

COS 484: Natural Language Processing

Expectation Maximization

Fall 2019

(some slides adapted from Regina Barzilay and Michael Collins)

Announcements

- Oct 22: Midterm review
- Oct 24: Midterm (in-class)
- Nov 5: Project details + PyTorch tutorial
- Nov 11: Project proposal due
 - Start forming teams now! (2-3 members)
 - Can use Piazza
- Nov 18: Assignment 4 due date changed

MEMM recap

• In general, we can use all observations and all previous states:

$$\hat{S} = \arg\max_{S} P(S \mid O) = \arg\max_{S} \prod_{i} P(s_i \mid o_n, o_{n-1}, \dots, o_1, s_{i-1}, \dots, s_1)$$

$$P(s_i | s_{i-1}, ..., s_1, O) \propto \exp(w \cdot f(s_i, s_{i-1}, ..., s_1, O))$$

Features in an MEMM

$$\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle \langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle, \langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle,$$

Feature templates

$$t_i = VB$$
 and $w_{i-2} = Janet$
 $t_i = VB$ and $w_{i-1} = will$
 $t_i = VB$ and $w_i = back$
 $t_i = VB$ and $w_{i+1} = the$
 $t_i = VB$ and $w_{i+2} = bill$
 $t_i = VB$ and $t_{i-1} = MD$
 $t_i = VB$ and $t_{i-1} = MD$ and $t_{i-2} = NNP$
 $t_i = VB$ and $w_i = back$ and $w_{i+1} = the$

Features

MEMM: Learning

• Gradient descent: similar to logistic regression!

$$P(s_i | s_1, \dots, s_{i-1}, O) \propto \exp(w \cdot f(s_1, \dots, s_i, O))$$

• Given: pairs of (S, O) where each $S = \langle s_1, s_2, \dots, s_n \rangle$

Loss for one sequence,
$$L = -\sum_{i} \log P(s_i | s_1, \dots, s_{i-1}, O)$$

Compute gradients with respect to weights w and update

EM: Some intuition

- Let's say I have 3 coins in my pocket,
 - Coin 0 has probability λ of heads Coin 1 has probability p_1 of heads Coin 2 has probability p_2 of heads
- For each trial:
 - First I toss Coin 0
 If coin 0 turns up **heads**, I toss coin 1 three times
 If coin 0 turns up **tails**, I toss coin 2 three times

I don't tell you the results of the coin 0 toss, or whether coin 1 or coin 2 was tossed, but I tell you how many heads/tails are seen after each trial

• You see the following sequence:

 $\langle H, H, H \rangle, \langle T, T, T \rangle, \langle H, H, H \rangle, \langle T, T, T \rangle, \langle H, H, H \rangle$

What would you estimate as values for λ , p_1 , p_2 ?

Maximum Likelihood Estimate

- Data points x_1, x_2, \ldots, x_n from (finite or countable) set \mathcal{X}
- Parameter vector θ
- Parameter space Ω
- We have a distribution $P(x \mid \theta)$ for any $\theta \in \Omega$, such that

$$\sum_{x \in \mathcal{X}} P(x \mid \theta) = 1 \text{ and } P(x \mid \theta) \ge 0 \quad \forall x$$

• Assume data points are drawn independently and identically distributed from a distribution $P(x \mid \theta^*)$ for some $\theta^* \in \Omega$

Log Likelihood

- Data points x_1, x_2, \ldots, x_n from (finite or countable) set \mathcal{X}
- Parameter vector $\boldsymbol{\theta}$ and a parameter space $\boldsymbol{\Omega}$
- Probability distribution $P(x \mid \theta)$ for any $\theta \in \Omega$

• Likelihood(
$$\theta$$
) = $P(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i | \theta)$

• Log-likelihood,
$$L(\theta) = \sum_{i=1}^{n} \log P(x_i | \theta)$$

Example I: Coin Tossing

- $\mathcal{X} = \{H, T\}$. Our data points x_1, x_2, \dots, x_n are a sequence of heads and tails, e.g.
 - HTHTHHHHTTT
- Parameter vector $\boldsymbol{\theta}$ is a single parameter, i.e probability of coin coming up heads
- Parameter space $\Omega = [0,1]$

• Distribution
$$P(x \mid \theta) = \begin{cases} \theta \text{ if } x = H \\ 1 - \theta \text{ if } x = T \end{cases}$$

Example 2: Markov chains

- \mathscr{X} is the set of all possible state (e.g tag) sequences generated by the underlying generative process. Our sample is *n* sequences X_1, \ldots, X_n such that each $X_i \in \mathscr{X}$, consists of a sequence of states.
- θ_T is the vector of all transition $(s_i \rightarrow s_j)$ parameters. Without loss of generality, assume a dummy start state ϕ and initial transition $\phi \rightarrow s_1$ (how many parameters?)
- Let $T(\alpha) \subset T$ be all the transitions of the form $\alpha \to \beta$
- Parameter space Ω is the set of θ ∈ [0,1]^{|S+1||S|} where S is set of all states (tags), such that:

for all
$$\alpha \in S$$
, $\sum_{t \in T(\alpha)} \theta_t = 1$

Example 2: Markov chains

- θ_T is the vector of all transition parameters
- We have:

$$P(X \mid \theta) = \prod_{t \in T} \theta_t^{Count(X,t)}$$

where Count(X, t) is the number of times transition t is seen in sequence X

$$\implies \log P(X | \theta) = \sum_{t \in T} Count(X, t) \ \log \theta_t$$

MLE for Markov chains

• We have

$$\log P(X|\theta) = \sum_{t \in T} Count(X, t) \ \log \theta_t$$

where Count(X, t) is the number of times transition t is seen in sequence X

• And,

$$L(\theta) = \sum_{i} \log P(X_i | \theta) = \sum_{i} \sum_{t \in T} Count(X_i, t) \log \theta_t$$

MLE for Markov chains

•
$$L(\theta) = \sum_{i} \log P(X_i | \theta) = \sum_{i} \sum_{t \in T} Count(X_i, t) \log \theta_t$$

• Solve
$$\theta_{MLE} = \underset{\theta \in \Omega}{\arg \max L(\theta)}$$

 \implies find θ s. t. $\frac{\partial L(\theta)}{\partial \theta} = 0$ with appropriate probability constraints

• This gives:
$$\theta_t = \frac{\sum_i Count(X_i, t)}{\sum_i \sum_{t' \in T(\alpha)} Count(X_i, t')}$$

where t is of the form $\alpha \rightarrow \beta$ for some β

Models with hidden variables

- Now say we have two sets \mathscr{X} and \mathscr{Y} , and a joint distribution $P(x, y | \theta)$
- If we had **fully observable data**, (x_i, y_i) pairs, then

$$L(\theta) = \sum_{i} \log P(x_i, y_i | \theta)$$

• If we have partially observable data, x_i examples only, then

$$L(\theta) = \sum_{i} \log P(x_i | \theta)$$
$$= \sum_{i} \log \sum_{y \in \mathscr{Y}} P(x_i, y | \theta)$$

Unsupervised Learning

Expectation Maximization

If we have partially observable data, x_i examples only,
 then

$$L(\theta) = \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

 The EM (Expectation Maximization) algorithm is a method for finding

$$\theta_{MLE} = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

- In the three coins example, $\mathscr{Y} = \{H, T\}$ (possible outcomes of coin 0) $\mathscr{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$ $\theta = \{\lambda, p_1, p_2\}$
- and $P(x, y | \theta) = P(y | \theta) P(x | y, \theta)$ where

$$P(y | \theta) = \begin{cases} \lambda \text{ if } y = H \\ 1 - \lambda \text{ if } y = T \end{cases}$$

and

$$P(x | y, \theta) = \begin{cases} p_1^h (1 - p_1)^t & \text{if } y = H \\ p_2^h (1 - p_2)^t & \text{if } y = T \end{cases}$$

• Calculating various probabilities:

$$P(x = THT, y = H | \theta) = \lambda p_1 (1 - p_1)^2$$

$$P(x = THT, y = T | \theta) = (1 - \lambda) p_2 (1 - p_2)^2$$

$$P(x = THT | \theta) = P(x = THT, y = H | \theta) + P(x = THT, y = T | \theta)$$

$$= \lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2$$

$$P(y = H | x = THT, \theta) = \frac{P(x = THT, y = H | \theta)}{P(x = THT | \theta)}$$
$$= \frac{\lambda p_1 (1 - p_1)^2}{\lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2}$$

- Fully observed data might look like: $(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$
- In this case, maximum likelihood estimates are:

$$\lambda = \frac{3}{5}$$
$$p_1 = \frac{9}{9}$$
$$p_2 = \frac{0}{6}$$

• Partially observed data might look like:

 $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

• How do we find the MLE parameters?

• Partially observed data might look like:

 $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

• If the current parameters are λ, p_1, p_2 $P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$ $= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$ $P(y = H | x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$ $= \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$

• If the current paramters are
$$\lambda, p_1, p_2$$

$$P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$$
$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda) p_2^3}$$
$$P(y = H | x = \langle TTT \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$$
$$= \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If
$$\lambda = 0.3$$
, $p_1 = 0.3$, $p_2 = 0.6$:
 $P(y = H | x = \langle HHH \rangle) = 0.0508$
 $P(y = H | x = \langle TTT \rangle) = 0.6967$

 After filling in hidden variables for each example, partially observed data might look like:

$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	P(y = T HHH) = 0.9492
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	P(y = T TTT) = 0.3033
$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	P(y = T HHH) = 0.9492
$(\langle \text{TTT} \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	P(y = t ttt) = 0.3033
$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	P(y = t HHH) = 0.9492

• New estimates:

$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	P(y = T HHH) = 0.9492
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	P(y = t ttt) = 0.3033

$$\lambda = \frac{3 \times 0.0508 + 2 \times 0.6967}{5} = 0.3092$$

 $p_{1} = \frac{3 \times 3 \times 0.0508 + 0 \times 2 \times 0.6967}{3 \times 3 \times 0.0508 + 3 \times 2 \times 0.6967} = 0.0987$ $p_{2} = \frac{3 \times 3 \times 0.9492 + 0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492 + 3 \times 2 \times 0.3033} = 0.8244$

Summary

- Begin with parameters: $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using $P(y = H | x = \langle HHH \rangle) = 0.0508$ $P(y = H | x = \langle TTT \rangle) = 0.6967$
- Re-estimate parameters to be

 $\lambda=0.3092,\,p_1=0.0987,\,p_2=0.8244$

EM iterations

Iteration	λ	p_1	P_2	\tilde{p}_1	\bar{p}_2	\tilde{p}_3	$ ilde{P}_4$
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967
1	0.3738	0.0680	0.7578	0.0004	0.9714	0.0004	0.9714
2	0.4859	0.0004	0.9722	0.0000	1.0000	0.0000	1.0000
3	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

The coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. The solution that EM reaches is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal probability ($\lambda = 0.5$).

Posterior probabilities \bar{p}_i show that we are certain that coin 1 (tail-biased) generate x_2 and x_4 , whereas coin 2 generated x_1 and x_3

EM iterations

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4	\tilde{p}_5
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967	0.0508
1	0.3092	0.0987	0.8244	0.0008	0.9837	0.0008	0.9837	0.0008
2	0.3940	0.0012	0.9893	0.0000	1.0000	0.0000	1.0000	0.0000
3	0.4000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Coin example for $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$

 λ is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tail-biased coin

EM iterations

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.3000	0.6000	0.1579	0.6967	0.0508	0.6967
1	0.4005	0.0974	0.6300	0.0375	0.9065	0.0025	0.9065
2	0.4632	0.0148	0.7635	0.0014	0.9842	0.0000	0.9842
3	0.4924	0.0005	0.8205	0.0000	0.9941	0.0000	0.9941
4	0.4970	0.0000	0.8284	0.0000	0.9949	0.0000	0.9949

Coin example for $x = \{\langle HHT \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.

EM selects a tails-only coin, and a coin which is heavily headsbiased ($p_2 = 0.8284$). It's certain that x_1 and x_3 were generated by coin 2 since they contain heads. x_2 and x_4 could have been generated by either coin but coin 1 (tail-biased) is far more likely.

Initialization matters

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.7000	0.7000	0.3000	0.3000	0.3000	0.3000
1	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
2	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
3	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
4	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
5	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
6	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000

Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.

In this case, EM is stuck at a saddle point.

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.7001	0.7000	0.3001	0.2998	0.3001	0.2998
1	0.2999	0.5003	0.4999	0.3004	0.2995	0.3004	0.2995
2	0.2999	0.5008	0.4997	0.3013	0.2986	0.3013	0.2986
3	0.2999	0.5023	0.4990	0.3040	0.2959	0.3040	0.2959
4	0.3000	0.5068	0.4971	0.3122	0.2879	0.3122	0.2879
5	0.3000	0.5202	0.4913	0.3373	0.2645	0.3373	0.2645
6	0.3009	0.5605	0.4740	0.4157	0.2007	0.4157	0.2007
7	0.3082	0.6744	0.4223	0.6447	0.0739	0.6447	0.0739
8	0.3593	0.8972	0.2773	0.9500	0.0016	0.9500	0.0016
9	0.4758	0.9983	0.0477	0.9999	0.0000	0.9999	0.0000
10	0.4999	1.0000	0.0001	1.0000	0.0000	1.0000	0.0000
11	0.5000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.

If we initialize p_1 and p_2 even a small amount away from the saddle point $p_1 = p_2$, EM diverges and eventually reaches the global maximum

- θ^t is the parameter vector at the t^{th} iteration
- Choose θ^0 at random (or using smart heuristics)
- Iterative procedure defined as:

$$\theta^{t} = \arg \max_{\theta} Q(\theta, \theta^{t-1})$$

where

$$Q(\theta, \theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y | x_i, \theta^{t-1}) \log P(x_i, y | \theta)$$

- θ^t is the parameter vector at the t^{th} iteration
- Choose θ^0 at random (or using smart heuristics)
- (E step): Compute expected counts $\overline{Count}(r) = \sum_{i=1}^{n} \sum_{y} P(y | x_i, \theta^{t-1}) Count(x_i, y, r)$

for every parameter θ_r

• e.g.

$$\overline{Count}(DT \to NN) = \sum_{i} \sum_{y} P(S \mid O_i, \theta^{t-1}) Count(O_i, S, \theta_{DT \to NN})$$

- θ^t is the parameter vector at the t^{th} iteration
- Choose θ^0 at random (or using smart heuristics)
- (E step): Compute *expected* counts

$$\overline{Count}(r) = \sum_{i=1}^{n} \sum_{y} P(y | x_i, \theta^{t-1}) Count(x_i, y, r)$$

for every parameter θ_r

• (M step): Re-estimate parameters using expected counts to maximize likelihood

e.g.
$$\theta_{DT \to NN} = \frac{\overline{Count}(DT \to NN)}{\sum_{\beta} \overline{Count}(DT \to \beta)}$$

• Iterative procedure defined as $\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})$ where

$$Q(\theta, \theta^{t-1}) = \sum_{i} \sum_{y \in \mathcal{Y}} P(y | x_i, \theta^{t-1}) \log P(x_i, y | \theta)$$

- Key points:
 - Intuition: Fill in hidden variables y according to $P(y | x_i, \theta)$
 - EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function

• In general, if
$$\arg \max_{\theta} \sum_{i} \log P(x_i, y_i | \theta)$$
 has a simple analytic solution, then $\arg \max_{\theta} \sum_{i} \sum_{y} P(y | x_i, \theta) \log P(x_i, y | \theta)$ also has a simple solution.

Example: EM for HMM

- We observe only word sequences X_1, X_2, \ldots, X_n (no tags Y)
- θ is the vector of all transition parameters (include initial state distribution as a special case, $\varnothing \to s$
- ϕ is the vector of all emission parameters
- Initialize parameters θ^0 and ϕ^0

Example: EM for HMM

- Initialize parameters θ^0 and ϕ^0

• (E-Step)

$$\overline{Count}(\theta_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, \theta_k)$$

$$= \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(Y, \theta_k)$$

$$\overline{Count}(\phi_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, \phi_k)$$

Example: EM for HMM

- Initialize parameters $heta^0$ and ϕ^0
- (M-Step)

 $\theta_k^t = \frac{\overline{Count}(\theta_k)}{\sum_{\theta' \in M(\theta_k)} \overline{Count}(\theta')} \text{ where } M(\theta_k) \text{ is the set of all transitions}$

 $(a \rightarrow b, \text{ all } b)$ that share the same previous state as the k^{th} transition $(a \rightarrow c \text{ for some } c)$.

$$\phi_k^t = \frac{\overline{Count}(\phi_k)}{\sum_{\phi' \in M'(\phi_k)} \overline{Count}(\phi')} \text{ where } M'(\phi_k) \text{ is the set of all }$$

emissions $(a \rightarrow x, \text{ all } x)$ that share the same hidden state as the k^{th} emission $(a \rightarrow x', \text{ for some } x')$.

Efficient EM?

• (E-Step)

$$\overline{Count}(\theta_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(Y, \theta_k)$$

$$\overline{Count}(\phi_k) = \sum_{i=1}^n \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, \phi_k)$$

Cannot enumerate all possible Y!

Efficient EM?

• (E-Step)

$$\overline{Count}(\theta_{NN \to VBD}) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(Y, \theta_k)$$
$$= \sum_{i} \sum_{j=1}^{m} P(y_j = NN, y_{j+1} = VBD | X_i, \theta^{t-1}, \phi^{t-1})$$

where m is the length of the sequence X_i

where *m* is the length of the sequence X_i Similarly, $\overline{Count}(\phi_{NN \to cat}) = \sum_i \sum_{j:X_{ij} = cat} P(y_j = NN | X_i, \theta^{t-1}, \phi^{t-1})$

Forward-backward algorithm

• Define:

$$\alpha_s(j) = P(x_1, \dots, x_{j-1}, y_j = s | \theta, \phi)$$
 (forward probability)

$$\beta_s(j) = P(x_j, \dots, x_m | y_j = s, \theta, \phi)$$
 (backward probability)

• Observation likelihood,

$$Z = P(x_1, x_2, \dots, x_m | \theta, \phi) = \sum_{s} \alpha_s(j) \beta_s(j) \text{ for any } j \in 1, \dots, m$$

•
$$P(y_j = s | X, \theta, \phi) = \frac{\alpha_s(j)\beta_s(j)}{Z}$$

 $P(y_j = s, y_{j+1} = s' | X, \theta, \phi) = \frac{\alpha_s(j) \ \theta_{s \to s'} \ \phi_{s \to x_j} \ \beta_{s'} \ (j+1)}{Z}$

Forward-backward algorithm

 $\alpha_{NN}(2)$

 $\beta_{VBD}(3)$

•
$$P(y_j = s | X, \theta, \phi) = \frac{\alpha_s(j)\beta_s(j)}{Z}$$

 $P(y_j = s, y_{j+1} = s' | X, \theta, \phi) = \frac{\alpha_s(j) \ \theta_{s \to s'} \ \phi_{s \to x_j} \ \beta_{s'} \ (j+1)}{Z}$

Forward-backward algorithm

•
$$P(y_j = s | X, \theta, \phi) = \frac{\alpha_s(j)\beta_s(j)}{Z}$$

 $P(y_j = s, y_{j+1} = s' | X, \theta, \phi) = \frac{\alpha_s(j) \ \theta_{s \to s'} \ \phi_{s \to x_j} \ \beta_{s'} \ (j+1)}{Z}$

• Given these, we can now estimate:

$$\overline{Count}(\theta_{s \to s'}) = \sum_{i} \sum_{j=1}^{m} P(y_j = s, y_{j+1} = s' | X_i, \theta, \phi)$$
$$\overline{Count}(\phi_{s \to o}) = \sum_{i} \sum_{j:X_{ij} = o} P(y_j = s | X_i, \theta, \phi)$$

Dynamic programming

$$\begin{aligned} \alpha_s(j) &= P(y_j = s, x_1, \dots, x_{j-1}) \\ &= \sum_{s'} P(y_{j-1} = s', x_1, \dots, x_{j-2}) \ P(x_{j-1} \mid y_{j-1} = s') \ P(y_j = s \mid y_{j-1} = s') \\ &= \sum_{s'} \alpha_{s'} \ (j-1) \ \phi_{s' \to x_{j-1}} \ \theta_{s' \to s} \end{aligned}$$

Dynamic programming

$$\begin{aligned} \alpha_s(j) &= P(y_j = s, x_1, \dots, x_{j-1}) \\ &= \sum_{s'} P(y_{j-1} = s', x_1, \dots, x_{j-2}) \ P(x_{j-1} \mid y_{j-1} = s') \ P(y_j = s \mid y_{j-1} = s') \\ &= \sum_{s'} \alpha_{s'} \ (j-1) \ \phi_{s' \to x_{j-1}} \ \theta_{s' \to s} \end{aligned}$$

• Similarly,

$$\beta_{s}(j) = \phi_{s \to x_{j}} \sum_{s'} \beta_{s'} (j+1) \quad \theta_{s \to s'}$$

• Runtime:
$$O(|S|^2 \cdot m)$$