
Log-linear models

Fall 2019

COS 484: Natural Language Processing



Announcements

• Assignment 2 will be available soon


• due Monday, Oct 7, 11:59pm 

• Start early! 

• All assignments due Mondays before lectures



Last time

• Supervised classification:


• Document to classify, d


• Set of classes, � 


• Naive Bayes:


C = {c1, c2, . . . , ck}



Logistic Regression

• Powerful supervised model


• Baseline approach to most NLP tasks


• Connections with neural networks


• Binary (two classes) or multinomial (>2 classes)



Discriminative Model

• Logistic Regression is a discriminative model


• Naive Bayes is a generative model



Discriminative Model

• Logistic Regression: 


• Naive Bayes:



Using Logistic Regression



Using Logistic Regression

• Inputs: 



Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation [x1, x2, . . . , xd]



Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation [x1, x2, . . . , xd]

2. Classification function to compute  using  ̂y P( ̂y |x)



Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation [x1, x2, . . . , xd]

2. Classification function to compute  using  ̂y P( ̂y |x)

3. Loss function (for learning)



Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation [x1, x2, . . . , xd]

2. Classification function to compute  using  ̂y P( ̂y |x)

3. Loss function (for learning)

4. Optimization algorithm 



Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation [x1, x2, . . . , xd]

2. Classification function to compute  using  ̂y P( ̂y |x)

3. Loss function (for learning)

4. Optimization algorithm 

• Train phase: Learn the parameters of the model to minimize loss function



Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation [x1, x2, . . . , xd]

2. Classification function to compute  using  ̂y P( ̂y |x)

3. Loss function (for learning)

4. Optimization algorithm 

• Train phase: Learn the parameters of the model to minimize loss function

• Test phase: Apply parameters to predict class given a new input x



Feature representation

• Input observation: � 


• Feature vector: � 


• Feature j of ith input  : 

x(i)

[x1, x2, . . . , xd]

x(i)
j



Sample feature vector



Classification function



Classification function

• Given: Input feature vector [x1, x2, . . . , xd]



Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output:  and                       (binary classification)P(y = 1 |x) P(y = 0 |x)



Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output:  and                       (binary classification)P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]



Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output:  and                       (binary classification)P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

• Sigmoid: 



Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output:  and                       (binary classification)P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

• Sigmoid: 

y =
1

1 + e−z
y

z



Weights and Biases



Weights and Biases

• Which features are important and how much?



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b

• Given an instance, x:      or z =
d

∑
i=1

wixi + b z = w ⋅ x + b



What is the bias?

(Credits: Richard Socher)



What is the bias?

(Credits: Richard Socher)

w ⋅ x + b



Putting it together



Putting it together

• Given x, compute  z = w ⋅ x + b



Putting it together

• Given x, compute  z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z



Putting it together

• Given x, compute  z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

P(y = 1) = σ(w ⋅ x + b)

=
1

1 + e−(w⋅x+b)



Putting it together

• Given x, compute  z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

P(y = 1) = σ(w ⋅ x + b)

=
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)

=
e−(w⋅x+b)

1 + e−(w⋅x+b)



Putting it together

• Given x, compute  z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

P(y = 1) = σ(w ⋅ x + b)

=
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)

=
e−(w⋅x+b)

1 + e−(w⋅x+b)

• Decision boundary:                      ̂y = {1 if P(y = 1 |x) > 0.5
0 otherwise



Putting it together

• Given x, compute  � 


• Compute probabilities: � 


� 


� 


• Decision boundary:                      �

z = w ⋅ x + b

P(y = 1 |x) =
1

1 + e−z

P(y = 1) = σ(w ⋅ x + b)

=
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)

=
e−(w⋅x+b)

1 + e−(w⋅x+b)

̂y = {1 if P(y = 1 |x) > 0.5
0 otherwise



Example: Sentiment classification



Example: Sentiment classification



Example: Sentiment classification

• Assume weights �  and bias �w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1



Example: Sentiment classification

• Assume weights �  and bias �w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1



Feature design



Feature design

• Most important rule: Data is key!



Feature design

• Most important rule: Data is key!

• Linguistic intuition (e.g. part of speech tags, parse trees)



Feature design

• Most important rule: Data is key!

• Linguistic intuition (e.g. part of speech tags, parse trees)

• Complex combinations



Feature design

• Most important rule: Data is key!

• Linguistic intuition (e.g. part of speech tags, parse trees)

• Complex combinations



Feature design

• Most important rule: Data is key!

• Linguistic intuition (e.g. part of speech tags, parse trees)

• Complex combinations

• Feature templates


• Sparse representations, hash only seen features into index


• Ex. Trigram(“logistic regression model”) = Feature #78



Feature design

• Most important rule: Data is key!

• Linguistic intuition (e.g. part of speech tags, parse trees)

• Complex combinations

• Feature templates


• Sparse representations, hash only seen features into index


• Ex. Trigram(“logistic regression model”) = Feature #78

• Advanced: Representation learning (we will see this later!)



Logistic Regression: what’s good and 
what’s not



Logistic Regression: what’s good and 
what’s not

• More freedom in designing features



Logistic Regression: what’s good and 
what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes



Logistic Regression: what’s good and 
what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs 
“Boston”) —LR is likely to work better than NB



Logistic Regression: what’s good and 
what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs 
“Boston”) —LR is likely to work better than NB

• Can even have the same feature twice! (why?)



Logistic Regression: what’s good and 
what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs 
“Boston”) —LR is likely to work better than NB

• Can even have the same feature twice! (why?)

• However: NB often better on very small datasets



Learning



Learning

• We have our classification function - how to assign 
weights and bias?



Learning

• We have our classification function - how to assign 
weights and bias?

• Goal: predicted label  as close as possible to actual label ̂y y



Learning

• We have our classification function - how to assign 
weights and bias?

• Goal: predicted label  as close as possible to actual label ̂y y

• Distance metric/Loss function between  and  : ̂y y
L( ̂y, y)



Learning

• We have our classification function - how to assign 
weights and bias?

• Goal: predicted label  as close as possible to actual label ̂y y

• Distance metric/Loss function between  and  : ̂y y
L( ̂y, y)

• Optimization algorithm for updating weights



Loss function



Loss function

• Assume ̂y = σ(w ⋅ x + b)



Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L( ̂y, y) =  Measure of difference between  ̂y and y



Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L( ̂y, y) =  Measure of difference between  ̂y and y

• Maximum likelihood estimation (conditional):



Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L( ̂y, y) =  Measure of difference between  ̂y and y

• Maximum likelihood estimation (conditional):

• Choose  and  such that  is maximized for true labels  
paired with input 

w b log P(y |x) y
x



Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L( ̂y, y) =  Measure of difference between  ̂y and y

• Maximum likelihood estimation (conditional):

• Choose  and  such that  is maximized for true labels  
paired with input 

w b log P(y |x) y
x

• Similar to language models!



Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L( ̂y, y) =  Measure of difference between  ̂y and y

• Maximum likelihood estimation (conditional):

• Choose  and  such that  is maximized for true labels  
paired with input 

w b log P(y |x) y
x

• Similar to language models!

•  given a corpusmax log P(wt |wt−n, . . . , wt−1)



Cross Entropy loss

• Assume a single data point �  and two classes


• Classifier probability: �  


• Log probability: 


• CE Loss: 

(x, y)

P(y |x) = ̂y y(1 − ̂y)1−y



Cross Entropy loss

• Assume a single data point �  and two classes


• Classifier probability: �  


• Log probability: 


• CE Loss: 

(x, y)

P(y |x) = ̂y y(1 − ̂y)1−y



Cross Entropy loss

• Assume a single data point �  and two classes


• Classifier probability: �  


• Log probability: 


• CE Loss: 

(x, y)

P(y |x) = ̂y y(1 − ̂y)1−y



Cross Entropy loss

• Assume n data points �  


• Classifier probability: �  


• CE Loss:


(x(i), y(i))

Πn
i=1P(y |x) = Πn

i=1 ̂yy(1 − ̂y)1−y



Example: Computing CE Loss



Example: Computing CE Loss

• Assume weights  and bias w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1



Example: Computing CE Loss

• Assume weights  and bias w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

• If y = 1 (positive sentiment), LCE = − log(0.69) = 0.37



Example: Computing CE Loss

• Assume weights  and bias w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

• If y = 1 (positive sentiment), LCE = − log(0.69) = 0.37

• If y = 0 (negative sentiment), LCE = − log(0.31) = 1.17



Properties of CE Loss



Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]



Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞



Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞

• Lower the value, better the classifier



Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞

• Lower the value, better the classifier

• Cross-entropy between the true distribution  and 
predicted distribution 

P(y |x)
P( ̂y |x)



Optimization



Optimization

• We have our classification function and loss function - how do we find the 
best  and ?w b



Optimization

• We have our classification function and loss function - how do we find the 
best  and ?w b

                                                      θ = [w; b]



Optimization

• We have our classification function and loss function - how do we find the 
best  and ?w b

                                                      θ = [w; b]

                                         ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)



Optimization

• We have our classification function and loss function - how do we find the 
best  and ?w b

                                                      θ = [w; b]

                                         ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent: 



Optimization

• We have our classification function and loss function - how do we find the 
best  and ?w b

                                                      θ = [w; b]

                                         ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent: 

• Find direction of steepest slope  



Optimization

• We have our classification function and loss function - how do we find the 
best  and ?w b

                                                      θ = [w; b]

                                         ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent: 

• Find direction of steepest slope  

• Move in the opposite direction



Gradient descent (1-D)

θt+1 = θt − η
d
dθ

f(x; θ)



Gradient descent for LR



Gradient descent for LR

• Cross entropy loss for logistic regression is convex (i.e. 
has only one global minimum)


• No local minima to get stuck in



Gradient descent for LR

• Cross entropy loss for logistic regression is convex (i.e. 
has only one global minimum)


• No local minima to get stuck in

• Deep neural networks are not so easy


• Non-convex



Gradient descent for LR

• Cross entropy loss for logistic regression is convex (i.e. 
has only one global minimum)


• No local minima to get stuck in

• Deep neural networks are not so easy


• Non-convex



Learning Rate

• Updates: � 


• Magnitude of movement along gradient


• Higher/faster learning rate = larger updates to parameters

θt+1 = θt − η
d
dθ

f(x; θ)



Gradient descent with vector weights

• In LR: weight �  is a vector


• Express slope as a partial derivative of loss w.r.t each weight:


               

w



Gradient descent with vector weights

• In LR: weight �  is a vector


• Express slope as a partial derivative of loss w.r.t each weight:


• Updates: � 


               

w

θ(t+1) = θt − η∇L( f(x; θ), y)



Gradient for logistic regression



Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]



Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient, 
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j



Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient, 
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j



Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient, 
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

•
dLCE(w, b)

db
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]



Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient, 
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

•
dLCE(w, b)

db
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]



Stochastic Gradient Descent

• Online optimization


• Compute loss and minimize after each training example


•



Stochastic Gradient Descent

• Online optimization


• Compute loss and minimize after each training example


•



Regularization



Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))



Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)



Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

• Poor generalization to the unseen test set — Overfitting



Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

• Poor generalization to the unseen test set — Overfitting

• Regularization helps prevent overfitting


                       ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i)) − αR(θ)



Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

• Poor generalization to the unseen test set — Overfitting

• Regularization helps prevent overfitting


                       ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i)) − αR(θ)



L2 regularization

• � 


• Euclidean distance of weight vector �  from origin


• L2 regularized objective:


                �

R(θ) = | |θ | |2 =
d

∑
j=1

θ2
j

θ

̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i)) − α
d

∑
j=1

θ2
j



L1 Regularization

• � 


• Manhattan distance of weight vector �  from origin


• L1 regularized objective:


                �

R(θ) = | |θ | |1 =
d

∑
j=1

|θj |

θ

̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i)) − α
d

∑
j=1

|θj |



L2 vs L1 regularization



L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation


• L1 is complex since the derivative of  is not continuous at 0|θ |



L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation


• L1 is complex since the derivative of  is not continuous at 0|θ |

• L2 leads to many small weights (due to  term)


• L1 prefers sparse weight vectors with many weights set to 0 (i.e. far 
fewer features used)

θ2



L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation


• L1 is complex since the derivative of  is not continuous at 0|θ |

• L2 leads to many small weights (due to  term)


• L1 prefers sparse weight vectors with many weights set to 0 (i.e. far 
fewer features used)

θ2



L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation


• L1 is complex since the derivative of  is not continuous at 0|θ |

• L2 leads to many small weights (due to  term)


• L1 prefers sparse weight vectors with many weights set to 0 (i.e. far 
fewer features used)

θ2



L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation


• L1 is complex since the derivative of  is not continuous at 0|θ |

• L2 leads to many small weights (due to  term)


• L1 prefers sparse weight vectors with many weights set to 0 (i.e. far 
fewer features used)

θ2



Multinomial Logistic Regression



Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech 
tagging, Named Entity Recognition, language model!)



Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech 
tagging, Named Entity Recognition, language model!)

• Need to model  P(y = c |x)∀c ∈ C



Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech 
tagging, Named Entity Recognition, language model!)

• Need to model  P(y = c |x)∀c ∈ C

• Generalize sigmoid function to softmax



Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech 
tagging, Named Entity Recognition, language model!)

• Need to model  P(y = c |x)∀c ∈ C

• Generalize sigmoid function to softmax

                      softmax(zi) =
ezi

∑k
j=1 ezj

1 ≤ i ≤ k



Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech 
tagging, Named Entity Recognition, language model!)

• Need to model  P(y = c |x)∀c ∈ C

• Generalize sigmoid function to softmax

                      softmax(zi) =
ezi

∑k
j=1 ezj

1 ≤ i ≤ k



Softmax



Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1



Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , then


•

z = [0,1,2,3,4]

softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])



Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , then


•

z = [0,1,2,3,4]

softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

• For multinomial LR, 



Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , then


•

z = [0,1,2,3,4]

softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

• For multinomial LR, 

                        P(y = c |x) =
ewc ⋅ x+bc

∑k
j=1 ewj ⋅ x+bj



Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , then


•

z = [0,1,2,3,4]

softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

• For multinomial LR, 

                        P(y = c |x) =
ewc ⋅ x+bc

∑k
j=1 ewj ⋅ x+bj



Features in multinomial LR



Features in multinomial LR

• Features need to include both input (x) and class (c)



Features in multinomial LR

• Features need to include both input (x) and class (c)

• Implicit in binary case



Features in multinomial LR

• Features need to include both input (x) and class (c)

• Implicit in binary case



Learning



Learning

• Generalize binary loss to multinomial CE loss:                                      

LCE( ̂y, y) = −
k

∑
c=1

1{y = k}log P(y = k |x)

= −
k

∑
c=1

1{y = k}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bc



Learning

• Generalize binary loss to multinomial CE loss:                                      

LCE( ̂y, y) = −
k

∑
c=1

1{y = k}log P(y = k |x)

= −
k

∑
c=1

1{y = k}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bc

• Gradient:



Learning

• Generalize binary loss to multinomial CE loss:                                      

LCE( ̂y, y) = −
k

∑
c=1

1{y = k}log P(y = k |x)

= −
k

∑
c=1

1{y = k}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bc

• Gradient:

                   

dLCE

dwc
= − (1{y = c} − P(y = c |x))xc

= − 1{y = c} −
ewc⋅x+bc

∑k
j=1 ewj⋅x+bc

xc






