

COS 484: Natural Language Processing

Log-linear models

Fall 2019

Announcements

- Assignment 2 will be available soon
 - due Monday, Oct 7, 11:59pm
 - Start early!
- All assignments due Mondays before lectures

Last time

- Supervised classification:
 - Document to classify, d
 - Set of classes, $C = \{c_1, c_2, ..., c_k\}$
- Naive Bayes:

$$\hat{c} = \alpha rgmax P(c) P(d|c)$$

Logistic Regression

- Powerful supervised model
- Baseline approach to most NLP tasks
- Connections with neural networks
- Binary (two classes) or multinomial (>2 classes)

Discriminative Model

- Logistic Regression is a *discriminative* model
- Naive Bayes is a *generative* model

Discriminative Model

- Logistic Regression: $\hat{c} = \underset{c}{\operatorname{argmax}} P(c|d)$ Naive Bayes: $\hat{c} = \underset{c}{\operatorname{argmax}} P(c) P(d|c)$

• Inputs:

- Inputs:
 - 1. Classification instance in a **feature representation** $[x_1, x_2, \ldots, x_d]$

- Inputs:
 - 1. Classification instance in a **feature representation** $[x_1, x_2, \ldots, x_d]$
 - 2. **Classification function** to compute \hat{y} using $P(\hat{y} | x)$

- Inputs:
 - 1. Classification instance in a **feature representation** $[x_1, x_2, \ldots, x_d]$
 - 2. **Classification function** to compute \hat{y} using $P(\hat{y} | x)$
 - 3. Loss function (for learning)

- Inputs:
 - 1. Classification instance in a **feature representation** $[x_1, x_2, \ldots, x_d]$
 - 2. **Classification function** to compute \hat{y} using $P(\hat{y} | x)$
 - 3. Loss function (for learning)
 - 4. Optimization **algorithm**

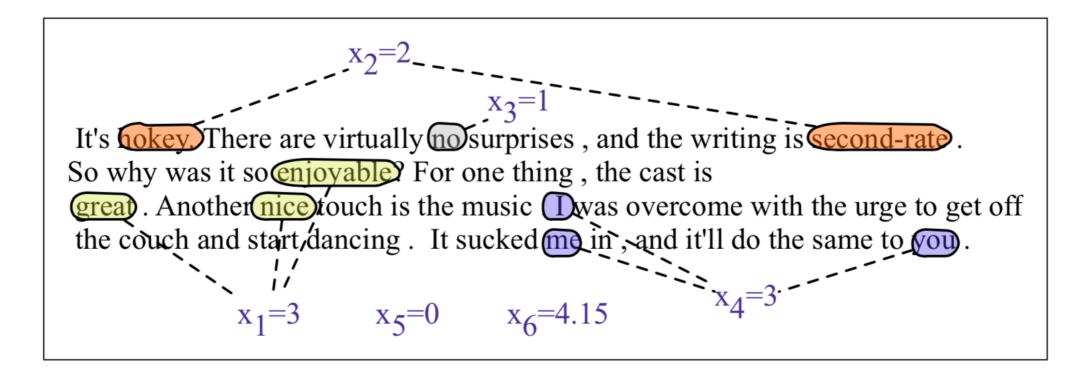
- Inputs:
 - 1. Classification instance in a **feature representation** $[x_1, x_2, \ldots, x_d]$
 - 2. **Classification function** to compute \hat{y} using $P(\hat{y} | x)$
 - 3. Loss function (for learning)
 - 4. Optimization **algorithm**
- Train phase: Learn the parameters of the model to minimize loss function

- Inputs:
 - 1. Classification instance in a **feature representation** $[x_1, x_2, \ldots, x_d]$
 - 2. **Classification function** to compute \hat{y} using $P(\hat{y} | x)$
 - 3. Loss function (for learning)
 - 4. Optimization **algorithm**
- Train phase: Learn the parameters of the model to minimize loss function
- Test phase: Apply parameters to predict class given a new input x

Feature representation

- Input observation: $x^{(i)}$
- Feature vector: $[x_1, x_2, ..., x_d]$
- Feature j of ith input : $x_i^{(i)}$

Sample feature vector



Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(64) = 4.15$

• *Given*: Input feature vector $[x_1, x_2, \ldots, x_d]$

- *Given*: Input feature vector $[x_1, x_2, \ldots, x_d]$
- *Output*: P(y = 1 | x) and P(y = 0 | x)

(binary classification)

- *Given*: Input feature vector $[x_1, x_2, \ldots, x_d]$
- Output: P(y = 1 | x) and P(y = 0 | x)

(binary classification)

• Require a *function*, $F : \mathbb{R}^d \to [0,1]$

- *Given*: Input feature vector $[x_1, x_2, \ldots, x_d]$
- Output: P(y = 1 | x) and P(y = 0 | x)

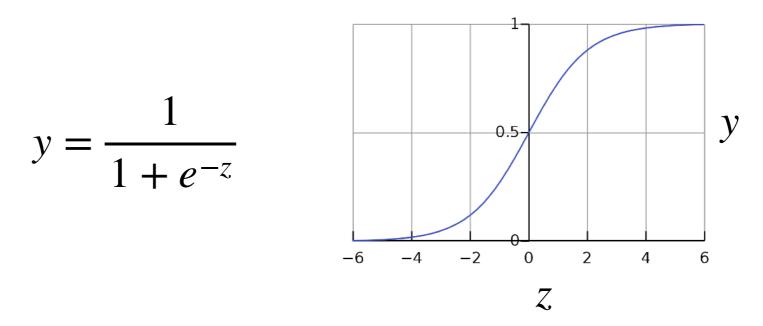
(binary classification)

- Require a *function*, $F : \mathbb{R}^d \to [0,1]$
- Sigmoid:

- *Given*: Input feature vector $[x_1, x_2, \ldots, x_d]$
- *Output*: P(y = 1 | x) and P(y = 0 | x)

(binary classification)

- Require a *function*, $F : \mathbb{R}^d \to [0,1]$
- Sigmoid:



• Which features are important and how much?

- Which features are important and how much?
- Learn a vector of weights and a bias

- Which features are important and how much?
- Learn a vector of weights and a bias
- Weights: Vector of real numbers, $w = [w_1, w_2, \dots, w_d]$

- Which features are important and how much?
- Learn a vector of weights and a bias
- Weights: Vector of real numbers, $w = [w_1, w_2, \dots, w_d]$
- **Bias:** Scalar intercept, *b*

- Which features are important and how much?
- Learn a vector of weights and a bias
- Weights: Vector of real numbers, $w = [w_1, w_2, \dots, w_d]$
- **Bias:** Scalar intercept, *b*

• Given an instance, x:
$$z = \sum_{i=1}^{d} w_i x_i + b$$
 or $z = w \cdot x + b$

What is the bias?

- Let's say we have a feature that is always set to 1 regardless of what the input text is.
- This is clearly not an informative feature. However, let's say it was the only one I had...

first, how many weights do I need to learn for this feature?

(Credits: Richard Socher)

What is the bias?

- Let's say we have a feature that is always set to 1 regardless of what the input text is.
- This is clearly not an informative feature. However, let's say it was the only one I had...

 $w \cdot x + b$ first, how many weights do I need to learn for this feature?

okay... what is the best set of weights for it?

(Credits: Richard Socher)

• Given x, compute $z = w \cdot x + b$

- Given x, compute $z = w \cdot x + b$
- Compute probabilities: $P(y = 1 | x) = \frac{1}{1 + e^{-z}}$

- Given x, compute $z = w \cdot x + b$
- Compute probabilities: $P(y = 1 | x) = \frac{1}{1 + e^{-z}}$

$$P(y = 1) = \sigma(w \cdot x + b)$$
$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

- Given x, compute $z = w \cdot x + b$
- Compute probabilities: $P(y = 1 | x) = \frac{1}{1 + e^{-z}}$

$$P(y = 1) = \sigma(w \cdot x + b)$$
$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$P(y = 0) = 1 - \sigma(w \cdot x + b)$$
$$= 1 - \frac{1}{1 + e^{-(w \cdot x + b)}}$$
$$= \frac{e^{-(w \cdot x + b)}}{1 + e^{-(w \cdot x + b)}}$$

- Given x, compute $z = w \cdot x + b$
- Compute probabilities: $P(y = 1 | x) = \frac{1}{1 + e^{-z}}$

$$P(y = 1) = \sigma(w \cdot x + b)$$
$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$P(y = 0) = 1 - \sigma(w \cdot x + b)$$

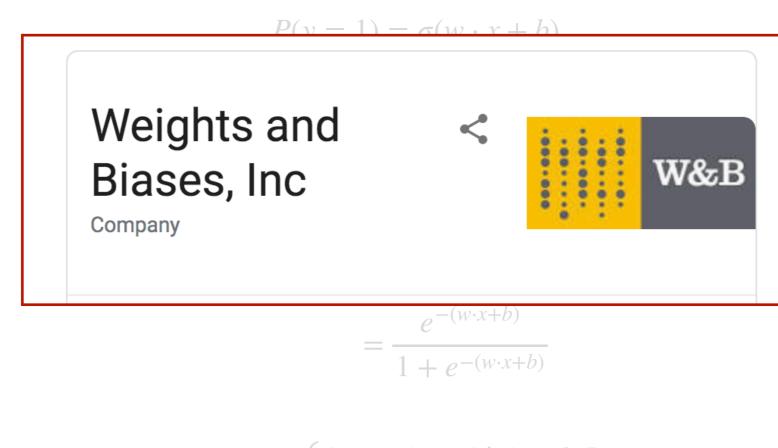
= $1 - \frac{1}{1 + e^{-(w \cdot x + b)}}$
= $\frac{e^{-(w \cdot x + b)}}{1 + e^{-(w \cdot x + b)}}$

• Decision boundary:

$$\hat{y} = \begin{cases} 1 & \text{if } P(y = 1 \mid x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

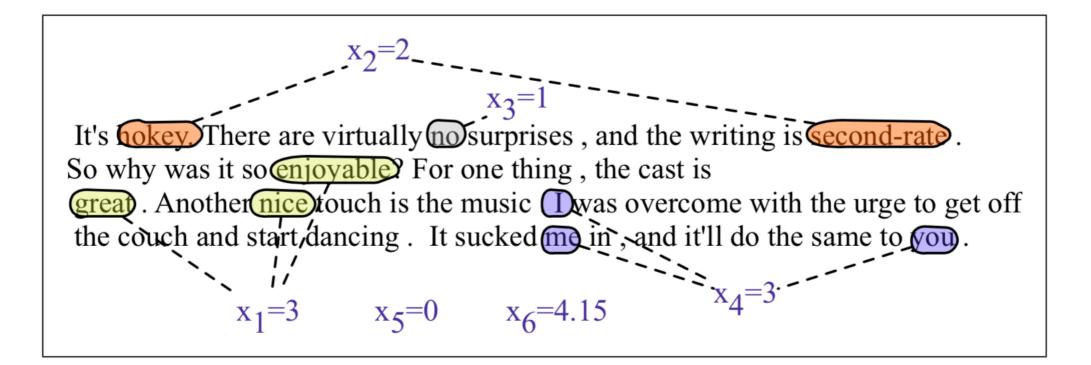
Putting it together

- Given x, compute $z = w \cdot x + b$
- Compute probabilities: $P(y = 1 | x) = \frac{1}{1 + e^{-z}}$



Decision boundary:

$$\hat{y} = \begin{cases} 1 & \text{if } P(y = 1 \mid x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$



Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	$\log(\text{word count of doc})$	$\ln(64) = 4.15$

Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	$\log(\text{word count of doc})$	$\ln(64) = 4.15$

Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(64) = 4.15$

• Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b = 0.1

Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(64) = 4.15$

• Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b = 0.1

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.15] + 0.1)$
= $\sigma(.805)$
= 0.69
 $p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$
= 0.31

• Most important rule: Data is key!

- Most important rule: Data is *key*!
- Linguistic intuition (e.g. part of speech tags, parse trees)

- Most important rule: Data is *key*!
- Linguistic intuition (e.g. part of speech tags, parse trees)
- Complex combinations

- Most important rule: Data is *key*!
- Linguistic intuition (e.g. part of speech tags, parse trees)
- Complex combinations

$$x_{1} = \begin{cases} 1 & \text{if } ``Case(w_{i}) = \text{Lower''} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{2} = \begin{cases} 1 & \text{if } ``w_{i} \in \text{AcronymDict''} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{3} = \begin{cases} 1 & \text{if } ``w_{i} = \text{St. } \& Case(w_{i-1}) = \text{Cap''} \\ 0 & \text{otherwise} \end{cases}$$

- Most important rule: Data is *key*!
- Linguistic intuition (e.g. part of speech tags, parse trees)
- Complex combinations

$$x_{1} = \begin{cases} 1 & \text{if "}Case(w_{i}) = \text{Lower"} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{2} = \begin{cases} 1 & \text{if "}w_{i} \in \text{AcronymDict"} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{3} = \begin{cases} 1 & \text{if "}w_{i} = \text{St. \& }Case(w_{i-1}) = \text{Cap"} \\ 0 & \text{otherwise} \end{cases}$$

- Feature templates
 - Sparse representations, hash only seen features into index
 - Ex. Trigram("*logistic regression model*") = Feature #78

- Most important rule: Data is *key*!
- Linguistic intuition (e.g. part of speech tags, parse trees)
- Complex combinations

$$x_{1} = \begin{cases} 1 & \text{if "}Case(w_{i}) = \text{Lower"} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{2} = \begin{cases} 1 & \text{if "}w_{i} \in \text{AcronymDict"} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{3} = \begin{cases} 1 & \text{if "}w_{i} = \text{St. \& }Case(w_{i-1}) = \text{Cap"} \\ 0 & \text{otherwise} \end{cases}$$

- Feature templates
 - Sparse representations, hash only seen features into index
 - Ex. Trigram("*logistic regression model*") = Feature #78
- Advanced: Representation learning (we will see this later!)

• More freedom in designing features

- More freedom in designing features
 - No strong independence assumptions like Naive Bayes

- More freedom in designing features
 - No strong independence assumptions like Naive Bayes
 - More robust to correlated features ("San Francisco" vs "Boston") — LR is likely to work better than NB

- More freedom in designing features
 - No strong independence assumptions like Naive Bayes
 - More robust to correlated features ("San Francisco" vs "Boston") — LR is likely to work better than NB
 - Can even have the same feature twice! (why?)

- More freedom in designing features
 - No strong independence assumptions like Naive Bayes
 - More robust to correlated features ("San Francisco" vs "Boston") — LR is likely to work better than NB
 - Can even have the same feature twice! (why?)
- However: NB often better on very small datasets

 We have our classification function - how to assign weights and bias?

- We have our classification function how to assign weights and bias?
- Goal: predicted label \hat{y} as close as possible to actual label y

- We have our classification function how to assign weights and bias?
- Goal: predicted label \hat{y} as close as possible to actual label y
 - Distance metric/Loss function between \hat{y} and y: $L(\hat{y}, y)$

- We have our classification function how to assign weights and bias?
- Goal: predicted label \hat{y} as close as possible to actual label y
 - Distance metric/Loss function between \hat{y} and y: $L(\hat{y}, y)$
 - **Optimization algorithm** for updating weights

• Assume $\hat{y} = \sigma(w \cdot x + b)$

- Assume $\hat{y} = \sigma(w \cdot x + b)$
- $L(\hat{y}, y) =$ Measure of difference between \hat{y} and y. But what form?

- Assume $\hat{y} = \sigma(w \cdot x + b)$
- $L(\hat{y}, y) =$ Measure of difference between \hat{y} and y. But what form?
- Maximum likelihood estimation (conditional):

- Assume $\hat{y} = \sigma(w \cdot x + b)$
- $L(\hat{y}, y) =$ Measure of difference between \hat{y} and y. But what form?
- Maximum likelihood estimation (conditional):
 - Choose *w* and *b* such that $\log P(y|x)$ is maximized for true labels *y* paired with input *x*

- Assume $\hat{y} = \sigma(w \cdot x + b)$
- $L(\hat{y}, y) =$ Measure of difference between \hat{y} and y. But what form?
- Maximum likelihood estimation (conditional):
 - Choose *w* and *b* such that $\log P(y|x)$ is maximized for true labels *y* paired with input *x*
 - Similar to language models!

- Assume $\hat{y} = \sigma(w \cdot x + b)$
- $L(\hat{y}, y) =$ Measure of difference between \hat{y} and y. But what form?
- Maximum likelihood estimation (conditional):
 - Choose *w* and *b* such that $\log P(y|x)$ is maximized for true labels *y* paired with input *x*
 - Similar to language models!
 - max log $P(w_t | w_{t-n}, \dots, w_{t-1})$ given a corpus

- Assume a single data point (*x*, *y*) and two classes
- Classifier probability: $P(y|x) = \hat{y}^y(1-\hat{y})^{1-y}$
- Log probability:
- CE Loss:

- Assume a single data point (*x*, *y*) and two classes
- Classifier probability: $P(y|x) = \hat{y}^y(1-\hat{y})^{1-y}$
- Log probability: $\log P(y|x) = \log \left[\hat{y}^{\lambda} (1-\hat{y})^{1-\lambda} \right]$ • CE Loss: $= y \log \hat{y} + (1-\hat{y}) \log (1-\hat{y})$

- Assume a single data point (x, y) and two classes
- Classifier probability: $P(y|x) = \hat{y}^{y}(1-\hat{y})^{1-y}$
- Log probability: $\log P(y|x) = \log \left[\hat{y}^{2}(1-\hat{y})^{1-y}\right]$ • CE Loss: $= y \log \hat{y} + (1-y) \log (1-\hat{y})^{1-y}$
- $-\log P(y|x) = -(y \log \hat{y} + (1-y) \log (1-\hat{y})]$ $= -(y \log \hat{y} + (1-y) \log (1-\hat{y})]$ $y = 1 = -\log \hat{y}$, $y = 0 = -\log (1-\hat{y})$

- Assume n data points $(x^{(i)}, y^{(i)})$
- Classifier probability: $\prod_{i=1}^{n} P(y | x) = \prod_{i=1}^{n} \hat{y}^{y} (1 \hat{y})^{1-y}$

• CE Loss:
$$-\log \prod_{i=1}^{n} P(y|x_i)$$

= $-\sum_{i=1}^{n} \log P(y|x_i)$
 $= -\sum_{i=1}^{n} \log P(y|x_i)$
 $L_{CE} = -\sum_{i=1}^{n} \left[y \log \hat{y} + (i-y) \log (i-\hat{y}) \right]$

Example: Computing CE Loss

Var	Definition	Value
<i>x</i> ₁	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> 5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(64) = 4.15$

Example: Computing CE Loss

Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	$\log(\text{word count of doc})$	$\ln(64) = 4.15$

• Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b = 0.1

Example: Computing CE Loss

Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	$\log(\text{word count of doc})$	$\ln(64) = 4.15$

- Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b = 0.1
- If y = 1 (positive sentiment), $L_{CE} = -\log(0.69) = 0.37$

Example: Computing CE Loss

Var	Definition	Value
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	$\log(\text{word count of doc})$	$\ln(64) = 4.15$

- Assume weights w = [2.5, -5.0, -1.2, 0.5, 2.0, 0.7] and bias b = 0.1
- If y = 1 (positive sentiment), $L_{CE} = -\log(0.69) = 0.37$
- If y = 0 (negative sentiment), $L_{CE} = -\log(0.31) = 1.17$

•
$$L_{CE} = -\sum_{i=1}^{n} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

•
$$L_{CE} = -\sum_{i=1}^{n} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$$

• Ranges from 0 (perfect predictions) to ∞

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

- Ranges from 0 (perfect predictions) to ∞
- Lower the value, better the classifier

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

- Ranges from 0 (perfect predictions) to ∞
- Lower the value, better the classifier
- Cross-entropy between the true distribution P(y|x) and predicted distribution $P(\hat{y}|x)$

• We have our **classification function** and **loss function** - how do we find the best *w* and *b*?

• We have our **classification function** and **loss function** - how do we find the best *w* and *b*?

 $\theta = [w; b]$

• We have our classification function and loss function - how do we find the best *w* and *b*?

 $\theta = [w; b]$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L_{CE}(y^{(i)}, x^{(i)}; \theta)$$

• We have our **classification function** and **loss function** - how do we find the best *w* and *b*?

 $\theta = [w; b]$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L_{CE}(y^{(i)}, x^{(i)}; \theta)$$

• Gradient descent:

• We have our **classification function** and **loss function** - how do we find the best *w* and *b*?

 $\theta = [w; b]$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L_{CE}(y^{(i)}, x^{(i)}; \theta)$$

- Gradient descent:
 - Find direction of steepest slope

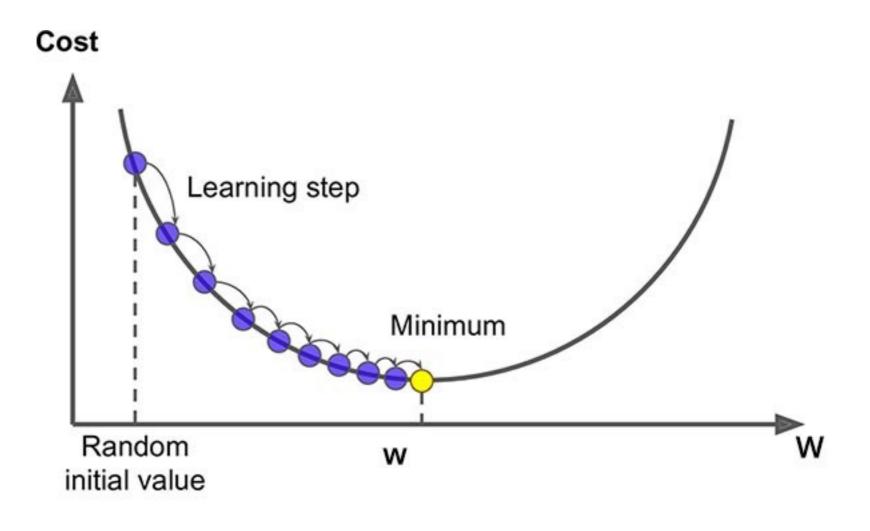
• We have our **classification function** and **loss function** - how do we find the best *w* and *b*?

 $\theta = [w; b]$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L_{CE}(y^{(i)}, x^{(i)}; \theta)$$

- Gradient descent:
 - Find direction of steepest slope
 - Move in the opposite direction

Gradient descent (I-D)

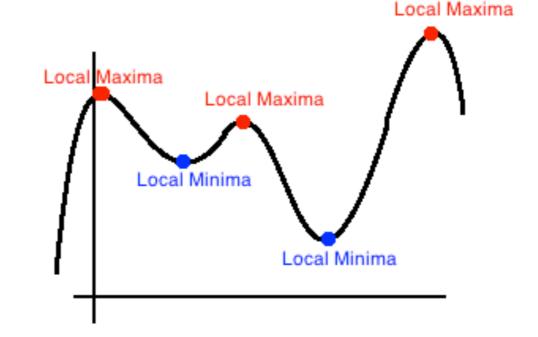


$$\theta^{t+1} = \theta^t - \eta \frac{d}{d\theta} f(x;\theta)$$

- Cross entropy loss for logistic regression is convex (i.e. has only one global minimum)
 - No local minima to get stuck in

- Cross entropy loss for logistic regression is convex (i.e. has only one global minimum)
 - No local minima to get stuck in
- Deep neural networks are not so easy
 - Non-convex

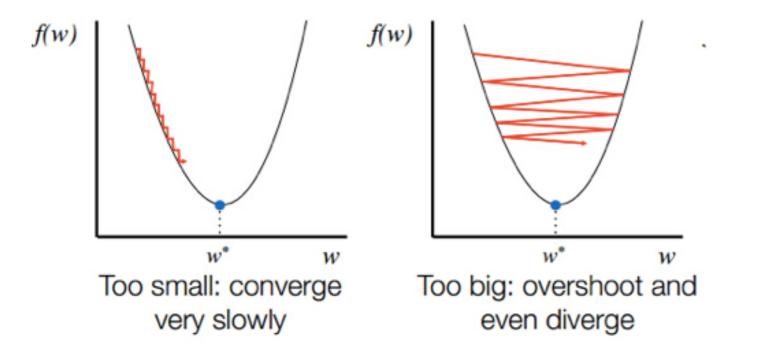
- Cross entropy loss for logistic regression is convex (i.e. has only one global minimum)
 - No local minima to get stuck in
- Deep neural networks are not so easy
 - Non-convex



Learning Rate

• Updates:
$$\theta^{t+1} = \theta^t - \eta \frac{d}{d\theta} f(x; \theta)$$

- Magnitude of movement along gradient
- Higher/faster learning rate = larger updates to parameters



Gradient descent with vector weights

- In LR: weight *w* is a vector
- Express slope as a partial derivative of loss w.r.t each weight:

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$
Cost(w,b)

Gradient descent with vector weights

- In LR: weight *w* is a vector
- Express slope as a partial derivative of loss w.r.t each weight:

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

• Updates: $\theta^{(t+1)} = \theta^t - \eta \nabla L(f(x; \theta), y)$

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log(1 - \sigma(w \cdot x^{(i)} + b)) \right]$$

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log(1 - \sigma(w \cdot x^{(i)} + b)) \right]$$

• Gradient,
$$\frac{dL_{CE}(w, b)}{dw_j} = \sum_{i=1}^n [\sigma(w \cdot x^{(i)} + b) - y^{(i)}]x_j^{(i)}$$

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log(1 - \sigma(w \cdot x^{(i)} + b)) \right]$$

• Gradient,
$$\frac{dL_{CE}(w, b)}{dw_j} = \sum_{i=1}^n [\sigma(w \cdot x^{(i)} + b) - y^{(i)}]x_j^{(i)}$$

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log(1 - \sigma(w \cdot x^{(i)} + b)) \right]$$

• Gradient,
$$\frac{dL_{CE}(w, b)}{dw_j} = \sum_{i=1}^n [\sigma(w \cdot x^{(i)} + b) - y^{(i)}]x_j^{(i)}$$

•
$$\frac{dL_{CE}(w,b)}{db} = \sum_{i=1}^{n} \left[\sigma(w \cdot x^{(i)} + b) - y^{(i)}\right]$$

•
$$L_{CE} = -\sum_{i=1}^{n} \left[y^{(i)} \log \sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)}) \log(1 - \sigma(w \cdot x^{(i)} + b)) \right]$$

• Gradient,
$$\frac{dL_{CE}(w,b)}{dw_{j}} = \sum_{i=1}^{n} [\sigma(w \cdot x^{(i)} + b) - y^{(i)}]x_{j}^{(i)}$$

$$\frac{dL_{CE}(w,b)}{db} = \sum_{i=1}^{n} [\sigma(w \cdot x^{(i)} + b) - y^{(i)}]$$
input

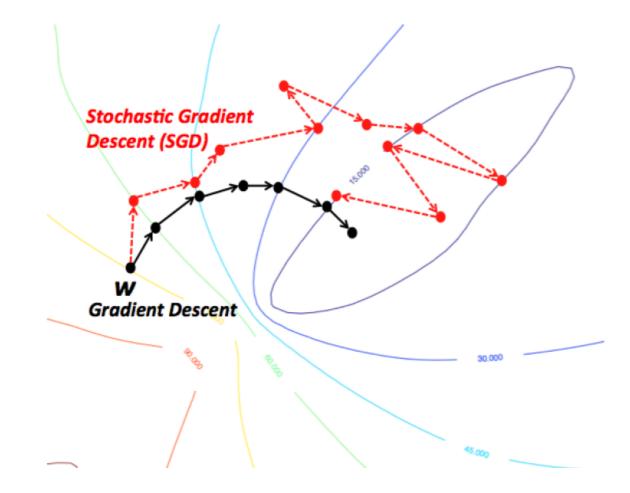
Stochastic Gradient Descent

- Online optimization
- Compute loss and minimize after each training example

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
                                 # where: L is the loss function
                                         f is a function parameterized by \theta
                                 #
                                         x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(n)}
                                 #
                                         y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(n)}
                                 #
                            \theta \leftarrow 0
                            repeat til done # see caption
                               For each training tuple (x^{(i)}, y^{(i)}) (in random order)
Per
Instance
Loss
                                  1. Optional (for reporting):
                                                                           # How are we doing on this tuple?
                                     Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                                                           # What is our estimated output \hat{y}?
                                \rightarrow Compute the loss L(\hat{y}^{(i)}, y^{(i)}) # How far off is \hat{y}^{(i)} from the true output y^{(i)}?
                                  2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                                           # How should we move \theta to maximize loss?
                                  3. \theta \leftarrow \theta - \eta g
                                                                           # Go the other way instead
                            return \theta
```

Stochastic Gradient Descent

- Online optimization
- Compute loss and minimize after each training example



• Training objective:
$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)})$$

• Training objective:
$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)})$$

• This might fit the training set too well! (including noisy features)

• Training objective:
$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)})$$

- This might fit the training set too well! (including noisy features)
- Poor generalization to the unseen test set Overfitting

• Training objective:
$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)})$$

- This might fit the training set too well! (including noisy features)
- Poor generalization to the unseen test set Overfitting
- Regularization helps prevent overfitting

$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)}) - \alpha R(\theta)$$

• Training objective:
$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)})$$

- This might fit the training set too well! (including noisy features)
- Poor generalization to the unseen test set Overfitting

lacksquare

Regularization helps prevent overfitting

$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)}) - \alpha R(\theta) \quad \text{weights}$$

L2 regularization

•
$$R(\theta) = ||\theta||^2 = \sum_{j=1}^d \theta_j^2$$

- Euclidean distance of weight vector θ from origin
- L2 regularized objective:

$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)}) - \alpha \sum_{j=1}^{d} \theta_j^2$$

LI Regularization

•
$$R(\theta) = ||\theta||_1 = \sum_{j=1}^d |\theta_j|$$

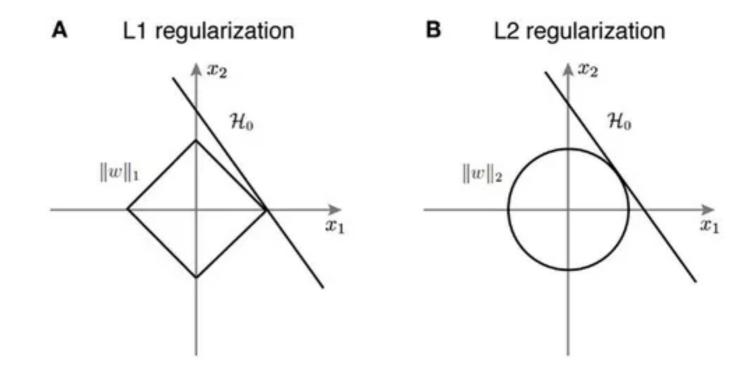
- Manhattan distance of weight vector θ from origin
- L1 regularized objective:

$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)}) - \alpha \sum_{j=1}^{d} |\theta_j|$$

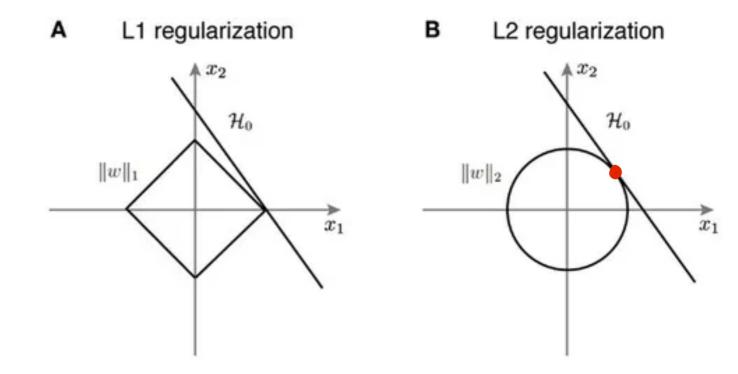
- L2 is easier to optimize simpler derivation
 - L1 is complex since the derivative of $|\theta|$ is not continuous at 0

- L2 is easier to optimize simpler derivation
 - L1 is complex since the derivative of $|\theta|$ is not continuous at 0
- L2 leads to many small weights (due to θ^2 term)
 - L1 prefers sparse weight vectors with many weights set to 0 (i.e. far fewer features used)

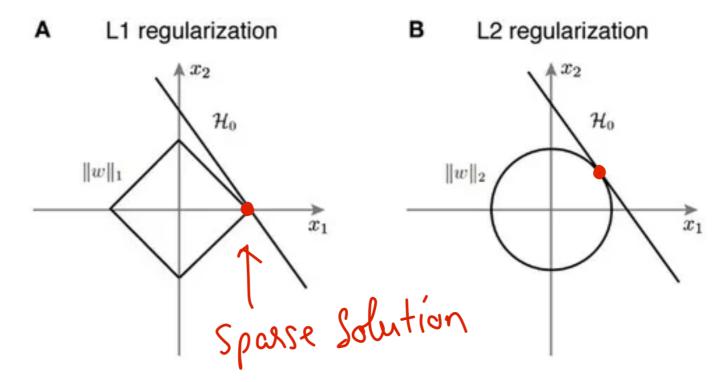
- L2 is easier to optimize simpler derivation
 - L1 is complex since the derivative of $|\theta|$ is not continuous at 0
- L2 leads to many small weights (due to θ^2 term)
 - L1 prefers *sparse* weight vectors with many weights set to 0 (i.e. far fewer features used)



- L2 is easier to optimize simpler derivation
 - L1 is complex since the derivative of $|\theta|$ is not continuous at 0
- L2 leads to many small weights (due to θ^2 term)
 - L1 prefers *sparse* weight vectors with many weights set to 0 (i.e. far fewer features used)



- L2 is easier to optimize simpler derivation
 - L1 is complex since the derivative of $|\theta|$ is not continuous at 0
- L2 leads to many small weights (due to θ^2 term)
 - L1 prefers *sparse* weight vectors with many weights set to 0 (i.e. far fewer features used)



• What if we have more than 2 classes? (e.g. Part of speech tagging, Named Entity Recognition, language model!)

- What if we have more than 2 classes? (e.g. Part of speech tagging, Named Entity Recognition, language model!)
- Need to model $P(y = c | x) \forall c \in C$

- What if we have more than 2 classes? (e.g. Part of speech tagging, Named Entity Recognition, language model!)
- Need to model $P(y = c | x) \forall c \in C$
- Generalize **sigmoid** function to **softmax**

- What if we have more than 2 classes? (e.g. Part of speech tagging, Named Entity Recognition, language model!)
- Need to model $P(y = c | x) \forall c \in C$
- Generalize **sigmoid** function to **softmax**

$$\operatorname{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}} \quad 1 \le i \le k$$

- What if we have more than 2 classes? (e.g. Part of speech tagging, Named Entity Recognition, language model!)
- Need to model $P(y = c | x) \forall c \in C$
- Generalize **sigmoid** function to **softmax**

softmax
$$(z_i) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$
 $1 \le i \le k$
Normalization

• Similar to sigmoid, softmax squashes values towards 0 or 1

- Similar to sigmoid, softmax squashes values towards 0 or 1
- If z = [0,1,2,3,4], then
 - $\operatorname{softmax}(z) = ([0.0117, 0.0317, 0.0861, 0.2341, 0.6364])$

- Similar to sigmoid, softmax squashes values towards 0 or 1
- If z = [0,1,2,3,4], then
 - $\operatorname{softmax}(z) = ([0.0117, 0.0317, 0.0861, 0.2341, 0.6364])$
- For multinomial LR,

- Similar to sigmoid, softmax squashes values towards 0 or 1
- If z = [0,1,2,3,4], then
 - $\operatorname{softmax}(z) = ([0.0117, 0.0317, 0.0861, 0.2341, 0.6364])$
- For multinomial LR,

$$P(y = c | x) = \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^k e^{w_j \cdot x + b_j}}$$

- Similar to sigmoid, softmax squashes values towards 0 or 1
- If z = [0,1,2,3,4], then
 - $\operatorname{softmax}(z) = ([0.0117, 0.0317, 0.0861, 0.2341, 0.6364])$
- For multinomial LR,

$$P(y = c | x) = \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^k e^{w_j \cdot x + b_j}}$$

$$\log P(y = c | x) \ll w_c \cdot x + b_c$$

$$(\log - linear)$$

• Features need to include both input (x) and class (c)

- Features need to include both input (x) and class (c)
- Implicit in binary case

- Features need to include both input (x) and class (c)
- Implicit in binary case

Var	Definition	Wt
$f_1(0,x)$	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	-4.5
51(/ /	$\begin{cases} 0 & \text{otherwise} \\ 1 & \text{if } \text{```''' } \subset 1 \end{cases}$	
$f_1(+,x)$	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	2.6
	$\begin{cases} 0 & \text{otherwise} \\ 1 & \text{if } "!" \in \text{doc} \end{cases}$	
$f_1(-,x)$	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1.3

• Generalize binary loss to multinomial CE loss:

$$L_{CE}(\hat{y}, y) = -\sum_{c=1}^{k} 1\{y = k\} \log P(y = k \mid x)$$
$$= -\sum_{c=1}^{k} 1\{y = k\} \log \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^{k} e^{w_j \cdot x + b_c}}$$

• Generalize binary loss to multinomial CE loss:

$$L_{CE}(\hat{y}, y) = -\sum_{c=1}^{k} 1\{y = k\} \log P(y = k \mid x)$$
$$= -\sum_{c=1}^{k} 1\{y = k\} \log \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^{k} e^{w_j \cdot x + b_c}}$$

• Gradient:

• Generalize binary loss to multinomial CE loss:

$$L_{CE}(\hat{y}, y) = -\sum_{c=1}^{k} 1\{y = k\} \log P(y = k \mid x)$$
$$= -\sum_{c=1}^{k} 1\{y = k\} \log \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^{k} e^{w_j \cdot x + b_c}}$$

• Gradient:

$$\frac{dL_{CE}}{dw_c} = -\left(1\{y=c\} - P(y=c \mid x))x_c\right)$$
$$= -\left(1\{y=c\} - \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^k e^{w_j \cdot x + b_c}}\right)x_c$$