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(some slides adapted from Regina Barzilay and Michael Collins)



Announcements

• Oct 22: Midterm review


• Oct 24: Midterm (in-class)


• Nov 5: Project details + PyTorch tutorial


• Nov 11: Project proposal due


• Start forming teams now! (2-3 members)


• Can use Piazza


• Nov 18: Assignment 4 due date changed



MEMM recap

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• In general, we can use all observations and all previous states:


 
̂S = arg max
S

P(S |O) = arg max
S ∏

i

P(si |on, on−1, . . . , o1, si−1, . . . , s1)

P(si |si−1, . . . , s1, O) ∝ exp(w ⋅ f(si, si−1, . . . , s1, O)



Features in an MEMM

Feature templates

Features



MEMM: Learning

• Gradient descent: similar to logistic regression!


• Given: pairs of 


Loss for one sequence, 


• Compute gradients with respect to weights  and update

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = − ∑
i

log P(si |s1, . . . , si−1, O)

w

P(si |s1, . . . , si−1, O) ∝ exp(w ⋅ f(s1, . . . , si, O))



EM: Some intuition

• Let’s say I have 3 coins in my pocket, 


• Coin 0 has probability  of heads 
Coin 1 has probability  of heads 
Coin 2 has probability  of heads 

• For each trial: 

• First I toss Coin 0 
If coin 0 turns up heads, I toss coin 1 three times 
If coin 0 turns up tails, I toss coin 2 three times 
 
I don’t tell you the results of the coin 0 toss, or whether coin 1 or coin 2 
was tossed, but I tell you how many heads/tails are seen after each trial


• You see the following sequence:  

λ
p1
p2

⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩

What would you estimate as values for  ?λ, p1, p2



Maximum Likelihood Estimate

• Data points 


• Parameter vector 


• Parameter space 


• We have a distribution  for any , such that





• Assume data points are drawn independently and identically 
distributed from a distribution 

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ

Ω

P(x |θ) θ ∈ Ω

∑
x∈𝒳

P(x |θ) = 1 and P(x |θ) ≥ 0 ∀x

P(x |θ*) for some θ* ∈ Ω



Log Likelihood

• Data points 


• Parameter vector  and a parameter space 


• Probability distribution  for any 


• Likelihood  = 


• Log-likelihood, 

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ Ω

P(x |θ) θ ∈ Ω

(θ) P(x1, x2, . . . , xn |θ) =
n

∏
i=1

P(xi |θ)

L(θ) =
n

∑
i=1

log P(xi |θ)



Example 1: Coin Tossing

• . Our data points  are a sequence of 
heads and tails, e.g.


• HTHTHHHHTTT


• Parameter vector  is a single parameter, i.e probability of coin 
coming up heads


• Parameter space 


• Distribution 

𝒳 = {H, T} x1, x2, . . . , xn

θ

Ω = [0,1]

P(x |θ) = { θ if x = H
1 − θ if x = T



Example 2: Markov chains

•  is the set of all possible state (e.g tag) sequences generated by the 
underlying generative process. Our sample is  sequences  
such that each , consists of a sequence of states.


•  is the vector of all transition  parameters. Without loss of 

generality, assume a dummy start state  and initial transition  
(how many parameters?)


• Let 


• Parameter space  is the set of  where S is set of all 
states (tags), such that: 
                          

𝒳
n X1, . . . , Xn

Xi ∈ 𝒳

θT (si → sj)
ϕ ϕ → s1

T(α) ⊂ T be all the transitions of the form α → β

Ω θ ∈ [0,1]|S+1||S|

for all α ∈ S, ∑
t∈T(α)

θt = 1



Example 2: Markov chains

•  is the vector of all transition parameters


• We have:  
               

where  is the number of times transition  is seen in 
sequence  
 

 

θT

P(X |θ) = ∏
t∈T

θCount(X,t)
t

Count(X, t) t
X

⟹ log P(X |θ) = ∑
t∈T

Count(X, t) log θt



MLE for Markov chains

• We have 
 

 
where  is the number of times transition  is 
seen in sequence 


• And,  

log P(X |θ) = ∑
t∈T

Count(X, t) log θt

Count(X, t) t
X

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt



MLE for Markov chains

• 


• Solve  

 

  with appropriate probability constraints


• This gives:  

where  is of the form 

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt

θMLE = arg max
θ∈Ω

L(θ)

⟹  find θ  s. t. 
∂L(θ)

∂θ
= 0

θt =
∑i Count(Xi, t)

∑i ∑t′�∈T(α) Count(Xi, t′�)

t α → β for some β



Models with hidden variables

• Now say we have two sets  and , and a joint distribution 


• If we had fully observable data,  pairs, then 

                              


• If we have partially observable data,  examples only, then 

                             

𝒳 𝒴 P(x, y |θ)

(xi, yi)
L(θ) = ∑

i

log P(xi, yi |θ)

xi

L(θ) = ∑
i

log P(xi |θ)

= ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

Unsupervised Learning



Expectation Maximization

• If we have partially observable data,  examples only, 
then 

                             


• The EM (Expectation Maximization) algorithm is a method 
for finding 

xi

L(θ) = ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

θMLE = arg max
θ

L(θ) = arg max
θ ∑

i

log ∑
y∈𝒴

P(xi, y |θ)



The three coins example

• In the three coins example,  
   (possible outcomes of coin 0) 

 



• and  
where  

                              

and 

                    

𝒴 = {H, T}
𝒳 = {HHH, TTT, HTT, THH, HHT, TTH, HTH, THT}
θ = {λ, p1, p2}

P(x, y |θ) = P(y |θ) P(x |y, θ)

P(y |θ) = { λ if y = H
1 − λ if y = T

P(x |y, θ) = {
ph

1 (1 − p1)t if y = H

ph
2 (1 − p2)t if y = T



• Calculating various probabilities: 
 




•   

 

 

P(x = THT, y = H |θ) = λp1(1 − p1)2

P(x = THT, y = T |θ) = (1 − λ)p2(1 − p2)2

P(x = THT |θ) = P(x = THT, y = H |θ) + P(x = THT, y = T |θ)
= λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

P(y = H |x = THT, θ) =
P(x = THT, y = H |θ)

P(x = THT |θ)

=
λp1(1 − p1)2

λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

The three coins example



The three coins example

• Fully observed data might look like: 



• In this case, maximum likelihood estimates are: 
 

                                         

(⟨HHH⟩, H), (⟨TTT⟩, T ), (⟨HHH⟩, H), (⟨TTT⟩, T ), (⟨HHH⟩, H)

λ =
3
5

p1 =
9
9

p2 =
0
6



• Partially observed data might look like: 
 




• How do we find the MLE parameters?

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

The three coins example



• Partially observed data might look like: 
 




• If the current parameters are  

 

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T )

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨TTT⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T )

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

The three coins example



The three coins example

• If the current paramters are  

 




• If  : 
                                    
                                   

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T )

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨HHH⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T )

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

λ = 0.3, p1 = 0.3, p2 = 0.6
P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967



The three coins example

• After filling in hidden variables for each example, partially 
observed data might look like:



The three coins example

• New estimates:



Summary

• Begin with parameters: 


• Fill in hidden variables, using 
 



• Re-estimate parameters to be 

λ = 0.3, p1 = 0.3, p2 = 0.6

P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

λ = 0.3092, p1 = 0.0987, p2 = 0.8244



EM iterations

The coin example for . The solution that 
EM reaches is intuitively correct: the coin tosser has two coins, one which 
always shows heads, and another which always shows tails, and is picking 

between them with equal probability . 

x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

(λ = 0.5)

Posterior probabilities  show that we are certain that coin 1 (tail-biased) 
generate , whereas coin 2 generated 

p̄i
x2 and x4 x1 and x3



EM iterations

Coin example for {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩}

 is now 0.4, indicating that coin 0 has a probability 0.4 of 
selecting the tail-biased coin

λ



EM iterations

Coin example for . x = {⟨HHT⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

EM selects a tails-only coin, and a coin which is heavily heads-
biased . It’s certain that  and  were generated 
by coin 2 since they contain heads.  and  could have been 

generated by either coin but coin 1 (tail-biased) is far more likely.

(p2 = 0.8284) x1 x3
x2 x4



Initialization matters

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

In this case, EM is stuck at a saddle point.



If we initialize  and  even a small amount away from the 
saddle point , EM diverges and eventually reaches the 

global maximum

p1 p2
p1 = p2

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}



The EM algorithm

•  is the parameter vector at the  iteration


• Choose  at random (or using smart heuristics)


• Iterative procedure defined as: 
                       

where 

θt tth

θ0

θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴

P(y |xi, θt−1) log P(xi, y |θ)



•  is the parameter vector at the  iteration


• Choose  at random (or using smart heuristics)


• (E step): Compute expected counts  

                

for every parameter 


• e.g.  

θt tth

θ0

Count(r) =
n

∑
i=1

∑
y

P(y |xi, θt−1) Count(xi, y, r)

θr

Count(DT → NN) = ∑
i

∑
y

P(S |Oi, θt−1) Count(Oi, S, θDT→NN)

The EM algorithm



•  is the parameter vector at the  iteration


• Choose  at random (or using smart heuristics)


• (E step): Compute expected counts 

                  

for every parameter 


• (M step): Re-estimate parameters using expected counts to maximize 
likelihood 

                 e.g.  

θt tth

θ0

Count(r) =
n

∑
i=1

∑
y

P(y |xi, θt−1) Count(xi, y, r)

θr

θDT→NN =
Count(DT → NN)
∑β Count(DT → β)

The EM algorithm



The EM algorithm

• Iterative procedure defined as  where 




• Key points:


• Intuition: Fill in hidden variables  according to 


• EM is guaranteed to converge to a local maximum, or saddle-point, of the 
likelihood function


• In general, if  has a simple analytic solution, then  

 also has a simple solution.

θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴

P(y |xi, θt−1) log P(xi, y |θ)

y P(y |xi, θ)

arg max
θ ∑

i

log P(xi, yi |θ)

arg max
θ ∑

i
∑

y

P(y |xi, θ)log P(xi, y |θ)



Example: EM for HMM

• We observe only word sequences  (no tags 
)


•  is the vector of all transition parameters (include initial 
state distribution as a special case, 


•  is the vector of all emission parameters


• Initialize parameters  and 

X1, X2, . . . , Xn

Y

θ
∅ → s

ϕ

θ0 ϕ0



Example: EM for HMM

• Initialize parameters  and 


• (E-Step) 

 

θ0 ϕ0

Count(θk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, θk)

=
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

Count(ϕk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, ϕk)



Example: EM for HMM

• Initialize parameters  and 


• (M-Step)  

         where  is the set of all transitions 

( ) that share the same previous state as the  transition 
( ). 
 

          where  is the set of all 

emissions  that share the same hidden state as the   
emission .

θ0 ϕ0

θt
k =

Count(θk)
∑θ′�∈M(θk)

Count(θ′�)
M(θk)

a → b,  all b kth

a → c for some c

ϕt
k =

Count(ϕk)
∑ϕ′�∈M′�(ϕk)

Count(ϕ′�)
M′�(ϕk)

(a → x,  all x) kth

(a → x′�,  for some x′�)



Efficient EM?

• (E-Step) 

 Count(θk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

Count(ϕk) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, ϕk)

Cannot enumerate all possible Y!



Efficient EM?

• (E-Step) 

 

where  is the length of the sequence 

Count(θNN→VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

= ∑
i

m

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

? NN VBD ?

The cat sat on



Efficient EM?

• (E-Step) 

 

where  is the length of the sequence  

Similarly, 

Count(θNN→VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

= ∑
i

m

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

Count(ϕNN→cat) = ∑
i

∑
j:Xij = cat

P(yj = NN |Xi, θt−1, ϕt−1)

? NN VBD ?

The cat sat on



Forward-backward algorithm

• Define: 
  (forward probability) 

 
   (backward probability)


• Observation likelihood, 
 for any 


•

αs( j) = P(x1, . . . , xj−1, yj = s |θ, ϕ)

βs( j) = P(xj, . . . , xm |yj = s, θ, ϕ)

Z = P(x1, x2, . . . , xm |θ, ϕ) = ∑
s

αs( j)βs( j) j ∈ 1,...,m

P(yj = s |X, θ, ϕ) =
αs( j)βs( j)

Z

P(yj = s, yj+1 = s′�|X, θ, ϕ) =
αs( j) θs→s′� ϕs→xj

βs′� ( j + 1)

Z



Forward-backward algorithm

• Define: 
  (forward probability) 

 
   (backward probability)


• Observation likelihood, 
 for any 


•

αs( j) = P(x1, . . . , xj−1, yj = s |θ, ϕ)

βs( j) = P(xj, . . . , xm |yj = s, θ, ϕ)

Z = P(x1, x2, . . . , xm |θ, ϕ) = ∑
s

αs( j)βs( j) j ∈ 1,...,m

P(yj = s |X, θ, ϕ) =
αs( j)βs( j)

Z

P(yj = s, yj+1 = s′�|X, θ, ϕ) =
αs( j) θs→s′� ϕs→xj

βs′� ( j + 1)

Z

? NN VBD ?

The cat sat on

αNN(2) βVBD(3)



Forward-backward algorithm

•




• Given these, we can now estimate:

P(yj = s |X, θ, ϕ) =
αs( j)βs( j)

Z

P(yj = s, yj+1 = s′ �|X, θ, ϕ) =
αs( j) θs→s′� ϕs→xj

βs′� ( j + 1)

Z

Count(θs→s′�) = ∑
i

m

∑
j=1

P(yj = s, yj+1 = s′ �|Xi, θ, ϕ)

Count(ϕs→o) = ∑
i

∑
j:Xij = o

P(yj = s |Xi, θ, ϕ)



Dynamic programming




• Similarly,  



• Runtime:  

αs( j) = P(yj = s, x1, . . . , xj−1)

= ∑
s′ �

P(yj−1 = s′�, x1, . . . , xj−2) P(xj−1 |yj−1 = s′ �) P(yj = s |yj−1 = s′�)

= ∑
s′ �

αs′� ( j − 1) ϕs′ �→xj−1
θs′ �→s

βs( j) = ∑
s′ �

βs′� ( j + 1) ϕs′ �→xj+1
θs→s′ �

O( |S |2 ⋅ m)

? ? VBD ?

The cat sat on

ss′�



Dynamic programming




• Similarly,  
      


• Runtime:  

αs( j) = P(yj = s, x1, . . . , xj−1)

= ∑
s′ �

P(yj−1 = s′�, x1, . . . , xj−2) P(xj−1 |yj−1 = s′ �) P(yj = s |yj−1 = s′�)

= ∑
s′ �

αs′� ( j − 1) ϕs′ �→xj−1
θs′ �→s

βs( j) = ϕs→xj ∑
s′�

βs′ � ( j + 1) θs→s′ �

O( |S |2 ⋅ m)


