Lecture 17: Digital Signature Schemes

Instructor: Anna Lysyanskaya

Today's Agenda

- Definition
- Lamport's construction

1 Definition

Definition 1. A digital signature scheme for a message space M consists of PPT algorithms (KeyGen, Sign, Verify) such that:

1. Correctness: $\forall (vk, sk) \in \text{KeyGen}(1^k), \forall m \in M \text{ and for all } \sigma \in \text{Sign}(sk, m),$

 $Verify(vk, m, \sigma) = Accept$

The correctness notion is that of *perfect correctness* which does not allow room for any error in verification. This can be relaxed to allow the Verify algorithm to reject correct signatures with negligible probability.

2. Security: For all PPT $\mathcal{A} \exists$ negl. $\nu()$ such that

 $\Pr[(vk, sk) \in \mathsf{KeyGen}(1^k) \; ; \; (Q, m', \sigma') \leftarrow \mathcal{A}^{\mathsf{Sign}(sk, \cdot)}(vk) \; : \; m' \notin Q \; and \; \mathsf{Verify}(vk, m', \sigma') = \mathsf{Accept}] = \nu(k)$

Our adversary \mathcal{A} has access to the signing oracle Sign (sk, \cdot) and can get signatures $\sigma_1, \sigma_2, \ldots, \sigma_n$ on his choice of messages m_1, \ldots, m_n . This list of message-signature pairs is outputted as Q. This cannot be tampered with and is fixed by \mathcal{A} 's queries.

We have a potential issue with the reduction here. Let's say \mathcal{B} is using \mathcal{A} to break something else, \mathcal{B} is expected to answer the signing queries of \mathcal{A} so that \mathcal{A} can later produce a valid forgery. But if \mathcal{B} is able to produce signatures himself, what would he learn from \mathcal{A} 's forgery? We have to design the reduction so that \mathcal{B} can still learn something from \mathcal{A} and use its output in a meaningful way. Let us look at a simple example which illustrates these ideas:

2 Lamport's one-time signature scheme:

Let f be a OWF and message space $M = \{0, 1\}^n$

• $\mathsf{KeyGen}(1^k)$: The secret key sk is a table containing 2n random strings each of length k as follows:

x_{0}^{1}	x_0^2	 •	x_0^n
x_{1}^{1}	x_1^2	 •	x_1^n

Hence we have for $1 \le i \le n$, we have $x_b^i \leftarrow \{0,1\}^k$. Now let $y_b^i = f(x_b^i)$. Verification key vk is again a table with f applied to all strings in the secret key sk:

y_0^1	y_0^2		y_0^n
y_1^1	y_1^2		y_1^n

17: Digital Signature Schemes-1

- Sign(sk, m): Suppose message $m = m_1 m_2 \cdots m_n$ for each $m_i \in \{0, 1\}$. Reveal $x_{m_i}^i$ for $1 \le i \le n$ and signature $\sigma = x_{m_1}^1, x_{m_2}^2, \ldots, x_{m_n}^n$.
- Verify(): Check that $f(x_{m_i}^i) = y_{m_i}^i$ for all *i*.

This construction cannot satisfy the security definition as it is, because the moment \mathcal{A} has a signature on any message and its complement it knows the entire secret key. So we can allow \mathcal{A} to make only one query and we will work with a weaker notion of security with a *Sign-once* oracle which answers only the first query of the adversary. And the security notion we have is *Security-once* where we use the *Sign-once* oracle instead of the usual oracle.

We can see that this signature scheme is correct. We will prove that it satisfies security-once via a reduction to OWF: If \mathcal{A} can break Lamport's signature that is, if \mathcal{A} can produce a valid forgery (m', σ') which verifies then \mathcal{B} can use \mathcal{A} to break the one-way function f. Our reduction will have the following three steps:

- 1. \mathcal{B} receives as input y = f(x) for some $x \in \{0, 1\}^k$ and based on its input, it has to produce a verification key vk to give as input to \mathcal{A}
- 2. \mathcal{B} is simulating the wild environment for \mathcal{A} and has provided him the required vk. Additionally, \mathcal{B} also needs to answer a signature query m that \mathcal{A} makes and provide him the corresponding correct signature σ .
- 3. \mathcal{B} now has to use \mathcal{A} 's forgery (m', σ') to output x' such that f(x') = y = f(x)

Let us look at each of these steps in more detail:

- 1. Step 1: \mathcal{B} receives a y and chooses a random location (i, b_i) to put y in the table for vk. For the remaining 2n - 1 entries of the table, \mathcal{B} chooses x_b^j uniformly randomly from $\{0, 1\}^k$ and corresponding $y_b^j = f(x_b^j)$ in vk except for j = i and $b = b_i$ in which case we put y. We give this table of 2n values as the verification key to \mathcal{A}
- 2. Step 2: In this step, \mathcal{B} has to produce a signature σ for \mathcal{A} 's query $m = m_1 \dots m_n$. \mathcal{B} can easily answer this query as long as $m_i \neq b_i$ since it knows the corresponding x values for all the remaining entries. Note that it is important for \mathcal{B} to choose the location of y at random in step 1, otherwise \mathcal{B} can catch \mathcal{A} by querying exactly a message such that \mathcal{A} is unable to answer

17: Digital Signature Schemes-2

the signature query. So as long as $m_i \neq b_i$, \mathcal{B} can answer \mathcal{A} 's query and give it corresponding x_b^j

3. Step 3: If forgery message is such that $m_i = b_i$ then output $x_{m_i}^i$ and we are guaranteed that if the forgery is valid then $f(x_{m_i}^i) = y$

Analysis:

 $\Pr[\mathcal{B} \text{ succeeds}] = \Pr[\mathcal{B} \text{ responds in step } 2]\Pr[\mathcal{B} \text{ succeeds } | \mathcal{B} \text{ responds in step } 2]$

$$= \frac{1}{2} \Pr[m'_i = b_i] \Pr[\mathcal{B} \text{ succeeds } \mid m'_i = b_i]$$
$$= \frac{1}{2} \cdot \frac{1}{n} \cdot \epsilon(k)$$

We can generalize the above construction to signatures that are *secure-twice* or even generally secure by using Merkle hash trees.