=

COS 484: Natural Language Processing

Log-linear models

Fall 2019

Announcements

e Assignment 2 will be available soon

* due Monday, Oct 7, 11:59pm

e Start early!

* All assignments due Mondays before lectures

Last time

e Supervised classification:

e Document to classify, d
e Setofclasses, C = {c{,Cy,...,Ct}

 Naive Bayes:

8 = w\aMM PCC> ?(A\C’>

C

Logistic Regression

Powerful supervised model
Baseline approach to most NLP tasks
Connections with neural networks

Binary (two classes) or multinomial (>2 classes)

Discriminative Model

* Logistic Regression is a discriminative model

* Naive Bayes is a generative model

Discriminative Model

A
e Logistic Regression: € = @FmMM PCC‘ Q]“>
C

 Naive Bayes: 2 = Ooxamo\x P) ¥ (d\c
c

Using Logistic Regression

Using Logistic Regression

e |nputs:

Using Logistic Regression

e |nputs:

1. Classification instance in a feature representation [x, x,

QQQQQ

Using Logistic Regression

e |nputs:
1. Classification instance in a feature representation [x;, x,, ..., x,]

2. Classification function to compute y using P(y | x)

Using Logistic Regression

e |nputs:
1. Classification instance in a feature representation [x;, x,, ..., x,]

2. Classification function to compute y using P(y | x)

3. Loss function (for learning)

Using Logistic Regression

e |nputs:
1. Classification instance in a feature representation [x;, x,, ..., x,]

2. Classification function to compute y using P(y | x)

3. Loss function (for learning)

4. Optimization algorithm

Using Logistic Regression

e |nputs:
1. Classification instance in a feature representation [x;, x,, ..., x,]

2. Classification function to compute y using P(y | x)

3. Loss function (for learning)
4. Optimization algorithm

e Train phase: Learn the parameters of the model to minimize loss function

Using Logistic Regression

e |nputs:
1. Classification instance in a feature representation [x;, x,, ..., x,]

2. Classification function to compute y using P(y | x)
3. Loss function (for learning)
4. Optimization algorithm
e Train phase: Learn the parameters of the model to minimize loss function

* Test phase: Apply parameters to predict class given a new input x

Feature representation

e |nput observation: x®

e Feature vector: [x(, x,,...,x,]

o Feature | of i!" input :)S.(i)

Sample feature vector

- -
--
—
—
- -
- — — —
x b -—
3
—
-
—_—

It's @Eﬁjl“here are Vlrtually@’surprlses and the ertlng isQecond-rato.

So why was 1t so€n |oyabl}3 For one thing , the cast is
Anotheouch is the music G)was overcome with the urge to get off
the co‘uch and start,dancmg It sucked@ln sand itll do the same to to_fou).

\\\ ,/ \:\\X :3.”,,
X1=3 xs=0 xc=4.15 4

Var Definition Value
X count(positive lexicon) € doc) 3
X7 count(negative lexicon) € doc) 2
“ { 1 if “no” € doc ,
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise

x¢ log(word count of doc) In(64) =4.15

Classification function

Classification function

» Given: Input feature vector [x;, x5, .. ., X,]

Classification function

 Given: Input feature vector [x{, X,, ..., X,]

e Output: P(y = 1]|x)and P(y = 0]x) (binary classification)

Classification function

 Given: Input feature vector [x{, X,, ..., X,]
e Output: P(y = 1]|x)and P(y = 0]x) (binary classification)

e Require a function, F : RY — [0,1]

Classification function

Given: Input feature vector [x, x,, ..., x;]
Output: P(y = 1|x) and P(y = 0| x)

Require a function, F : RY - [0,1]

Sigmoid:

(binary classification)

Given: Input feature vector [x, x,, ..., x;]

Output: P(y = 1|x) and P(y = 0| x)

Classification function

Require a function, F : RY - [0,1]

Sigmoid:

(binary classification)

Weights and Biases

Weights and Biases

e |\WVhich features are important and how much?

Weights and Biases

e |\WVhich features are important and how much?

* | earn a vector of weights and a bias

Weights and Biases

e |\WVhich features are important and how much?

* | earn a vector of weights and a bias

o Weights: Vector of real numbers, w = [w;, w,, . ..

Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias

Weights: Vector of real numbers, w = [w, w,, . ..

Bias: Scalar intercept, b

Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias

Weights: Vector of real numbers, w = [w, w,, ..., w/]

Bias: Scalar intercept, b

d
Given an instance, x: 7 = Z wx,+b orz=w-x+b
i=1

What is the bias!?

¢ | et’'s say we have a feature that is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say it was the only one | had...

first, how many weights do |
need to learn for this feature?

(Credits: Richard Socher)

What is the bias!?

¢ | et’'s say we have a feature that is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say it was the only one | had...

first, how many weights do |

w-x+b ,
need to learn for this feature?

okay... what is the best set of
weights for it”?

(Credits: Richard Socher)

Putting it together

Putting it together

e Givenx,compute z=w-x+b

Putting it together

e Givenx,compute z=w-x+b

. Compute probabilities: P(y = 1 |x) =
l +e=

Putting it together

e Givenx,compute z=w-x+b

. Compute probabilities: P(y = 1 |x) =
l +e=

Ply=1)=oc(w-x+b)
B 1
B 1 4+ e—(w-x+b)

Putting it together

e Givenx,compute z=w-x+b

. Compute probabilities: P(y = 1 |x) =
l +e=

Ply=1)=oc(w-x+b)
B 1
B 1 4+ e—(w-x+b)

P(y=0)=1-0o(w-x+b)
1
1 + e—w-x+b)

e —(w-x+b)

B 1 + e—(wx+b)

Putting it together

e Givenx,compute z=w-x+b

. Compute probabilities: P(y = 1 |x) =
l +e=

P(y=1)=o6w-x+b)
_ 1
o 1+ e—(w-x+b)

Py=0=1—-0ow-x+0>)
1
1+ e—(w-x+b)

e —(w-x+b)

o 1+ e—(w-x+b)

Decision boundary:

R {1nmy=u@>05
y = .
0 otherwise

Putting it together

Weights and <
Biases, Inc

Company

Example: Sentiment classification

- -
--
—
—
- -
- — — —
x b -—
3
—
-‘
—

It's @mhere are Vlrtually@’surprlses and the ertlng isQecond-rato.

So why was 1t so€n |0yabl}3 For one thing , the cast is
Anotheouch is the music G)was overcome with the urge to get off
the co‘uch and start/dancmg It sucked@ln ,qnd it'll do the same to fOU).

\\\ ,, \:\\‘X :3.”,,
X1=3 xs=0 xc=4.15 4

Var Definition Value
X count(positive lexicon) € doc) 3
X7 count(negative lexicon) € doc) 2
“ { 1 if “no” € doc ,
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “I” € doc 0
. 0 otherwise

x¢ log(word count of doc) In(64) =4.15

Example: Sentiment classification

Var Definition Value
X count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
“ { 1 if “no” € doc ,
- 0 otherwise
x4 count(lst and 2nd pronouns € doc) 3
. { 1 if “” € doc 0
: 0 otherwise

x¢ log(word count of doc) In(64) =4.15

Example: Sentiment classification

Var Definition Value
X count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
“ { 1 if “no” € doc ,
- 0 otherwise
x4 count(lst and 2nd pronouns € doc) 3
. { 1 if “” € doc 0
: 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

Example: Sentiment classification

Var Definition Value
X count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
“ { 1 if “no” € doc ,
- 0 otherwise
x4 count(lst and 2nd pronouns € doc) 3
. { 1 if “” € doc 0
: 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

p(+]x) =P(Y =1lx) = o(w-x+b)
— ([2.5,-5.0,-1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.15] +0.1)
= 0(.805)
= 0.69
p(—|lx)=P¥ =0|x) = l—oc(w-x+b)
= 0.31

Feature design

Feature design

* Most important rule: Data is key!

Feature design

* Most important rule: Data is key!

e Linguistic intuition (e.g. part of speech tags, parse trees)

Feature design

* Most important rule: Data is key!
e Linguistic intuition (e.g. part of speech tags, parse trees)

e Complex combinations

Feature design

* Most important rule: Data is key!

e Linguistic intuition (e.g. part of speech tags, parse trees)

e Complex combinations

X1

X3

if “Case(w;) = Lower”

otherwise

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w; 1) = Cap”
otherwise

Feature design

* Most important rule: Data is key!

e Linguistic intuition (e.g. part of speech tags, parse trees)

e Complex combinations

-
=

if “Case(w;) = Lower”
otherwise

|

0

1 if “w; € AcronymDict”

0 otherwise

1 if “w; = St. & Case(w;_1) = Cap”
0 otherwise

e Feature templates

* Sparse representations, hash only seen features into index

* Ex. Trigram(“logistic regression model”) = Feature #78

Feature design

* Most important rule: Data is key!

e Linguistic intuition (e.g. part of speech tags, parse trees)

e Complex combinations

-
=

if “Case(w;) = Lower”
otherwise

|

0

1 if “w; € AcronymDict”

0 otherwise

1 if “w; = St. & Case(w;_1) = Cap”
0 otherwise

e Feature templates

* Sparse representations, hash only seen features into index
* Ex. Trigram(“logistic regression model”) = Feature #78

e Advanced: Representation learning (we will see this later!)

Logistic Regression: what’s good and
what’s not

Logistic Regression: what’s good and
what’s not

e More freedom in designing features

Logistic Regression: what’s good and
what’s not

e More freedom in designing features

* No strong independence assumptions like Naive Bayes

Logistic Regression: what’s good and
what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

* More robust to correlated features (“San Francisco” vs
“Boston”) —LR is likely to work better than NB

Logistic Regression: what’s good and
what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

* More robust to correlated features (“San Francisco” vs
“Boston”) —LR is likely to work better than NB

e Can even have the same feature twice! (why?)

Logistic Regression: what’s good and
what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

* More robust to correlated features (“San Francisco” vs
“Boston”) —LR is likely to work better than NB

e Can even have the same feature twice! (why?)

* However: NB often better on very small datasets

Learning

Learning

* We have our classification function - how to assign
weights and bias?

Learning

* We have our classification function - how to assign
weights and bias?

e Goal: predicted label y as close as possible to actual label y

Learning

* We have our classification function - how to assign
weights and bias?

e Goal: predicted label y as close as possible to actual label y

« Distance metric/Loss function between y and y :
L(y,y)

Learning

* We have our classification function - how to assign
weights and bias?

e Goal: predicted label y as close as possible to actual label y

« Distance metric/Loss function between y and y :
L(y,y)

e Optimization algorithm for updating weights

Loss function

Loss function

e Assumey =oc(w:x+ b)

Loss function

e Assumey =oc(w:x+ b)

e L(y,y) = Measure of difference between y and y. But what form?

Loss function

e Assumey =oc(w:x+ b)
e L(y,y) = Measure of difference between y and y. But what form?

e Maximum likelihood estimation (conditional):

Loss function

e Assumey =oc(w:x+ b)
e L(y,y) = Measure of difference between y and y. But what form?

e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true labels y

paired with input x

Loss function

e Assumey =oc(w:x+ b)
e L(y,y) = Measure of difference between y and y. But what form?

e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true labels y

paired with input x

e Similar to language models!

Loss function

e Assumey =oc(w:x+ b)
e L(y,y) = Measure of difference between y and y. But what form?

e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true labels y

paired with input x

e Similar to language models!

e max log P(w,|w,_,,...,w,_;) given a corpus

Cross Entropy loss

Assume a single data point (x, y) and two classes
Classifier probability: P(y | x) = $ (1 — $)1™
Log probability:

CE Loss:

Cross Entropy loss

Assume a single data point (x, y) and two classes

Classifier probability: P(y | x) = $ (1 — $)1™

Log probability: ,Qog P<L(J\><3 - QOJ ["jg ("E]\ —ﬂ

CE Loss:

= 3%33 + Q”z) 103(1—’3\

Cross Entropy loss

Assume a single data point (x, y) and two classes

Classifier probability: P(y |x) = $7(1 — $)' >

Log probability: Qog P(H

CE Loss:
~ e Pylx)
AR .
_ »«(3 Aoy 1
g4:1 D Ry

1x) = Yoy : ’ﬁ} “"5\‘,\@

= Hﬂoa/j + Q"H) koa(‘—fj\

Cross Entropy loss

e Assume n data points (x, y)
+ Classifier probability: IT_ P(y | x) = ITL 3*(1 — $)' ™
» CEloss: _ H 1» p(3|x)

- Z LQB (a\ﬂ

_ ,.i K SLG?]U + U*a\ﬂo (- (‘]ﬂ

Example: Computing CE Loss

Var Definition Value
X count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2

(. 1Y ”

1 1f “no” € doc

X3 \ . |

| 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. <(1 if “!” € doc 0

) | O otherwise

x¢ log(word count of doc) In(64) =4.15

Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
x; count(negative lexicon) € doc) 2
- <f 1 if “no” € doc ,
) | 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
N <(1 if “!” € doc 0
. | O otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
X7 count(negative lexicon) € doc) 2
- <f 1 if “no” € doc ,
; | 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
N <(1 if “” € doc 0
) | O otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

e Ify=1 (positive sentiment), L = —10g(0.69) = 0.37

Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
X7 count(negative lexicon) € doc) 2
- <f 1 if “no” € doc ,
; | 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
N <(1 if “!” € doc 0
) | O otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1
e Ify=1 (positive sentiment), L = —10g(0.69) = 0.37

e If y =0 (negative sentiment), L = —10g(0.31) = 1.17

Properties of CE Loss

Properties of CE Loss

Lep =~ D, [y?1og9? + (1 = yDlog(l — 3]
=1

Properties of CE Loss

Leg=— Y, [y?log3® + (1 — yD)log(l — $)]
=1

e Ranges from O (perfect predictions) to oo

Properties of CE Loss

Lep =~ D, [y?1og9? + (1 = yDlog(l — 3]
=1

e Ranges from O (perfect predictions) to oo

e Lower the value, better the classifier

Properties of CE Loss

Leg=— Y, [y?log3® + (1 — yD)log(l — $)]
=1

Ranges from O (perfect predictions) to oo
Lower the value, better the classifier

Cross-entropy between the true distribution P(y | x) and
predicted distribution P(y | x)

Optimization

Optimization

e We have our classification function and loss function - how do we find the
best w and b?

Optimization

e We have our classification function and loss function - how do we find the
best w and b?

0 = [w; D]

Optimization

e We have our classification function and loss function - how do we find the
best w and b?

0 = [w; D]

" 1 & . .
0 = arg min — Z L+(y?, x©; 9)
6 N 1

Optimization

e We have our classification function and loss function - how do we find the
best w and b?

0 = [w; D]

" 1 & . .
0 = arg min — Z L+(y?, x©; 9)
6 N 1

e (Gradient descent:

Optimization

e We have our classification function and loss function - how do we find the
best w and b?

0 = [w; D]

" 1 & . .
0 = arg min — Z L+(y?, x©; 9)
6 N 1

e (Gradient descent:

e Find direction of steepest slope

Optimization

e We have our classification function and loss function - how do we find the
best w and b?

0 = [w; D]

" 1 & . .
0 = arg min — Z L+(y?, x©; 9)
6 N 1

e Gradient descent:
e Find direction of steepest slope

* Move in the opposite direction

Gradient descent (1-D)

Cost

Learning step

Minimum

Random W
initial value

d
6)t+1 — 6)t ;9
ndef(x)

Gradient descent for LR

Gradient descent for LR

* Cross entropy loss for logistic regression is convex (i.e.
has only one global minimum)

e No local minima to get stuck Iin

Gradient descent for LR

* Cross entropy loss for logistic regression is convex (i.e.
has only one global minimum)

e No local minima to get stuck Iin
* Deep neural networks are not so easy

e Non-convex

Gradient descent for LR

* Cross entropy loss for logistic regression is convex (i.e.
has only one global minimum)

e No local minima to get stuck Iin
* Deep neural networks are not so easy

Local Maxima

® Non_ConveX LocallMaxima

Local Minima

Local Minima

Learning Rate

d
. Updates: 0"F!1 = ¢! @dé’ f(x; 0)

e Magnitude of movement along gradient

* Higher/faster learning rate = larger updates to parameters

fiw) fiw)

w' w w’ w
Too small: converge Too big: overshoot and
very slowly even diverge

Gradient descent with vector weights

e |In LR: weight w is a vector

e EXpress slope as a partial derivative of loss w.r.t each weight:

'88 L((X; 9),)’)-

VoL(f(x:0).y)) = : & Cost(w,b)

Gradient descent with vector weights

e In LR: weight w is a vector

e EXxpress slope as a partial derivative of loss w.r.t each weight:

VGL(f(X; 9))’)) —

S L(f(x:0).y)

e Updates: 8D = 0" — n VL(f(x;0),y)

Gradient for logistic regression

Gradient for logistic regression

Loy =— 2 [y?logo(w - xV + b) + (1 — yDlog(1 — o(w - x? + b))]
i=1

Gradient for logistic regression

Loy =— 2 [y?logo(w - xV + b) + (1 — yDlog(1 — o(w - x? + b))]
i=1

n

dL~-(w, b . o
, Gradient, cel) = Z [o(w - X 4 b) — y(z)]xj(z)

dw:
Wi i1

Gradient for logistic regression

Loy =— 2 [y?logo(w - xV + b) + (1 — yDlog(1 — o(w - x? + b))]
i=1

n

dL~-(w, b . o
, Gradient, cel) = Z [o(w - X 4 b) — y(z)]xj(z)

dw:
Wi i1

Gradient for logistic regression

Loy =— 2 [y?logo(w - xV + b) + (1 — yDlog(1 — o(w - x? + b))]
i=1

n

dL~-(w, b . o
, Gradient, cel) = Z [o(w - X 4 b) — y(z)]xj(z)

dw:
Wi i1

dL , b s . .
. Ci,(;) Z [o(w - x + b) — y]

=1

Gradient for logistic regression

Loy =— Z [y?logo(w - xV + b) + (1 — yDlog(1 — o(w - x? + b))]
i=1

n

dL~-(w, b . o
, Gradient, ceW:9) = Z [o(w - x® + b) — y(’)]xj(’)

dw:
W;] ~—————

Lo, b) _ D 1 py —
T =) [o(w-x? +b) —y?) frobM

=1

Stochastic Gradient Descent

e Online optimization

e Compute loss and minimize after each training example

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6

® # where: L 1s the loss function
f is a function parameterized by 6
x is the set of training inputs x(l) x(z)..... x()

y 1s the set of training outputs (label%) yl! |),y ...,y

0 <+0
repeat til done # see caption
For each training tuple (x(i), yli)) (in random order)
qu\ 1. Optional (for reporting) # How are we doing on this tuple?
Compute §) = f(x();0) # What is our estimated output $?
/LV\ Q/\-GJ\ (€ > Compute the loss L(3() y()) # How far off is () from the true output y(?)?
2. g VoL(f(x\);0),yl)) # How should we move 6 to maximize loss?
Lo S 3.0<-6 —ng # Go the other way instead
return 6

Stochastic Gradient Descent

e Online optimization

e Compute loss and minimize after each training example

Stochastic Gradient R \\A*___

Gradient Descent -

Regularization

Regularization

n
. Training objective: 0 = arg max Z log P(yW | xW)
0
i=1

Regularization

n
. Training objective: 0 = arg max Z log P(yW | xW)
0
i=1

* This might fit the training set too well! (including noisy features)

Regularization
A n . .
, Training objective: € = arg max Z log P(yW | xW)
R
* This might fit the training set too well! (including noisy features)

* Poor generalization to the unseen test set — Overfitting

Regularization

n
Training objective: 0 = arg max Z log P(y(i) |x(i))
0
i=1

This might fit the training set too well! (including noisy features)
Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overfitting

6 = arg max Z log P(yV | x¥) — aR(0)
O =l

Regularization

Training objective: 0 = arg maX Z log P(yW | xW)

=1

This might fit the training set too well! (including noisy features)

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overfitting \/’ [z

Va\

0 =

= arg maX Z log P(yW |x(’)) — aR(é’) wen
=1

\\g/(

gy

L2 regularization

d
L RO=11011"=)0

J=1

e Euclidean distance of weight vector @ from origin

e |2 regularized objective:

n d
) — (D) | 4Dy _ 2
H—argmHaX;logP(y | x\V) aEHJ.
1= J=

L1 Regularization
d
RO =110]],=) 0]
j=1

e Manhattan distance of weight vector 6 from origin

L1 regularized objective:

n d
0 = are max log P(yP | xD) — 0.
g m: Z} g P(y® | x®) JZI\ |

L2 vs LI regularization

L2 vs LI regularization

e |2 is easier to optimize - simpler derivation

e L1 is complex since the derivative of | 8| is not continuous at 0

L2 vs LI regularization

e |2 is easier to optimize - simpler derivation

e L1 is complex since the derivative of | 8| is not continuous at 0

e |2 leads to many small weights (due to 0° term)

e L1 prefers sparse weight vectors with many weights set to O (i.e. far
fewer features used)

L2 vs LI regularization

e |2 is easier to optimize - simpler derivation

e L1 is complex since the derivative of | 8| is not continuous at 0

e |2 leads to many small weights (due to 0° term)

e L1 prefers sparse weight vectors with many weights set to O (i.e. far

fewer features used)

A L1 regularization

4

\

A ;172

B L2 regularization

L2 vs LI regularization

e |2 is easier to optimize - simpler derivation

e L1 is complex since the derivative of | 8| is not continuous at 0

e |2 leads to many small weights (due to 0° term)

e L1 prefers sparse weight vectors with many weights set to O (i.e. far

fewer features used)

A L1 regularization

4

\

A ;172

B L2 regularization

L2 vs LI regularization

e |2 is easier to optimize - simpler derivation

e L1 is complex since the derivative of | 8| is not continuous at 0

e |2 leads to many small weights (due to 0° term)

e L1 prefers sparse weight vectors with many weights set to O (i.e. far
fewer features used)

A L1 regularization B L2 regularization

Multinomial Logistic Regression

Multinomial Logistic Regression

e What if we have more than 2 classes? (e.g. Part of speech
tagging, Named Entity Recognition, language model!)

Multinomial Logistic Regression

e What if we have more than 2 classes? (e.g. Part of speech
tagging, Named Entity Recognition, language model!)

e Needtomodel P(y =c|x)VceCC

Multinomial Logistic Regression

e What if we have more than 2 classes? (e.g. Part of speech
tagging, Named Entity Recognition, language model!)

e Needtomodel P(y =c|x)VceCC

 (Generalize sigmoid function to softmax

Multinomial Logistic Regression

e What if we have more than 2 classes? (e.g. Part of speech
tagging, Named Entity Recognition, language model!)

e Needtomodel P(y =c|x)VceCC

 (Generalize sigmoid function to softmax

el
k
j=1

1 <i<lk

softmax(z;) =
e

Multinomial Logistic Regression

e What if we have more than 2 classes? (e.g. Part of speech
tagging, Named Entity Recognition, language model!)

e Needtomodel P(y =c|x)VceCC

 (Generalize sigmoid function to softmax

softmax(z;) = 1 <i<k

Softmax

Softmax

e Similar to sigmoid, softmax squashes values towards 0 or 1

Softmax

e Similar to sigmoid, softmax squashes values towards 0 or 1
e If 7z =10,1,2,3,4], then

 softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

Softmax

e Similar to sigmoid, softmax squashes values towards 0 or 1
e If 7z =10,1,2,3,4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

Softmax

e Similar to sigmoid, softmax squashes values towards 0 or 1
e If 7z =10,1,2,3,4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

P(y=cl|x) =

Softmax

e Similar to sigmoid, softmax squashes values towards 0 or 1
e If 7z =10,1,2,3,4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

w, « Xx+b,

P(y=cl|x) =

j=1

fog Mg:clﬂ o WX T b
L Lo } -~ _9~'U\Qo\‘h>

Features in multinomial LR

Features in multinomial LR

e Features need to include both input (x) and class (c)

Features in multinomial LR

e Features need to include both input (x) and class (c)

* |Implicit in binary case

Features in multinomial LR

e Features need to include both input (x) and class (c)
* |Implicit in binary case

Var Definition Wt

(1 if “1” € doc
f1(0,x) < otherwise —4.0

0

> .

1 f “!,, d
filx) § o E S 26

g

\O

otherwise
if “!” € doc

otherwise 1.3

fl(_ax>)

Learning

Learning

* Generalize binary loss to multinomial CE loss:

k
Leg(3,y) = =) 1{y = k}log P(y = k| x)

c=1

k
=—Zl{y=k}log .
c=1 ijl

w.x+b,

ewj-x+bc

Learning

* Generalize binary loss to multinomial CE loss:

k
Leg(3,y) = =) 1{y = k}log P(y = k| x)

c=1

k
=—Zl{y=k}log .
c=1 ijl

w.x+b,

ewj-x+bc

e Gradient:

Learning

* Generalize binary loss to multinomial CE loss:

k
Leg(3,y) = =) 1{y = k}log P(y = k| x)

c=1

k
=—Zl{y=k}log .
c=1 ijl

w.x+b,

ewj-x+bc

e Gradient:

