=

COS 484: Natural Language Processing

Neural Network Basics

Fall 2019

Course planning

Representations for Language Machine Learning Classifiers

N-grams, Bag-of-words Naive Bayes

Logistic Regression
Word Embeddings

DT NN VBD DT NN

Sequences (tagging) W

the dog ate the cat Neural NetWOI'kS
(aka. Deep Learning)

Trees (parsing) o

oo T Covered in midterm!

Course planning

After midterm...

e Machine translation
e Information extraction

¢ (Question answering e Contextualized word embeddings
e (Coreference resolution e More advanced neural networks
e Dialogue

e¢ NLP and vision

Final project!

Neural networks for NLP

Inputs

Feed-forward NNs

Hidden
layer

Input

Outputs

Oggi

non

mi

sento
molto
bene
EMO_SAD

Convolutional NNs

T
’ . ~
H ~
/’// J ~
T
AT —
QS
|--- ----- -
i g o 1 B
L 3 1 _—— -
- -
=== _-- i i o g -
i i 7 T
=T -~ ” L O
[! 1 ” - !
i i . Multilayer percep-
embeddings convolutional layer max over time yerp p

for each word with pooling . tron
multiple filters with dropout

Always coupled with word embeddings...

Recurrent NNs

®
I

I
A

> —3)

.
:

» A > A > <
Output
Probabilities
Transformer s
-_Md & Norm
Forward
s | N I Add & Norm z
> Add & Norm Multi-Head
Feed Attention
Forward) Nx
—
Nix Add & Norm
~>{ Add & Norm) e
Multi-Head Multi-Head
Attention Attention
L 0
— J U —,
Positiqnal D & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

This Lecture

¢ Feedforward Neural Networks
e Applications

e Neural Bag-of-Words Models

e Feedforward Neural Language Models
¢ The training algorithm: Back-propagation

Neural Networks: History

NN “dark ages”

e Neural network algorithms date from the 80s

e ConvNets: applied to MNIST by LeCun in 1998

C3: f. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

recurrent

e Long Short-term Memory Networks (LSTMs): Hochreiter
and Schmidhuber 1997

recurrent

¢ Henderson 2003: neural shift-reduce parser, not SOTA

Credits: Greg Durrett

2008-2013: A glimmer of light

e Collobert and Weston 2011: “NLP (almost)
from Scratch”

e Feedforward NNs can replace “feature
engineering”

e 2008 version was marred by bad experiments,
claimed SOTA bu wasn’t, 2011 version tied SOTA

e Krizhevskey et al, 2012: AlexNet for ImageNet
Classification

e Socher 2011-2014: tree-structured
RNNs working okay not very good..

a b C

Credits: Greg Durrett

2014: Stuff starts working

Kim (2014) + Kalchbrenner et al, 2014: sentence classification
e ConvNets work for NLP!

Sutskever et al, 2014: sequence-to-sequence for neural MT
e LSTMs work for NLP!

Chen and Manning 2014: dependency parsing
¢ Even feedforward networks work well for NLP!

2015: explosion of neural networks for everything under the sun

Credits: Greg Durrett

Why didn’t they work before!

e Datasets too small: for MT, not really better until you have
1M+ parallel sentences (and really need a lot more)

e Optimization not well understood: good initialization, per-
feature scaling + momentum (Adagrad/Adam) work best out-of-
the-box

e Regularization: dropout is pretty helpful
e Computers not big enough: can’t run for enough iterations

e Inputs: need word embeddings to represent continuous semantics

Credits: Greg Durrett

The “Promise”

e Most NLP works in the past focused on human-designed
representations and input features

Var Definition Value in Fig. 5.2
X1 count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) 2
“ { 1 if “no” € doc 1
) 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 1f “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Representation learning attempts to automatically learn
good features and representations

e Deep learning attempts to learn multiple levels of
representation on increasing complexity/abstraction

Feed-forward Neural Networks

Feed-forward NNs

o Input:x,...,x;,
e Output: y € {0,1}

iInput layer

hidden layer 1 hidden layer 2

Neural computation

Computation units: neurons

An artificial neuron

e A neuron is a computational unit that has scalar inputs and an
output

e FEach input has an associated weight.

e The neuron multiples each input by its weight, sums them, applied
a nonlinear function to the result, and passes it to its output.

L wo

*@® synapse
axon from a neuron
woT(

cell body f (Z wiz; + b)
e Zw,-a:,- +4|¥ i >
: output axon
activation

Wo X function

Neural networks

¢ The neurons are connected to each other, forming a network
e The output of a neuron may feed into the inputs of other neurons

iInput layer

hidden layer 1 hidden layer 2

A neuron can be a binary logistic regression unit

L wWo
*@® synapse

axon from a neuron
woT

cell body f (Z wiz; + b)
w1 i
> E w;x; +b 4

: output axon

activation , : . 1-
function

.
S

A neural network
= running several logistic regressions at the same time

*‘\
<A
\\ ‘ output layer

hidden layer 1 hidden layer 2

iInput layer

e If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs...

e which we can feed into another logistic regression function

Mathematical Notations

Input layer: x,, ..., x,

Hidden layer 1: hl(l), hz(l), e hc(zl)
1

WY = VY + WG as + o+ W g+ b1

WY = FWSY + Wahas + .o+ Wyl zg + 65"

e @)
o'

\ tput layer
input layer ‘ ‘

th) — f(Wl(’Ql)hgl) + W1(,22) hél) + ...+ Wl(igl hgill) + b§2)) hidden layer 1 hidden layer 2

AN
0‘0}0

4
\
’

Hidden layer 2: hl(z), hz(z), e hc(iz)
2

)

WY = fWsD Y + Wi hsY L wi) hEY)

Output layer:

Yy = a(w%o)hgz) -+ wéo)h(;) +...+ wgz)hz) -+ b(o))

Matrix Notations

e Inputlayer: x e R

e Hidden layer 1:
hy = f(WWx + b)) e R
W e Rhixd K1) ¢ R

e Hidden layer 2:
hy = f(W®h; + b?) e R

W) ¢ Rd2xdr K(2) ¢ R

e Qutput layer:
y = o(w(® . hy + b))

*: fis applied element-wise

f(lz1, 22, 23]) = [f(21), f(22), f(23)]

Why non-linearities!?

e Neural networks can learn much more complex functions and
nonlinear decision boundaries

The capacity of the network increases with more hidden units and more hidden layers

How if we remove activation function?

Activation functions

RelLU

sigmoid tanh (rectified linear unit)
1 2 m
— € c —]- —

e2? + 1

1- 1.0 | B |
/_ R(z) =maz(0, 2)

8

0.5 -
/ 6
05 | | 0.0 /
4
)/ /
05f A
//

| L 5 | | | __J_ﬂdlff/l |

10

’

FO=1Ex0-1G)) =1-f()* pr={ *7"
0 2<0

\

Advantages of ReLU?

Activation functions

Problems of ReLLU? “dead neurons”

f(Z)={Z .

Leaky ReLU

0.0lz z<0

=0 y

Loss functions

e Binary classification e Regression
Y = O'(W(O) . h2 + b(O)) Y = W(O) -hoy + b(O)
L(y,y")=—y logy — (1 —y")log (1 —y) Lyvise(Y,y) = (y — y*)Q

e Multi-class classification (C classes)

C
Lly,y*) == v logy
1=1

The question again becomes how to compute: Vg L (9)

H — {W(l), b(H) W2 b2 wilo) b(o)}

Optimization

AU = 9 — nV,J(6)

e Logistic regression is convex: one global minimum

e Neural networks are non-convex and not easy to optimize

e A class of more sophisticated “adaptive” optimizers
that scale the parameter adjustment by an
accumulated gradient.

e Adam
e Adagrad
e RMSprop

Local Maxima

LocallMaxima

Local Minima

Local Minima

(Ruder 2016): An overview of gradient descent optimization algorithms

Applications

Neural Bag-of-Words (NBOW)

e Deep Averaging Networks (DAN) for Text Classification

DAN

softmax

llg — /(”_3 . h[+ ’)2)

hy = /(”] - av + 1)|)

1

averaging aw=73 o

word embeddings / \\

Predator IS a masterpiece

] Co C3 C4

(Iyyer et 2015): Deep Unordered Composition Rivals Syntactic Methods for Text Classification

Word embeddings: re-train or not!

Word embeddings can be treated as parameters too!

6= (WD b)) W b) p0) B}

When the training set is small, don’t re-train word Why?
embeddings (think of them as features!). Y

Most cases: initialize word embeddings using pre- “o00d” vs “bad”
trained ones (word2vec, Glove) and re-train them
for the task

When you have enough data, you can just randomly
initialize them and train from scratch (e.g. machine
translation)

Neural Bag-of-Words (NBOW)

Model RT SST SST IMDB Time

fine bin (s)

DAN-ROOT — 46.9 BS5.7 — 31
DAN-RAND 77.3 454 83.2 88.8 136
DAN 80.3 47.7 86.3 89.4 136

NBOW-RAND 76.2 423 814 88.9 0l

NBOW 790 436 83.6 89.0 01
BiNB — 41.9 83.1 — —

NBSVM-bi 794 — — 91.2 —

Feedforward Neural LMs

e N-gram models: P(mat|the cat sat on the)

e Input layer (context size n = 5):

i-th output = P(w, = i| context)
softmax
Ceeoeo o0 o000) L dn
A N X = [ethey €cats €sats €on; ethe] c R
’ ,, most computation here \\
’ []
A % concatenation

'
1 ‘: \‘ |
. tanh | e Hidden layer
. . Ceee :
I
! h
. h =tanh(Wx +b) € R
}
\

C(Wi—n+! "1—‘7 “(we—1)

(e®.---®) ... [oo (Oo;..
¢ Qutput layer (softmax)
Table n ., Matrix C
il I T et .
o across words 7 — Uh G R| |
index for Wi—p+1 index for w;_» index for w,_,
P(w =i | context) = softmax;(z)

(Bengio et 2003): A Neural Probabilistic Language Model

Backpropagation

How to compute gradients?

Backpropagation

e It’s taking derivatives and applying chain rule!

e We'll re-use derivatives computed for
higher layers in computing derivatives for e

KEEP
CALM

lower layers so as to minimize computation

e Good news is that modern automatic AND
differentiation tools did all for you! USE

e Implementing backprop by hand is like CHAIN RULE
programming in assembly language.

Deriving gradients for Feedforward NNs

Input: x x € RY

h; = tanh(W1x + bq) W, € R4xd b, ¢ R%
h, = tanh(W3h; + by) W, € Rizxd b, ¢ R
y = oc(wThg + b) w € R%

L(y,y*) = -y logy — (1 —y*)log (1 —y)

oL oL
S ‘p —

— = =
Oow 0b
0L 0L

— P _ = 9
OW 5 ' Obs '
OL 0L

oW, a—bl—.

v

Deriving gradients for Feedforward NNs

z1 = Wix+ by h; =tanh(z)
Zo — W2h1 -+ b2 hQ — taﬂh(Zg)

Yy = O'(WThz —+ b)

oc_ . o

ob y—Y OwW

OL _ . o OL
Backward 070 (1—h;) dhs
Propagation oL 0L - 97

Forward
Propagation

Computational graphs

wﬁﬂwahs

W b u
05 N/ s N 0s
0z oh 0s
1% b ds u
e ob

Credits: Chris Manning

An example

f(z,y,2) = (x +y) max(y, z)
r=1,y=2,2=0

XL

)

a=+Y
b = max(y, 2)
[=ab

* >

Compute the gradients yourself!

Backpropagation in general computational graph

e Forward propagation: visit nodes in topological sort order
e Compute value of node given predecessors

e Backward propagagation:
e Initialize output gradient as 1

e Visit nodes in reverse order and compute gradient wrt each
node using gradient wrt successors

OL <~ OL dy;
52 = 2

{y1,...,yn} = successors of x

