
Expectation Maximization

Fall 2019

COS 484: Natural Language Processing

(some slides adapted from Regina Barzilay and Michael Collins)

Announcements

• Oct 22: Midterm review

• Oct 24: Midterm (in-class)

• Nov 5: Project details + PyTorch tutorial

• Nov 11: Project proposal due

• Start forming teams now! (2-3 members)

• Can use Piazza

• Nov 18: Assignment 4 due date changed

MEMM recap

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• In general, we can use all observations and all previous states:

̂S = arg max
S

P(S |O) = arg max
S ∏

i

P(si |on, on−1, . . . , o1, si−1, . . . , s1)

P(si |si−1, . . . , s1, O) ∝ exp(w ⋅ f(si, si−1, . . . , s1, O)

Features in an MEMM

Feature templates

Features

MEMM: Learning

• Gradient descent: similar to logistic regression!

• Given: pairs of

Loss for one sequence,

• Compute gradients with respect to weights and update

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = − ∑
i

log P(si |s1, . . . , si−1, O)

w

P(si |s1, . . . , si−1, O) ∝ exp(w ⋅ f(s1, . . . , si, O))

EM: Some intuition

• Let’s say I have 3 coins in my pocket,

• Coin 0 has probability of heads 
Coin 1 has probability of heads 
Coin 2 has probability of heads 

• For each trial:

• First I toss Coin 0 
If coin 0 turns up heads, I toss coin 1 three times 
If coin 0 turns up tails, I toss coin 2 three times 
 
I don’t tell you the results of the coin 0 toss, or whether coin 1 or coin 2
was tossed, but I tell you how many heads/tails are seen after each trial

• You see the following sequence:

λ
p1
p2

⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩

What would you estimate as values for ?λ, p1, p2

Maximum Likelihood Estimate

• Data points

• Parameter vector

• Parameter space

• We have a distribution for any , such that

• Assume data points are drawn independently and identically
distributed from a distribution

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ

Ω

P(x |θ) θ ∈ Ω

∑
x∈𝒳

P(x |θ) = 1 and P(x |θ) ≥ 0 ∀x

P(x |θ*) for some θ* ∈ Ω

Log Likelihood

• Data points

• Parameter vector and a parameter space

• Probability distribution for any

• Likelihood =

• Log-likelihood,

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ Ω

P(x |θ) θ ∈ Ω

(θ) P(x1, x2, . . . , xn |θ) =
n

∏
i=1

P(xi |θ)

L(θ) =
n

∑
i=1

log P(xi |θ)

Example 1: Coin Tossing

• . Our data points are a sequence of
heads and tails, e.g.

• HTHTHHHHTTT

• Parameter vector is a single parameter, i.e probability of coin
coming up heads

• Parameter space

• Distribution

𝒳 = {H, T} x1, x2, . . . , xn

θ

Ω = [0,1]

P(x |θ) = { θ if x = H
1 − θ if x = T

Example 2: Markov chains

• is the set of all possible state (e.g tag) sequences generated by the
underlying generative process. Our sample is sequences
such that each , consists of a sequence of states.

• is the vector of all transition parameters. Without loss of

generality, assume a dummy start state and initial transition
(how many parameters?)

• Let

• Parameter space is the set of where S is set of all
states (tags), such that: 

𝒳
n X1, . . . , Xn

Xi ∈ 𝒳

θT (si → sj)
ϕ ϕ → s1

T(α) ⊂ T be all the transitions of the form α → β

Ω θ ∈ [0,1]|S+1||S|

for all α ∈ S, ∑
t∈T(α)

θt = 1

Example 2: Markov chains

• is the vector of all transition parameters

• We have:  
  

where is the number of times transition is seen in
sequence  
 

 

θT

P(X |θ) = ∏
t∈T

θCount(X,t)
t

Count(X, t) t
X

⟹ log P(X |θ) = ∑
t∈T

Count(X, t) log θt

MLE for Markov chains

• We have 
 

 
where is the number of times transition is
seen in sequence

• And,  

log P(X |θ) = ∑
t∈T

Count(X, t) log θt

Count(X, t) t
X

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt

MLE for Markov chains

•

• Solve  

 

 with appropriate probability constraints

• This gives:  

where is of the form

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt

θMLE = arg max
θ∈Ω

L(θ)

⟹ find θ s. t.
∂L(θ)

∂θ
= 0

θt =
∑i Count(Xi, t)

∑i ∑t′�∈T(α) Count(Xi, t′�)

t α → β for some β

Models with hidden variables

• Now say we have two sets and , and a joint distribution

• If we had fully observable data, pairs, then 

• If we have partially observable data, examples only, then 

𝒳 𝒴 P(x, y |θ)

(xi, yi)
L(θ) = ∑

i

log P(xi, yi |θ)

xi

L(θ) = ∑
i

log P(xi |θ)

= ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

Unsupervised Learning

Expectation Maximization

• If we have partially observable data, examples only,
then 

• The EM (Expectation Maximization) algorithm is a method
for finding 

xi

L(θ) = ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

θMLE = arg max
θ

L(θ) = arg max
θ ∑

i

log ∑
y∈𝒴

P(xi, y |θ)

The three coins example

• In the three coins example,  
 (possible outcomes of coin 0) 

 

• and  
where  

  

and 

𝒴 = {H, T}
𝒳 = {HHH, TTT, HTT, THH, HHT, TTH, HTH, THT}
θ = {λ, p1, p2}

P(x, y |θ) = P(y |θ) P(x |y, θ)

P(y |θ) = { λ if y = H
1 − λ if y = T

P(x |y, θ) = {
ph

1 (1 − p1)t if y = H

ph
2 (1 − p2)t if y = T

• Calculating various probabilities: 
 

•   

 

 

P(x = THT, y = H |θ) = λp1(1 − p1)2

P(x = THT, y = T |θ) = (1 − λ)p2(1 − p2)2

P(x = THT |θ) = P(x = THT, y = H |θ) + P(x = THT, y = T |θ)
= λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

P(y = H |x = THT, θ) =
P(x = THT, y = H |θ)

P(x = THT |θ)

=
λp1(1 − p1)2

λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

The three coins example

The three coins example

• Fully observed data might look like: 

• In this case, maximum likelihood estimates are: 
 

(⟨HHH⟩, H), (⟨TTT⟩, T), (⟨HHH⟩, H), (⟨TTT⟩, T), (⟨HHH⟩, H)

λ =
3
5

p1 =
9
9

p2 =
0
6

• Partially observed data might look like: 
 

• How do we find the MLE parameters?

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

The three coins example

• Partially observed data might look like: 
 

• If the current parameters are  

 

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T)

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨TTT⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T)

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

The three coins example

The three coins example

• If the current paramters are  

 

• If : 
  

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T)

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨HHH⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T)

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

λ = 0.3, p1 = 0.3, p2 = 0.6
P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

The three coins example

• After filling in hidden variables for each example, partially
observed data might look like:

The three coins example

• New estimates:

Summary

• Begin with parameters:

• Fill in hidden variables, using 
 

• Re-estimate parameters to be

λ = 0.3, p1 = 0.3, p2 = 0.6

P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

λ = 0.3092, p1 = 0.0987, p2 = 0.8244

EM iterations

The coin example for . The solution that
EM reaches is intuitively correct: the coin tosser has two coins, one which
always shows heads, and another which always shows tails, and is picking

between them with equal probability .

x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

(λ = 0.5)

Posterior probabilities show that we are certain that coin 1 (tail-biased)
generate , whereas coin 2 generated

p̄i
x2 and x4 x1 and x3

EM iterations

Coin example for {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩}

 is now 0.4, indicating that coin 0 has a probability 0.4 of
selecting the tail-biased coin

λ

EM iterations

Coin example for . x = {⟨HHT⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

EM selects a tails-only coin, and a coin which is heavily heads-
biased . It’s certain that and were generated
by coin 2 since they contain heads. and could have been

generated by either coin but coin 1 (tail-biased) is far more likely.

(p2 = 0.8284) x1 x3
x2 x4

Initialization matters

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

In this case, EM is stuck at a saddle point.

If we initialize and even a small amount away from the
saddle point , EM diverges and eventually reaches the

global maximum

p1 p2
p1 = p2

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

The EM algorithm

• is the parameter vector at the iteration

• Choose at random (or using smart heuristics)

• Iterative procedure defined as: 
  

where 

θt tth

θ0

θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴

P(y |xi, θt−1) log P(xi, y |θ)

• is the parameter vector at the iteration

• Choose at random (or using smart heuristics)

• (E step): Compute expected counts  

  

for every parameter

• e.g.

θt tth

θ0

Count(r) =
n

∑
i=1

∑
y

P(y |xi, θt−1) Count(xi, y, r)

θr

Count(DT → NN) = ∑
i

∑
y

P(S |Oi, θt−1) Count(Oi, S, θDT→NN)

The EM algorithm

• is the parameter vector at the iteration

• Choose at random (or using smart heuristics)

• (E step): Compute expected counts 

  

for every parameter

• (M step): Re-estimate parameters using expected counts to maximize
likelihood 

 e.g.  

θt tth

θ0

Count(r) =
n

∑
i=1

∑
y

P(y |xi, θt−1) Count(xi, y, r)

θr

θDT→NN =
Count(DT → NN)
∑β Count(DT → β)

The EM algorithm

The EM algorithm

• Iterative procedure defined as where 

• Key points:

• Intuition: Fill in hidden variables according to

• EM is guaranteed to converge to a local maximum, or saddle-point, of the
likelihood function

• In general, if has a simple analytic solution, then  

 also has a simple solution.

θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴

P(y |xi, θt−1) log P(xi, y |θ)

y P(y |xi, θ)

arg max
θ ∑

i

log P(xi, yi |θ)

arg max
θ ∑

i
∑

y

P(y |xi, θ)log P(xi, y |θ)

Example: EM for HMM

• We observe only word sequences (no tags
)

• is the vector of all transition parameters (include initial
state distribution as a special case,

• is the vector of all emission parameters

• Initialize parameters and

X1, X2, . . . , Xn

Y

θ
∅ → s

ϕ

θ0 ϕ0

Example: EM for HMM

• Initialize parameters and

• (E-Step) 

 

θ0 ϕ0

Count(θk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, θk)

=
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

Count(ϕk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, ϕk)

Example: EM for HMM

• Initialize parameters and

• (M-Step)  

 where is the set of all transitions

() that share the same previous state as the transition
(). 
 

 where is the set of all

emissions that share the same hidden state as the
emission .

θ0 ϕ0

θt
k =

Count(θk)
∑θ′�∈M(θk)

Count(θ′�)
M(θk)

a → b, all b kth

a → c for some c

ϕt
k =

Count(ϕk)
∑ϕ′�∈M′�(ϕk)

Count(ϕ′�)
M′�(ϕk)

(a → x, all x) kth

(a → x′�, for some x′�)

Efficient EM?

• (E-Step) 

 Count(θk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

Count(ϕk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, ϕk)

Cannot enumerate all possible Y!

Efficient EM?

• (E-Step) 

 

where is the length of the sequence

Count(θNN→VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

= ∑
i

m

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

? NN VBD ?

The cat sat on

Efficient EM?

• (E-Step) 

 

where is the length of the sequence  

Similarly,

Count(θNN→VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

= ∑
i

m

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

Count(ϕNN→cat) = ∑
i

∑
j:Xij = cat

P(yj = NN |Xi, θt−1, ϕt−1)

? NN VBD ?

The cat sat on

Forward-backward algorithm

• Define: 
 (forward probability) 

 
 (backward probability)

• Observation likelihood,
 for any

•

αs(j) = P(x1, . . . , xj−1, yj = s |θ, ϕ)

βs(j) = P(xj, . . . , xm |yj = s, θ, ϕ)

Z = P(x1, x2, . . . , xm |θ, ϕ) = ∑
s

αs(j)βs(j) j ∈ 1,...,m

P(yj = s |X, θ, ϕ) =
αs(j)βs(j)

Z

P(yj = s, yj+1 = s′�|X, θ, ϕ) =
αs(j) θs→s′� ϕs→xj

βs′� (j + 1)

Z

Forward-backward algorithm

• Define: 
 (forward probability) 

 
 (backward probability)

• Observation likelihood,
 for any

•

αs(j) = P(x1, . . . , xj−1, yj = s |θ, ϕ)

βs(j) = P(xj, . . . , xm |yj = s, θ, ϕ)

Z = P(x1, x2, . . . , xm |θ, ϕ) = ∑
s

αs(j)βs(j) j ∈ 1,...,m

P(yj = s |X, θ, ϕ) =
αs(j)βs(j)

Z

P(yj = s, yj+1 = s′�|X, θ, ϕ) =
αs(j) θs→s′� ϕs→xj

βs′� (j + 1)

Z

? NN VBD ?

The cat sat on

αNN(2) βVBD(3)

Forward-backward algorithm

•

• Given these, we can now estimate:

P(yj = s |X, θ, ϕ) =
αs(j)βs(j)

Z

P(yj = s, yj+1 = s′ �|X, θ, ϕ) =
αs(j) θs→s′� ϕs→xj

βs′� (j + 1)

Z

Count(θs→s′�) = ∑
i

m

∑
j=1

P(yj = s, yj+1 = s′ �|Xi, θ, ϕ)

Count(ϕs→o) = ∑
i

∑
j:Xij = o

P(yj = s |Xi, θ, ϕ)

Dynamic programming

• Similarly,  

• Runtime:

αs(j) = P(yj = s, x1, . . . , xj−1)

= ∑
s′ �

P(yj−1 = s′�, x1, . . . , xj−2) P(xj−1 |yj−1 = s′ �) P(yj = s |yj−1 = s′�)

= ∑
s′ �

αs′� (j − 1) ϕs′ �→xj−1
θs′ �→s

βs(j) = ∑
s′ �

βs′� (j + 1) ϕs′ �→xj+1
θs→s′ �

O(|S |2 ⋅ m)

? ? VBD ?

The cat sat on

ss′�

Dynamic programming

• Similarly,  

• Runtime:

αs(j) = P(yj = s, x1, . . . , xj−1)

= ∑
s′ �

P(yj−1 = s′�, x1, . . . , xj−2) P(xj−1 |yj−1 = s′ �) P(yj = s |yj−1 = s′�)

= ∑
s′ �

αs′� (j − 1) ϕs′ �→xj−1
θs′ �→s

βs(j) = ϕs→xj ∑
s′�

βs′ � (j + 1) θs→s′ �

O(|S |2 ⋅ m)

