
Chapter 1: Basic Setup

This Chapter introduces the basic nomenclature. Training/test error,
generalization error etc. ⌧Tengyu notes: todo: Illustrate using the curve seen during

training. Mention some popular architectures (feed forward, convolutional, pooling, resnet,

densenet) in a brief para each.�

We review the basic notions in statistical learning theory.

• A space of possible data points X .

• A space of possible labels Y .

• A joint probability distribution P on X ⇥ Y . We assume that our
training data consists of n points

(x(1), y(1)), . . . , (x(n), y(n)) i.i.d.
⇠ P

each drawn independently from P.

• Hypothesis space: H is a family of hypotheses, or, a family of
predictors. E.g., H could be the set of all neural networks with a
fixed architecture H = {hq} where hq neural nets parameterized by
parameters q.

• Loss function: ` : (X ⇥ Y)⇥H! R.

– E.g., in binary classification, we have Y = {�1,+1}, and
suppose the hypothesis is hq(x), then the logistic loss function is

`((x, y), q) =
1

1 + exp(�yhq(x))
(1)

• Expected loss: L(h) = E(x,y)⇠P [`((x, y), h)], where P is a data
distribution over X ⇥ Y . Moreover, we define h⇤ 2 argminh2H L(h)
as the minimizer of the expected loss.

• Training loss (also known as empirical risk):

L̂(h) =
1
n

n

Â
i=1

`
⇣⇣

x(i), y(i)
⌘

, h
⌘

where
⇣

x(1), y(1)
⌘

,
⇣

x(2), y(2)
⌘

, . . . ,
⇣

x(n), y(n)
⌘

are n training
examples drawn i.i.d. from P.

12 theory of deep learning

• Empirical risk minimizer (ERM): ĥ 2 argminh2H L̂(h).

• Regularization: Suppose we have a regularizer R(h), then the
regularized loss is

L̂l(h) = L̂(h) + lR(h)

.

Chapter 2: Basics of Optimization

This chapter sets up the basic analysis framework for gradient-based
optimization algorithms and relates how it applies to deep learning.
⌧Tengyu notes: Sanjeev notes:
Suggestion: when introducing usual abstractions like Lipschitz constt, Hessian norm etc. let’s

relate them concretely to what they mean in context of deep learning (noting that Lipschitz constt
is wrt the vector of parameters). Be frank about what these numbers might be for deep learning or
even how feasible it is to estimate them. (Maybe that discussion can go in the side bar.)

BTW it may be useful to give some numbers for the empirical liptschitz constt encountered in
training.

One suspects that the optimization speed analysis is rather pessimistic.�

Gradient descent

Suppose we want to optimize a function f (x)

min f (x) (2)

The gradient descent algorithm is

x0 = initializaiton (3)

xt+1 = xt � hr f (xt) (4)

where h is the step size or learning rate.
One of the motivation or justification of the GD is that the �r f (xt)

is the steepest descent direction locally. Consider the Taylor expan-
sion at a point xt

f (x) = f (xt) + hr f (xt), x� xti| {z }
linear in x

+ · · · (5)

Suppose we optimize the first order approximation of the function
in a neighborhood of xt

argmin
x

f (xt) + hr f (xt), x� xti (6)

s.t.kx� xtk2 e (7)

Then, the optimizer the program above is equal to x + d where

d = �ar f (xt) (8)

14 theory of deep learning

for some positive scalar a. In other words, to locally minimize the
first order approximation of f (x) around xt, we should move towards
the direction �r f (xt).

Formalizing the Taylor Expansion. We will state a lemma that charac-
terizes the descent of function values for GD. We make the assump-
tion that the eigenvalues of r2 f (x) is bounded between [�L, L] for
all x. We call function satisfying it L-smooth function. This allows us
to approximate the function using Taylor expansion accurately in the
following sense:

f (x) f (xt) + hr f (xt), x� xti+
L
2
kx� xtk

2
2 (9)

Descent lemma for gradient descent The following says that with
gradient descent and small enough learning rate, the function value
always decrease unless the gradient at the iterate is zero.

Lemma 1 (Descent Lemma). Suppose f is L-smooth. Then, if h < 1/(2L),
we have

f (xt+1) f (xt)� h/2 · kr f (xt)k
2
2 (10)

The proof uses the Taylor expansion. The main idea is that even using the
upper provided by equation (9).

Proof. We have that

f (xt=1) = f (xt � hr f (xt)) (11)

 f (xt)� hhr f (xt),�hr f (xt)i+
L
2
kh2
r f (xt)k

2
2

(by equation (9))

= f (xt)� (h � h2L/2)kh2
r f (xt)k

2
2

 h/2 · kr f (xt)k
2
2 (by h L/2)

Stochastic gradient descent

• Motivation: Computing the gradient of a loss function could be
expensive. Recall that

L̂(h) =
1
n

n

Â
i=1

`
⇣⇣

x(i), y(i)
⌘

, h
⌘

(12)

Computing the gradient rL̂(h) scales linearly in n. Stochastic
gradient descent (SGD) estimate gradient by sampling a mini-
batch of gradients. Especially when the gradients of examples are
similar, the estimator can be reasonably accurate.

chapter 2: basics of optimization 15

For simplicity, we simplify the notations a bit. We consider opti-
mizing the function

1
n

n

Â
i=1

fi(x) (13)

At each iteration t, the SGD algorithm first sample i1, . . . , iB uni-
formly from [n], and then compute the estimated gradient

gS(x) =
1
B

B

Â
k=1
r fik (xt) (14)

Here S is a shorthand for {i1, . . . , iB}. The SGD algorithm updates

xt+1 = xt � hgS(xt) (15)

Accelerated Gradient Descent

Heavy-ball algorithm has the following update rule:

xt+1 = xt � hr f (xt) + b(xt+1 � xt) (16)

Here b(xt+1 � xt) is the momentum term.
⌧Tengyu notes: perhaps mention the ODE connection� ⌧Tengyu notes: missing a

figure�

Another equivalent way to write the algorithm is

ut = �r f (xt) + but�1 (17)

xt+1 = xt + hut (18)

Exercise: verify the two forms of the algorithm are indeed equivalent.
Another variant of the heavy-ball algorithm is called due to Nes-

terov

ut = �r f (xt + b(ut � ut�1)) + but�1 (19)

xt+1 = xt + hut (20)

One can see that ut stores a weighed sum of the all the historical
gradient.

Nesterov gradient descent works similarly to the heavy ball al-
gorithm empirically for training deep neural networks. It has the
advantage of stronger worst case guarantees on convex functions.
Both of the two algorithms can be used with stochastic gradient,
but little is know about the theoretical guarantees about stochastic
accelerate gradient descent.

16 theory of deep learning

Local Runtime Analysis of GD

When the iterate is near a local minimum, the behavior of gradient
descent is clearer because the function can be locally approximated
by a quadratic function. In this section, we assume for simplicity that
we are optimizing a convex quadratic function, and get some insight
on how the curvature of the function influence the convergence of the
algorithm.

We use gradient descent to optimize

min
x

1
2

x>Ax (21)

where A 2 Rd⇥d is a positive semidefinite matrix, and x 2 Rd.
Remark: w.l.o.g, we can assume that A is a diagonal matrix. Diago-
nalization is a fundamental idea in linear algebra. Suppose A has
singular vector decomposition A = USU> where S is a diagonal ma-
trix. We can verify that x>Ax = x̂>Sx̂ with x̂ = U>x. In other words,
in a difference coordinate system defined by U, we are dealing with a
quadratic form with a diagonal matrix S as the coefficient. Note the
diagonalization technique here is only used for analysis.

Therefore, we assume that A = diag(l1, . . . , ld) with l1 � · · · �

ld. The function can be simplified to

f (x) =
1
2

d

Â
i=1

lix2
i (22)

The gradient descent update can be written as

x x� hr f (x) = x� hSx (23)

(Here we omit the subscript t for the time step and use the sub-
script for coordinate.) Equivalently, we can write per-coordinate
update

xi xi � hlixi = (1� lihi)xi (24)

Now we see that if h > 2/li for some i, then the update the
absolute value of xi will blow up exponentially and lead to instable
behavior. Thus, we need h . 1

max li
. Note that max li corresponds to

the smoothness parameter of f because l1 is the largest eigenvalue
of r2 f = A. This is consistent with the condition in Lemma 1 that h

needs to be small.
Suppose for simplicity we set h = 1/(2l1), then we see that the

convergence for x1 coordinates is very fast — the coordinate x1 is
halved every iteration. However, the convergence of the coordinate xd
is slower, because it’s only reduced by a factor of (1� ld/(2l1)) every
iteration. Therefore, it takes O(ld/l1 · log(1/e)) iterations to converge
to an error e.

chapter 2: basics of optimization 17

The condition number is defined as k = smax(A)/smin(A) = l1/l1,
which governs the convergence rate of GD.

⌧Tengyu notes: add figure�

Pre-conditioners

From the toy quadratic example above, we can see that it would
be more optimal if we can use a different learning for different
coordinate. In other words, if we introduce a learning rate hi = 1/li
for each coordinate, then we can achieve faster convergence. In the
more general setting where A is not diagonal, we don’t know the
coordinate system in advance, and the algorithm corresponds to

x x� A�1
r f (x) (25)

in the even more general setting where f is not quadratic, this corre-
sponds to the Newton’s algorithm

x x�r2 f (x)�1
r f (x) (26)

Computing the hessian r2 f (x) can be computational difficult
because it scales quadratically in d (which can be more than 1 million
in practice). Therefore, approximation of the hessian and its inverse is
used:

x x� hQ(x)r f (x) (27)

where Q(x) is supposed to be a good approximation of r2 f (x),
and sometimes is referred to as a pre-conditioner. In practice, often
people first approximate r2 f (x) by a diagonal matrix and then take
its inverse. E.g., one can use diag(r f (x)r f (x>)) to approximate
the Hessian, and then use the inverse of the diagonal matrix as the
pre-conditioner.
⌧Tengyu notes: more on adagrad?�

