

COS 484: Natural Language Processing

Sequence Models

Fall 2019

Why model sequences?

Part of Speech tagging

Named Entity recognition

Information Extraction

Overview

- Hidden markov models (HMM)
- Viterbi algorithm
- Maximum entropy markov models (MEMM)

What are POS tags

- Word classes or syntactic categories
 - Reveal useful information about a word (and its neighbors!)

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP

The/DT old/NN man/VB the/DT boat/NN

Parts of Speech

- Different words have different functions
- Closed class: fixed membership,
 function words
 - e.g. prepositions (in, on, of), determiners (the, a)
- Open class: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives, adverbs

Penn Tree Bank tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;

[45 tags]

Figure 8.1 Penn Treebank part-of-speech tags (including punctuation).

(Marcus et al., 1993)

Other corpora: Brown, WSJ, Switchboard

Part of Speech Tagging

- Disambiguation task: each word might have different senses/functions
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VB the/DT boat/NN

Types:		WSJ		Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

Figure 8.2 Tag ambiguity for word types in Brown and WSJ, using Treebank-3 (45-tag) tagging. Punctuation were treated as words, and words were kept in their original case.

Part of Speech Tagging

- Disambiguation task: each word might have different senses/functions
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VB the/DT boat/NN

earnings growth took a back/JJ seat a small building in the back/NN a clear majority of senators back/VBP the bill Dave began to back/VB toward the door enable the country to buy back/RP about debt I was twenty-one back/RB then

Some words have many functions!

A simple baseline

- Many words might be easy to disambiguate
- Most frequent class: Assign each token (word) to the class it occurred most in the training set. (e.g. man/NN)
- Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!
- State of the art ~ 97%
- Average English sentence ~ 14 words
 - Sentence level accuracies: $0.92^{14} = 31\%$ vs $0.97^{14} = 65\%$
- POS tagging not solved yet!

Hidden Markov Models

Some observations

- The function (or POS) of a word depends on its context
 - The/DT old/NN man/VB the/DT boat/NN
 - The/DT old/JJ man/NN bought/VBD the/DT boat/NN
- Certain POS combinations are extremely unlikely
 - <*JJ*, *DT*> or <*DT*, *IN*>
- Better to make decisions on entire sequences instead of individual words (Sequence modeling!)

Markov chains

- Model probabilities of sequences of variables
- Each state can take one of K values ({1, 2, ..., K} for simplicity)
- Markov assumption: $P(s_t | s_{< t}) \approx P(s_t | s_{t-1})$

Where have we seen this before?

Markov chains

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Markov chains

The/?? cat/?? sat/?? on/?? the/?? mat/??

We don't observe POS tags in corpora

Hidden Markov Model (HMM)

The/?? cat/?? sat/?? on/?? the/?? mat/??

- We don't observe POS tags in corpora
- But we do observe the words!
- HMM allows us to jointly reason over both hidden and observed events.

Components of an HMM

- 1. Set of states $S = \{1, 2, ..., K\}$ and observations O
- 2. Initial state probability distribution $\pi(s_1)$
- 3. Transition probabilities $P(s_{t+1} | s_t)$
- 4. Emission probabilities $P(o_t | s_t)$

Assumptions

1. Markov assumption:

$$P(s_{t+1} | s_1, \dots, s_t) = P(s_{t+1} | s_t)$$

2. Output independence:

$$P(o_t | s_1, \dots, s_t) = P(o_t | s_t)$$

Which is a stronger assumption?

Sequence likelihood

Sequence likelihood

Tags
$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \longrightarrow$$

Sequence likelihood

Tags
$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \longrightarrow$$

Learning

Training set:

- 1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
- 2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.
- 3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

Learning

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD year join/VB the/DT board/NN as/IN a/DT no Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman N.V./NNP ,/, the/DT Dutch/NNP publish 3 Rudolph/NNP Agnew/NNP ,/, 55/CD ye chairman/NN of/IN Consolidated/NNP Go ,/, was/VBD named/VBN a/DT nonexecut this/DT British/JJ industrial/JJ conglomer

38,219 It/PRP is/VBZ also/RB pulling/VE of/IN Puerto/NNP Rico/NNP ,/, who/WP Huricane/NNP Hugo/NNP victims/NNS ,/ them/PRP to/TO San/NNP Francisco/NN

 Maximum likelihood estimate:

$$P(s_i | s_j) = \frac{C(s_j, s_i)}{C(s_j)}$$

$$P(o \mid s) = \frac{C(s, o)}{C(s)}$$

Example: POS tagging

the/?? cat/?? sat/?? on/?? the/?? mat/??

$$\pi(DT) = 0.8$$

$$S_{t+1}$$

 O_t

		DT	NN	IN	VBD
	DT	0.5	8.0	0.05	0.1
S_t	NN	0.05	0.2	0.15	0.6
	IN	0.5	0.2	0.05	0.25
	VBD	0.3	0.3	0.3	0.1

	the	cat	sat	on	mat
DT	0.5	0	0	0	0
NN	0.01	0.2	0.01	0.01	0.2
IN	0	0	0	0.4	0
VBD	0	0.01	0.1	0.01	0.01

Example: POS tagging

the/?? cat/?? sat/?? on/?? the/?? mat/??

$$\pi(DT) = 0.8$$

$$S_{t+1}$$

$$O_t$$

		DT	NN	IN	VBD
	DT	0.5	8.0	0.05	0.1
S_t	NN	0.05	0.2	0.15	0.6
	IN	0.5	0.2	0.05	0.25
	VBD	0.3	0.3	0.3	0.1

	the	cat	sat	on	mat
DT	0.5	0	0	0	0
NN	0.01	0.2	0.01	0.01	0.2
IN	0	0	0	0.4	0
VBD	0	0.01	0.1	0.01	0.01

p(the/DT, cot/NN, sat/VBD, on/IN, the/DT, mat/NN)
- 1.84 * 10⁻⁵

Decoding with HMMs

• Task: Find the most probable sequence of states $\langle s_1, s_2, \dots, s_n \rangle$ given the observations $\langle o_1, o_2, \dots, o_n \rangle$

$$S = argmax P(S|O) = argmax P(S) P(O|S)$$

$$S = argmax P(S) P(O|S)$$

Decoding with HMMs

• Task: Find the most probable sequence of states $\langle s_1, s_2, \dots, s_n \rangle$ given the observations $\langle o_1, o_2, \dots, o_n \rangle$

$$S = argmax P(S|O) = argmax P(S) P(O|S)$$

$$= argmax P(S) P(O|S)$$

$$= argmax P(S) P(O|S)$$

$$S$$

Decoding with HMMs

• Task: Find the most probable sequence of states $\langle s_1, s_2, \dots, s_n \rangle$ given the observations $\langle o_1, o_2, \dots, o_n \rangle$

$$S = alg max p(s) p(o|s)$$

$$= alg max T p(s|s|-1) p(o|s)$$

$$= alg max T p(s) p(o|s)$$

$$= alg max T p(s)$$

$$= alg$$

Greedy decoding

Greedy decoding

The cat
$$P(S_2=S,DT)P(Cat|S)$$

$$S = alg max P(S) P(O|S)$$

$$S = alg max P(S) P(S|S_{i-1}) P(O_i|S_i)$$

$$S = alg max T P(S_i|S_{i-1}) P(O_i|S_i)$$

Greedy decoding

- Not guaranteed to be optimal!
 - Local decisions

Use dynamic programming!

• Probability lattice, M[T, K]

• T: Number of time steps

• *K* : Number of states

• M[i,j]: Most probable sequence of states ending with state ${\bf j}$ at time ${\bf i}$

DT

$$M[1,DT] = \pi(DT) \ P(\text{the} \,|\, DT)$$

NN

$$M[1,NN] = \pi(NN) P(\text{the} | NN)$$

VBD

$$M[1,VBD] = \pi(VBD) P(\mathsf{the} \mid VBD)$$

IN

$$M[1,IN] = \pi(IN) P(\mathsf{the} | IN)$$

the

Forward

$$M[i,j] = \max_{k} M[i-1,k] P(s_j | s_k) P(o_i | s_j) \quad 1 \le k \le K \quad 1 \le i \le n$$

Backward: Pick $\max_{k} M[n, k]$ and backtrack

$$M[i,j] = \max_{k} M[i-1,k] P(s_j | s_k) P(o_i | s_j) \quad 1 \le k \le K \quad 1 \le i \le n$$

Backward: Pick $\max_{k} M[n, k]$ and backtrack

Beam Search

• If K (number of states) is too large, Viterbi is too expensive!

 If K (number of states) is too large, Viterbi is too expensive!

Many paths have very low likelihood!

• If K (number of states) is too large, Viterbi is too expensive!

Keep a fixed number of hypotheses at each point

• Beam width, β

Keep a fixed number of hypotheses at each point

$$\begin{array}{ccc} & \text{DT} & score = -4.1 \\ & \text{NN} & score = -9.8 \\ & & \\ \beta = 2 & & \\ & \text{VBD} & score = -6.7 \\ & & \\$$

Keep a fixed number of hypotheses at each point

Step 1: Expand all partial sequences in current beam

Keep a fixed number of hypotheses at each point

Step 2: Prune set back to top β sequences

Keep a fixed number of hypotheses at each point

Pick $\max_{k} M[n, k]$ from within beam and backtrack

 If K (number of states) is too large, Viterbi is too expensive!

Keep a fixed number of hypotheses at each point

• Beam width, β

Trade-off computation for (some) accuracy

Time complexity?

Beyond bigrams

Real-world HMM taggers have more relaxed assumptions

• Trigram HMM: $P(s_{t+1} | s_1, s_2, ..., s_t) \approx P(s_{t+1} | s_{t-1}, s_t)$

Pros? Cons?

Maximum Entropy Markov Models

Generative vs Discriminative

HMM is a generative model

• Can we model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly?

Generative

Naive Bayes:

HMM:

$$P(s_1, \ldots, s_n)P(o_1, \ldots, o_n | s_1, \ldots, s_n)$$

Discriminative

Logistic Regression:

$$P(c \mid d)$$

MEMM:

$$P(s_1,\ldots,s_n\,|\,o_1,\ldots,o_n)$$

MEMM

• Compute the posterior directly:

$$\hat{S} = \arg\max_{S} P(S \mid O) = \arg\max_{S} \prod_{i} P(s_i \mid o_i, s_{i-1})$$
Features

• Use features: $P(s_i | o_i, s_{i-1}) \propto \exp(w \cdot f(s_i, o_i, s_{i-1}))$ weights

MEMM

In general, we can use all observations and all previous states:

$$\hat{S} = \arg \max_{S} P(S | O) = \arg \max_{S} \prod_{i} P(s_i | o_n, o_{i-1}, \dots, o_1, s_{i-1}, \dots, s_1)$$

$$P(s_i | s_{i-1}, \dots, s_1, O) \propto \exp(w \cdot f(s_i, s_{i-1}, \dots, s_1, O))$$

Features in an MEMM

Figure 8.13 An MEMM for part-of-speech tagging showing the ability to condition on more features.

$$\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle$$

$$\langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle,$$

$$\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle,$$

Feature templates

$$t_i$$
 = VB and w_{i-2} = Janet
 t_i = VB and w_{i-1} = will
 t_i = VB and w_i = back
 t_i = VB and w_{i+1} = the
 t_i = VB and w_{i+2} = bill
 t_i = VB and t_{i-1} = MD
 t_i = VB and t_{i-1} = MD and t_{i-2} = NNP
 t_i = VB and w_i = back and w_{i+1} = the

Features

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid o_{i}, s_{i-1})$$

(assume features only on previous time step and current obs)

Greedy decoding:

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid o_{i}, s_{i-1})$$

Greedy decoding:

DT NN
$$S_2 = algmax P(S|cat,DT)$$
The cat
$$= NN$$

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid o_{i}, s_{i-1})$$

Greedy decoding:

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid o_{i}, s_{i-1})$$

- Greedy decoding
- Viterbi decoding:

MEMM: Learning

Gradient descent: similar to logistic regression!

$$P(s_i | s_1, \dots, s_{i-1}, O) \propto \exp(w \cdot f(s_1, \dots, s_i, O))$$

• Given: pairs of (S, O) where each $S = \langle s_1, s_2, \dots, s_n \rangle$

Loss for one sequence,
$$L = -\sum_{i} \log P(s_i | s_1, \dots, s_{i-1}, O)$$

Compute gradients with respect to weights w and update

Bidirectionality DT **VB** IN NN *S*₃ S_4 The cat sat on 04 *o*₂ 03 **HMM MEMM**

Both HMM and MEMM assume left-to-right processing

Why can this be undesirable?

Bidirectionality

The/? old/? man/? the/? boat/?

$$P(JJ \mid DT)$$
 $P(\text{old} \mid JJ)$ $P(NN \mid JJ)$ $P(\text{man} \mid NN)$ $P(DT \mid NN)$ $P(NN \mid DT)$ $P(\text{old} \mid NN)$ $P(VB \mid NN)$ $P(\text{man} \mid VB)$ $P(DT \mid VB)$

Observation bias

Stanford Parser

Please enter a sentence to be parsed:

Your query

The old man the boat

Tagging

The/DT old/JJ man/NN the/DT boat/NN

Observation bias

Conditional Random Field (advanced)

- Compute log-linear functions over cliques
- Lesser independence assumptions
- Ex: $P(s_t | \text{ everything else}) \propto \exp(w \cdot f(s_{t-1}, s_t, s_{t+1}, O))$