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Cyclic groups and discrete log A group G is cyclic if there exists a generator g such that for
every a ∈ G, a = gi for some i.

Theorem 1. If |G| is prime then G is cyclic.

Proof. Let g 6= 1 be some element of G, and consider the set A = {gi : i ∈ Z}. Then A is a
subgroup of G and hence |A| divides |G|. But this means that either |A| = |G| (and hence g
is a generator) or |A| = 1 which is impossible since 1, g ∈ A.

Theorem 2. If G = Z∗p for a prime p then G is cyclic.

Proof. We use the fact that the set of integers modulo p is a field and in a field every k-
degree polynomial has at most k roots. The fact that the polynomial xk − 1 has at most k
roots implies that the group G has the property (*) that for every k the number of elements
x satisfying xk = 1 is always at most k. We will prove by induction that every group G
satisfying (*) is cyclic.

Let n = |G|. We consider three cases:

• n is prime. Then G is cyclic by Theorem 1.

• n = pc for some prime p and c > 1. In this case if there is no element of order n, then
all the orders must divide pc−1. We get n = pc elements x such that xpc−1

= 1, violating
(*).

• n = pq for co-prime p and q. In this case let H and F be two subgroups of G defined
as follows: H = {a : ap = 1} and F = {b : bq = 1}. Then |H| ≤ p < n and |F | ≤ q < n
and also as subgroups of G both H and F satisfy (*). Thus by the induction hypothesis
both H and F are cyclic and have generators a and b respectively. We claim that ab
generates the entire group G. Indeed, let c be any element in G. Since p, q are coprime,
there are x, y such that xq+yp = 1 and hence c = cxq+yp. But (cxq)p = 1 and (cyp)q = 1
and hence c is a product of an element of H and an element of F , and hence c = aibj for
some i ∈ {0, . . . , p− 1} and j ∈ {0, . . . , q − 1}. Thus, to show that c = (ab)z for some z
all we need to do is to find z such that z = i (mod p) and z = j (mod q), but this can
be done using the Chinese Remainder Theorem.
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Discrete logarithm If G is a cyclic group and g is a generator of G, then the discrete logarithm
of a ∈ G with basis g, denoted logg a, is the unique number i ∈ {0, . . . , |G| − 1} such that
a = gi.

Fixing G and g, the discrete logarithm (DLOG) problem is, given a random a ∈ G, find logg h.
We say that the problem is hard if for every poly A, ε, Pra←RG[A(G, g, a) = logg a] < ε.

Theorem 3. Let G be a group with known order and g, h generators for it. If the DLOG
problem is hard w.r.t. g then it is also hard w.r.t. h.

Proof. Suppose otherwise, that for a random a we could find with probability ε the logarithm
logh a. Then, we’ll run the algorithm on ghi for a random i to obtain j such that ghi = hj or
in other words, g = hj−i. Then, we use the equation logg a = logh a/ logh g to compute the
discrete log w.r.t. g.

Key exchange and the Diffie-Hellman protocol. Alice and Bob can communicate securely
over a line eavesdropped by Eve by having Alice generate a keypair (e, d) for a public-key
encryption scheme, send to Bob e, and then Bob can send messages to Alice by encrypting
them with e.

However, this is not necessarily the only way to do so. A different approach is using a key
exchange protocol. The first (and still most used) such protocol was given in the same paper by
Diffie and Hellman where they first suggested the “crazy” notion of public key cryptography.
We’ll first present the protocol and then talk about its security goals.

They use the fact that the group Z∗p for a prime p is cyclic. This means that there is some
number g ∈ Z∗p such that Z∗p = {1, g, g2, g3, . . . , gp−2}. g is called a generator for the group.
In other words, for every element x ∈ Z∗p, there is an i ∈ {0, . . . , p − 2} such that x = gi

(mod p). This number i is called the discrete log of x with respect to g.

It is known how to efficiently find a generator g for Z∗p given a prime p. It is not known how
to compute the discrete logarithm and this problem is believed to be hard.

The Diffie-Hellman protocol:

• Alice chooses prime p at random and finds a generator g.

• Alice chooses x←R {0, 1, . . . , p− 2} and sends p, g and x̂ = gx (mod p) to Bob.

• Bob chooses y ←R {0, 1, . . . , p− 2} and sends ŷ = gy (mod p) to Alice.

• Alice and Bob both compute k = gxy (mod p). Alice does that by computing ŷx and
Bob does this by computing x̂y.

• They then use k as a key to exchange messages using a private key encryption scheme.

Clearly, if Eve can compute the discrete log and obtain x from x̂ or y from ŷ then this
protocol is insecure. Thus the assumption that DH key exchange is secure is stronger than
the assumption that the discrete log function is hard to compute (or in other words, that
the exponentiation function is a one-way permutation). However, as far as we know, this
assumption is not sufficient for the security of Diffie-Hellman protocol. We can also make the
following stronger assumption:

Computational Diffie Hellman (CDH) assumption: For the group G = Z∗p , with a
generator g, the problem of computing gxy from gx, gy is hard on the adverage.
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However, even this is not known to suffice for security. What we need is a stronger assumption
which is the following:

Decisional Diffie Hellman (DDH) assumption — Take 1. For every prime p and
generator g of Z∗p, the following two distributions A and B over triplets are computationally
indistinguishable: A = 〈gx, g,gxy〉 for random x and y in {1, . . . , p − 2} and B = 〈gx, gy, z〉
for random x and y in {1, . . . , p− 2} and zinZ∗p.

This assumption implies that as far as Eve is considered, the key k is a random element in
Z∗p (i.e., a random number between 1 and p − 1) and hence can be safely used as a key for
any private key encryption scheme. For example, to send a message m of length `, Bob can
send Alice k ⊕m.

Unfortunately, this assumption is not true (although as far as we know it is “morally true”)
for a very simple reason: given a number ŷ ∈ Z∗p, we can check if it has a square root modolu
p (i.e., whether it is a quadratic residue). It is known that gx is a quadratic residue if and
only if x is even. Thus, given gx and gy we can test whether x and y are even (which happens
with probability 1/4) and in this case gxy will be also a quadratic residue, while a random
element in Z∗p will only be in QRp with probability 1/2.

Fortunately, the assumption can be made for other groups in which it is believed to be
true. One such group is the subgroup of quadratic residues mod p, for p of the form p =
2q+1. See http://crypto.stanford.edu/~dabo/abstracts/DDH.html for more about this
assumption.

El-Gamal Encryption

Forward security. Protecting secret keys is crucial for cryptography. But what happens if the
adversary does learn the key? Indeed, suppose I have a secret decryption key, corresponding
to some known public key which I use for a long time, and at some point an attacker breaks
into my computer and learns the secret key without my learning all about it.

It’s clear that from now on, the attacker will be able to read all the encrypted messages
that are sent to me. It’s also seems intuitively clear that if the attacker recorded previously
the ciphertexts of the encrypted messages that were sent to me before he gained access to
my computer, then now he will be able to use my secret key to decrypt these messages.
Surprisingly (or perhaps not, since this is crypto and strange things always happen) this
intuition is false, and it is possible to ensure that the attacker will only be able to decrypt
message sent after he broke into my computer, even if I don’t know when or whether or not
he broke into it.

Forward-secure encryption schemes Encryption schemes that maintain this property are called
forward secure. A forward secure public key encryption scheme has the following components:

Key generation As usual, G outputs a public key e and a secret key, which we denote by
d0.

Encryption algorithm The encryption algorithm E takes as usual as inputs the encryption
key e and the message to be encrypted m. However, it takes also an additional input t,
which is the current time (or time period).

Update mechanism We’ll use a different secret key to decrypt at each time period t. We’ll
denote this secret key by dt. Of course, we must be able to efficiently compute dt for
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every t given the original key d0 (since that is all the information the receiver has ).
However, we’ll actually do it in the following way: there is an algorithm UPDATE that
on input t and dt−1 outputs dt. At the beginning of each time period t, the receiver will
compute dt = UPDATE(t, dt−1) and erase dt−1 from its memory.1 (It will be the case
that this algorithm UPDATE is hard to invert, that is, from dt it’s hard to come up
with dt−1.)

Decryption To decrypt a message sent at time t, we’ll use dt. Thus the validity condition
is that for every m, Ddt(Ee(m, t)) = m.

We can define forward-secure variants of both CPA security and CCA security. The idea is
that we run the usual attack game (either CPA or CCA), except that there is a global time
counter t that the adversary can ask to increase by one from time to time. The adversary then
chooses two messagesm1 andm2 and gets the challenge — an encryption ofmb for b←R {1, 2}.
The game again continues as in the usual CPA/CCA case. we continue this game as usual.
However, before the adversary needs to guess b, the time counter t is increased by one, and
the adversary is given the secret key dt. The adversary can then use that information in order
to try to guess b with probability greater than 1/2.

Other forward secure primitives The notion of forward security is pretty general, and there are
definitions and constructions for forward secure signature schemes, pseudorandom generators,
private key encryption, and others.

Constructing forward secure encryption schemes We are going to construct forward secure
encryption schemes using another object that is called identity-based encryption schemes.
Identity-based encryption schemes are themselves just as fascinating (and perhaps even more)
as forward-secure encryption schemes. The idea was first suggested by Shamir in the 80’s but
a construction was only given in 2001 by Boneh and Franklin. Even that construction was
only proven secure in the random oracle model and getting a random-oracle free construction
seemed to be a very hard problem to many researchers (including myself). However in 2004,
Boneh and Boyen (improving on Canetti, Halevi and Katz) managed to get a construction
proven secure under reasonable computational assumptions, without any random oracles.

Identity based encryption The idea of identity based encryption is very simple - what if your
name could be your public key? That is, where in standard public-key crypto, if I want to
send Dave a secure email he has to send me his public key (or perhaps publish it in a public
key directory) in IBE my encryption algorithm simply takes the string “Dave Xiao” as an
input.

More accurately, an identity-based encryption (IBE) is comprised of the following parts:

Master key generation There is an algorithm Gmaster that generates the master public
and private keys pubmaster and privmaster.

Key derivation There is an algorithm Derive that gets as input the private key privmaster

and an arbitrary string id ∈ {0, 1}∗, and outputs a decryption key did.

Encryption To encrypt a message m to ID id, run Epubmaster,id(m).

1Note that there are many technical difficulties involved in securely erasing memory from modern computers, that
use hard-drives, virtual memory and paging. We ignore these issues here.
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Decryption There is a decryption algorithm that takes as input the decryption key kid and
a ciphertext y, where the validity condition is that for every m and id,

Ddid
(Epubmaster,id(m)) = m

Again IBE can be defined with either a CPA or CCA variant. In both cases the adversary gets
the public master keys pubmaster and runs the usual CCA/CPA attack. However, it now gets
an additional oracle access to the key derivation algorithm, to which it can query a string id
and get back did. When making the challenge the adversary not only specifies two messages
m1 and m2 but also an ID id∗, and gets the challenge ciphertext y∗ = Epubmaster,id∗(mb)
for b ←R {1, 2}. The adversary has now additional access to key derivation algorithm, but
conditioned on not asking the query id∗, and if it’s a CCA attack also access to the decryption
oracle, where it can make any query of the form 〈id, y〉 as long as either id 6= id∗ or y 6= y∗.
Again, the adversary is successful if it guesses b with probability noticably higher than 1/2.

Forward-secure encryption from IBE Given an IBE scheme, one can construct a forward-
secure encryption in the following way:

• The public and private keys are generated as follows: generate pubmaster and privmaster

using the generator for the IBE scheme. Assuming we’re going to use this scheme for T
time period, for every 1 ≤ t ≤ T , let idt denote the string “time slot t” and let kt denote
DERIV E(privmaster, idt). The private key d0 will be the concatenation of k1 until kT .

• To encrypt at time t simply run Epubmaster,idt(m).

• The key dt will be the concatenation of kt until kT . That is, the update mechanism at
time t involves erasing the key kt from the list.

It’s not hard to prove this scheme is secure. However, its drawback is that it requires the
private key to be of size nT and maintaining such a large secret storage may be infeasible. It
can be easily improved however, to require the receiver to only public storage of this length:
instead of storing k1, . . . , kT store k1 in private and keep a non secret file y2, . . . , yT where
yt = Epubmaster,kt−1(yt−1). There are also constructions without need for any storage that
depends on T worse than logarithmically.

Other applications IBE has several other potential applications. For example, suppose that
when sending email to me, people use the ID “Boaz Barak ◦ current date”. Then, when I go
to a conference with my laptop, I can keep in the laptop only the private keys corresponding
to these dates. It has also been suggested that a manager can use IBE to provide assistants
with “restricted private keys” that can only decrypt messages with particular subjects. In
any case IBE is quite cool. In fact, Boneh and others formed a company (Voltage) based on
the IBE technology.

Construction of IBE We present the random oracle based construction of Boneh and Franklin.

Pairing diffie hellman assumption The DDH assumption says that in an appropriate cyclic
group G with a generator g, it is impossible to distinguish between the triple (ga, gb, gab) and
the triple (ga, gb, gc) for x, y, z chosen independently at random from {0, . . . , |G| − 1}.
Consider the following question: can there be a group where it’s actually easy to compute
gab from ga, gb but given ga, gb, gc it’s hard to compute gabc. It’s not hard to see that this is
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impossible - if you have an algorithm to compute the first problem, you can apply it twice
to obtain first gab and then gabc to solve the second problem. However, we will somehow
manufacture a situation where this is “morally true”. We are going to consider two cyclic
groups G and H with |G| = |H| and generators g and h respectively and a function f :
G × G → H satisfying the following: f(ga, gb) = hab. It turns out it is possible to come up
with such groups and a function. In some sense we manage to solve the first problem, but
only when moving to a different group.

We are going to make the following assumption (called pairing DDH): for random a, b, c, d
it is impossible to distinguish between 〈ga, gb, gc, f(ga, gb)c = habc〉 and 〈ga, gb, gc, hd〉.
Assuming this, we will build an identity-based cryptosystem as follows:

Public and private master keys Generate groups G,H and generators g, h and function
f : G×G→ H such that f(ga, gb) = hab. Let R : {0, 1}∗ → G denote a random oracle.
Choose a at random from {0, . . . , |G| − 1} and publish ga. a is the secret key.

Identity keys For an identity id, let eid = R(id) (the random oracle applied to the string
id. We let b ∈ {0, . . . , |G| − 1} be a number such that eid = gb. Note that no one
(including even the holder of the master private key) knows b. The secret key for id,
did = eaid = gab. Note that it can be derived using the private key.

Encryption To encrypt a message m for ID id, choose c ←R {0, . . . , |G| − 1}, compute
π = f(ga, eid)c = habc and send gc, π ⊕m.

Decrypt Given the secret key gab and the message gc, habc ⊕m, the receiver computes π =
f(gab, gc) = habc and uses that to retrieve the message.

Assuming that gd for a random d is represented as a random string, this scheme can be
shown to be CPA secure under the pairing DDA assumption. By further using (or abus-
ing?) the random-oracle it can be shown secure under a weaker assumption (namely pairing
computational Diffie-Hellman (CDH) assumption) and can also be made CCA secure. For
more details of the proof, see the paper by Boneh and Franklin. Note: In that paper, as
in most other papers in this subject, additive notation is used for the group G (but not for
H). Thus, instead of ga you will see there a · g, and the pairing DDH assumption will be
that for random a, b, c, d the tuple 〈a · g, b · g, c · g, f(a · g, b · g)c〉 is indistinguishable from
〈a · g, b · g, c · g, f(a · g, b · g)d〉
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