
Text Classification

Fall 2019

COS 484: Natural Language Processing



Why classify?

• Authorship attribution


• Language detection


• News categorization

Spam detection Sentiment analysis



Classification: The Task

• Inputs:


• A document d 

• A set of classes C = {c1, c2, c3, … , cm}


• Output:


• Predicted class c  for document d

Movie was 
terrible

Amazing 
acting

Classify

Classify

Negative

Positive



Rule-based classification

• Combinations of features on words in document, meta-data  
 
IF there exists word w in document d such that w in [good, great, extra-ordinary, …],  
            THEN output Positive        
 
IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, …] 
             THEN output SPAM


• Can be very accurate


• Rules may be hard to define (and some even unknown to us!)


• Expensive


• Not easily generalizable

http://ithelpdesk.com
http://makemoney.com
http://spinthewheel.com


Supervised Learning: Let’s use statistics!

• Data-driven approach


• Let the machine figure out the best patterns to use


• Inputs:


• Set of m classes C = {c1, c2, …, cm}


• Set of n ‘labeled’ documents: {(d1, c1), (d2, c2), …, (dn, cn)}


• Output:


• Trained classifier, F : d -> c



Types of supervised classifiers

Naive Bayes Logistic regression

Support vector machines k-nearest neighbors



Multinomial Naive Bayes

• Simple classification model making use of Bayes rule


• Bayes Rule:


• Makes strong (naive) independence assumptions



Predicting a class

• Best class, 



How to represent P(d | c)?

• Option 1: represent the entire sequence of words


• P(w1, w2, w3, …, wk | c)                  (too many sequences!) 

• Option 2: Bag of words 


• Assume position of each word is irrelevant  
(both absolute and relative)


• P(w1, w2, w3, …, wk | c) = P(w1|c) P(w2|c) … P(wk|c)


• Probability of each word is conditionally independent 
 given class c



Bag of words
The%Bag%of%Words%Representation
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It manages to be whimsical 
and romantic while laughing 
at the conventions of the 
fairy tale genre. I would 
recommend it to just about 
anyone. I've seen it several 
times, and I'm always happy 
to see it again whenever I 
have a friend who hasn't 
seen it yet!
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Predicting with Naive Bayes

• We now have:



Naive Bayes as a generative classifier



Naive Bayes as a generative model



Naive Bayes as a generative model



Naive Bayes as a generative model

Generate the entire data set one document at a time



Estimating probabilities

• Maximum likelihood estimates:


•



Data sparsity

• What is count(‘amazing’, positive) = 0? 

• Implies P(‘amazing’ | positive) = 0


• Given a review document, d = “…. most amazing movie 
ever …”



Solution: Smoothing!

• Laplace smoothing:


• Simple, easy to use


• Effective in practice



Overall process

• Input: Set of annotated documents 


A. Compute vocabulary V of all words 

B. Calculate  
 

C. Calculate 
 

D. (Prediction) Given document  
 

{(di, ci)}n
i=1

d = (w1, w2, . . . , wk)



Naive Bayes Example

Choosing%a%class:
P(c|d5)$

P(j|d5)$ 1/4$*$(2/9)3 *$2/9$*$2/9$
≈$0.0001

Doc Words Class
Training 1 Chinese Beijing$Chinese c

2 Chinese$Chinese$Shanghai c
3 Chinese$Macao c
4 Tokyo$Japan$Chinese j

Test 5 Chinese$Chinese$Chinese$Tokyo Japan ?

41

Conditional%Probabilities:
P(Chinese|c)$=
P(Tokyo|c)$$$$=
P(Japan|c)$$$$$=
P(Chinese|j)$=
P(Tokyo|j)$$$$$=
P(Japan|j)$$$$$$=$

Priors:
P(c)=$
P(j)=$

3
4 1

4

P̂(w | c) = count(w,c)+1
count(c)+ |V |

P̂(c) = Nc

N

(5+1)$/$(8+6)$=$6/14$=$3/7
(0+1)$/$(8+6)$=$1/14

(1+1)$/$(3+6)$=$2/9$
(0+1)$/$(8+6)$=$1/14

(1+1)$/$(3+6)$=$2/9$
(1+1)$/$(3+6)$=$2/9$

3/4$*$(3/7)3 *$1/14$*$1/14$
≈$0.0003

∝

∝



Features

• In general, Naive Bayes can use any set of features, not just words


• URLs, email addresses, Capitalization, …


• Domain knowledge crucial to performance

Top features  
for  

Spam detection



Naive Bayes and Language Models

Each%class%=%a%unigram%language%model
• Assigning$each$word:$P(word$|$c)
• Assigning$each$sentence:$P(s|c)=Π P(word|c)

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

…

I love this fun film

0.1 0.1 .05 0.01 0.1

Class$pos

P(s$|$pos)$=$0.0000005$

Sec.13.2.1• If features = bag of words, each class is a unigram 
language model!


• For class c, assigning each word:  
                    assigning sentence: 



Naive Bayes as a language model
Naïve Bayes%as%a%Language%Model

• Which$class$assigns$the$higher$probability$to$s?

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

Model$pos Model$neg

filmlove this funI

0.10.1 0.01 0.050.1
0.10.001 0.01 0.0050.2

P(s|pos)$$>$$P(s|neg)

0.2 I

0.001 love

0.01 this

0.005 fun

0.1 film

Sec.13.2.1



Evaluation

• Consider binary classification


• Table of predictions 

• Ideally, we want:

Positive Negative

Positive 100 5

Negative 45 100

Positive Negative

Positive 145 0

Negative 0 105

Truth

Predicted



Evaluation Metrics

• True positive: Predicted + and actual +


• True negative: Predicted - and actual -


• False positive: Predicted + and actual -


• False negative: Predicted - and actual +

Accuracy =
TP + TN

Total
=

200
250

= 80 %

Positive Negative

Positive 100 5

Negative 45 100

Truth

Predicted



Evaluation Metrics

• True positive: Predicted + and actual +


• True negative: Predicted - and actual -


• False positive: Predicted + and actual -


• False negative: Predicted - and actual +

Accuracy =
TP + TN

Total
=

200
250

= 80 %

Positive Negative

Positive 100 5

Negative 45 100

Truth

Predicted

Positive Negative

Positive 100 25

Negative 25 100



Precision and Recall

• Precision: % of selected classes that are correct


• Recall: % of correct items selected

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN

Recall( + ) =
TP

TP + FN
Recall( − ) =

TN
TN + FP



F-Score

• Combined measure


• Harmonic mean of Precision and Recall


• Or more generally,

F1 =
2 ⋅ Precision ⋅ Recall
Precision + Recall

Fβ =
(1 + β2) ⋅ Precision ⋅ Recall

β2 ⋅ Precision + Recall



Choosing Beta

• Which value of Beta maximizes       for positive class?


A.  


B.  


C.  

Positive Negative

Positive 200 100

Negative 50 100

Fβ =
(1 + β2) ⋅ Precision ⋅ Recall

β2 ⋅ Precision + Recall

Fβ

β = 0.5

β = 1

β = 2

Truth

Predicted

 



Aggregating scores

• We have Precision, Recall, F1 for each class


• How to combine them for an overall score?


• Macro-average: Compute for each class, then average


• Micro-average: Collect predictions for all classes and 
jointly evaluate



Macro vs Micro average

58

MicroG vs.%MacroGAveraging:%Example

Truth:$
yes

Truth:$
no

Classifier:$yes 10 10

Classifier:$no 10 970

Truth:$
yes

Truth:$
no

Classifier:$yes 90 10

Classifier:$no 10 890

Truth:$
yes

Truth:$
no

Classifier:$yes 100 20

Classifier:$no 20 1860

Class$1 Class$2 Micro$Ave.$Table

Sec.$15.2.4

• Macroaveraged precision:$(0.5$+$0.9)/2$=$0.7
• Microaveraged precision:$100/120$=$.83
• Microaveraged score$is$dominated$by$score$on$common$classes



Validation

• Choose a metric: Precision/Recall/F1


• Optimize for metric on Validation (aka Development) set


• Finally evaluate on ‘unseen’ test set


• Cross-validation:


• Repeatedly sample several train-val splits


• Reduces bias due to sampling errors

Train Validation Test

Train Valid

Train                        Valid

Train                        Valid



Advantages of Naive Bayes
Summary:%Naive%Bayes%is%Not%So%Naive

• Very$Fast,$low$storage$requirements
• Robust$to$Irrelevant$Features

Irrelevant$Features$cancel$each$other$without$affecting$results

• Very$good$in$domains$with$many$equally$important$features
Decision$Trees$suffer$from$fragmentation in$such$cases$– especially$if$little$data

• Optimal$if$the$independence$assumptions$hold:$If$assumed$
independence$is$correct,$then$it$is$the$Bayes$Optimal$Classifier$for$problem

• A$good$dependable$baseline$for$text$classification
• But%we%will%see%other%classifiers%that%give%better%accuracy



Practical Naive Bayes

• Small data sizes:


• Naive Bayes is great! (high bias)


• Rule-based classifiers might work well too


• Medium size datasets:


• More advanced classifiers might perform better (e.g. SVM, logistic regression)


• Large datasets:


• Naive Bayes becomes competitive again (although most classifiers work well)



Failings of Naive Bayes (1)

• Independence assumptions are too strong 
 

• XOR problem: Naive Bayes cannot learn a decision boundary


• Both variables are jointly required to predict class



Failings of Naive Bayes (2)

• Class imbalance:


• One or more classes have more instances than others


• Data skew causes NB to prefer one class over the other


• Solution: Complement Naive Bayes (Rennie et al., 2003)



Failings of Naive Bayes (3)

• Weight magnitude errors:


• Classes with larger weights are preferred


• 10 documents with class=MA and “Boston” occurring once each


• 10 documents with class=CA and “San Francisco” occurring once each


• New document: “Boston Boston Boston San Francisco San Francisco”



Practical text classification

• Domain knowledge is crucial to selecting good features


• Handle class imbalance by re-weighting classes


• Use log scale operations instead of multiplying probabilities


•

Underflow%Prevention:%log%space
• Multiplying$lots$of$probabilities$can$result$in$floating4point$underflow.
• Since$log(xy)$=$log(x)$+$log(y)

• Better$to$sum$logs$of$probabilities$instead$of$multiplying$probabilities.
• Class$with$highest$un4normalized$log$probability$score$is$still$most$probable.

• Model$is$now$just$max$of$sum$of$weights

cNB = argmax
c j∈C

logP(cj )+ logP(xi | cj )
i∈positions
∑






