamics: B
5

4Wan(t) = - 1, U0 [S05(0)] U VW) - V() [s@7s] " v
= U@t 2U(t)- S(t) +45(t)+ S(t) Lyv()" - V(t) »
=y, [stser] T vt vewhaten - vio st se]
Restrict attention to r’'th diagonal element
4o,(t)=—N-o & (t) - (Ve(Wan (D)), ur(t)v/ (1))
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Case Study: Linear Neural Networks Generalization

Dynamics of Singular Values — Proof Sketch

_2
o, (t) = =N -0 V(t)- (VE(Win(t)), u ()] (1))
Proof Sketch
SVD: W1;N(t) = U(t)S(t)V(t)T (5 = diag(m.r‘rz. ) U= [ul, us, ] V = [V1.V2. ])
= SWin(t) = 2U(t)-S(t)- V()T + U(t)- £S(t)- V(t) " + U(t)- S(t) - Lv(t)T
= U(t)" - LWin(t) - V(t) = U(t)" - L2U(t) S(t) + ZS(t)+ S(t) - LV ()T - V(¢)

End-to-end dynamics: n

Win() = 30, U [509507| 7 ()" - TeWhn(e) - Vio)[s(0 7S] T Vi
= U@ 2U(t)- S(t)+ 5(t)+5(t) Lv()" - V(t)
__ [S(t)S(t)T} U - Ve(Wan(t)) - V(t)[S(t)TS(t)}T

ji=1

Restrict attention to r’'th diagonal element
Lo(t)=—N-o (1) (VUWan(D)), ur(t)v/ (1))
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Implicit Bias Towards Low Rank
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Case Study: Linear Neural Networks Generalization

Implicit Bias Towards Low Rank

Experiment
Completion of low rank matrix via GD over LNN

depth 1 (reconst error: 8e-01) depth 2 (reconst error: 6e-02) depth 3 (reconst error: 3e-05)
50
PR PR w
© © ©
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> S 20 =
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£ £ £
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0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
iteration iteration iteration
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Case Study: Linear Neural Networks Generalization

Implicit Bias Towards Low Rank

Experiment
Completion of low rank matrix via GD over LNN

depth 1 (reconst error: 8e-01) depth 2 (reconst error: 6e-02) depth 3 (reconst error: 3e-05)
50
PR PR w
© © ©
> 8 > 30 g 40
T 6 S % 30
> S 20 =
> 4 =) o 20
£ £ £
@ 2 & 10 % 10
0 0 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
iteration iteration iteration

Theoretical Example

For one observed entry and /5 loss, relationship between singular vals is:

depth 1: linear depth 2: polynomial depth > 3: asymptotic

> 01

Nadav Cohen Deep Linear Nets via Trajectories of GD  Princeton COS 597B, Dec'19 35/ 39



Case Study: Linear Neural Networks Generalization

Implicit Bias Towards Low Rank

Experiment
Completion of low rank matrix via GD over LNN

depth 1 (reconst error: 8e-01) depth 2 (reconst error: 6e-02) depth 3 (reconst error: 3e-05)
12
50
PR PR w
© — © ©
> 8 > 30 g 40
T 6 S % 30
> S 20 =
> 4 =) o 20
£ £ £
@ 2 & 10 % 10
0 0 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
iteration iteration iteration

Theoretical Example

For one observed entry and /5 loss, relationship between singular vals is:

depth 1: linear depth 2: polynomial depth > 3: asymptotic

Depth leads to larger gaps between singular vals (lower rank)!

> 01
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Conclusion
Recap

Perspective
To understand optimization and generalization in deep learning:
@ Language of classical learning theory may be insufficient

@ Might need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:
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Conclusion
Recap

Perspective
To understand optimization and generalization in deep learning:
@ Language of classical learning theory may be insufficient

@ Might need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:
@ Depth induces preconditioner promoting movement in directions taken

Optimization:
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Conclusion
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Perspective
To understand optimization and generalization in deep learning:
@ Language of classical learning theory may be insufficient

@ Might need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:
@ Depth induces preconditioner promoting movement in directions taken
Optimization:

o Guarantee of efficient convergence to global min (most general yet)
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Conclusion
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Perspective
To understand optimization and generalization in deep learning:
@ Language of classical learning theory may be insufficient

@ Might need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

@ Depth induces preconditioner promoting movement in directions taken
Optimization:

o Guarantee of efficient convergence to global min (most general yet)

@ Depth can accelerate convergence (w/o any gain in expressiveness)!
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Conclusion
Recap

Perspective
To understand optimization and generalization in deep learning:
@ Language of classical learning theory may be insufficient

@ Might need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:
@ Depth induces preconditioner promoting movement in directions taken
Optimization:
o Guarantee of efficient convergence to global min (most general yet)
@ Depth can accelerate convergence (w/o any gain in expressiveness)!

Generalization:
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Conclusion
Recap

Perspective
To understand optimization and generalization in deep learning:
@ Language of classical learning theory may be insufficient

@ Might need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

@ Depth induces preconditioner promoting movement in directions taken
Optimization:

o Guarantee of efficient convergence to global min (most general yet)

@ Depth can accelerate convergence (w/o any gain in expressiveness)!
Generalization:

@ Depth enhances implicit regularization towards low rank, yielding
generalization for problems such as matrix completion
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Thank You
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