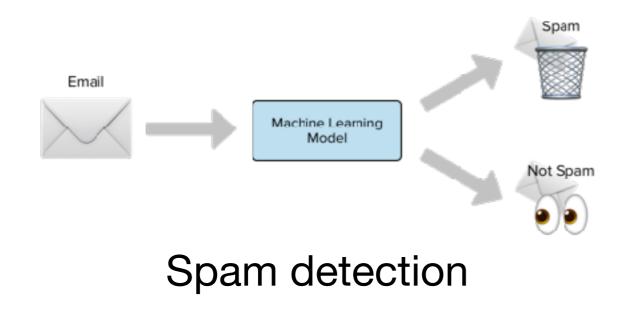


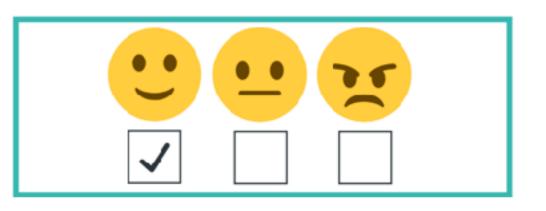
COS 484: Natural Language Processing

Text Classification

Fall 2019

Why classify?



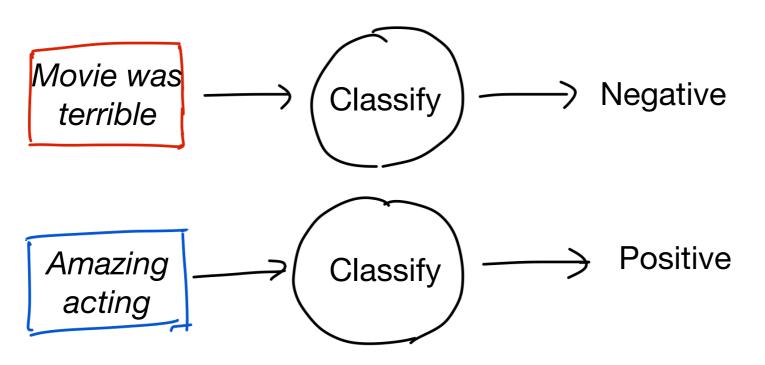


Sentiment analysis

- Authorship attribution
- Language detection
- News categorization

Classification: The Task

- Inputs:
 - A document d
 - A set of classes $C = \{C_1, C_2, C_3, \dots, C_m\}$
- Output:
 - Predicted class c for document d



Rule-based classification

- Combinations of features on words in document, meta-data
 - IF there exists word w in document d such that w in [good, great, extra-ordinary, ...], THEN output Positive

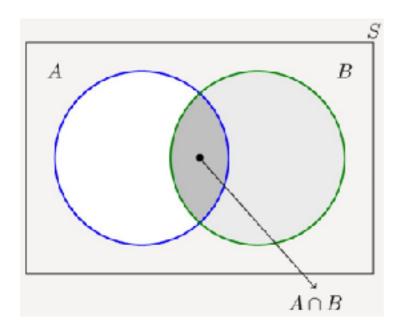
IF email address ends in [*ithelpdesk.com*, *makemoney.com*, *spinthewheel.com*, ...] THEN output SPAM

- Can be very accurate
- Rules may be hard to define (and some even unknown to us!)
- Expensive
- Not easily generalizable

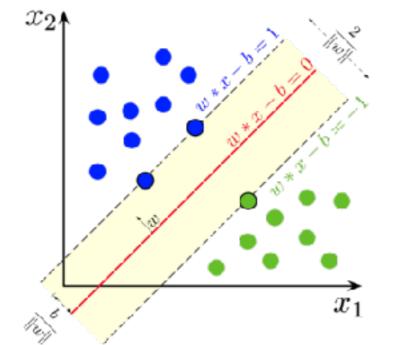
Supervised Learning: Let's use statistics!

- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:
 - Set of *m* classes $C = \{C_1, C_2, ..., C_m\}$
 - Set of *n* 'labeled' documents: $\{(d_1, c_1), (d_2, c_2), ..., (d_n, c_n)\}$
- Output: KEY QUESTIONS:
 a) Form of F?
 b) How to loarn F?

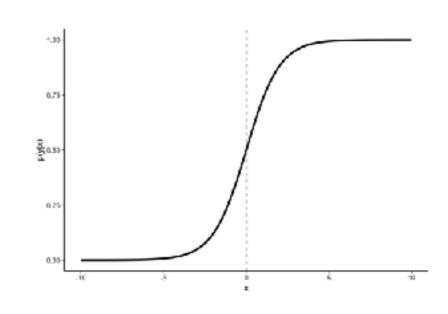
Types of supervised classifiers



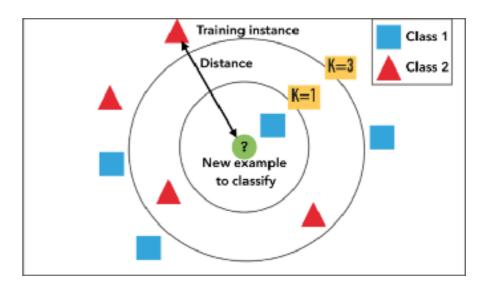
Naive Bayes



Support vector machines



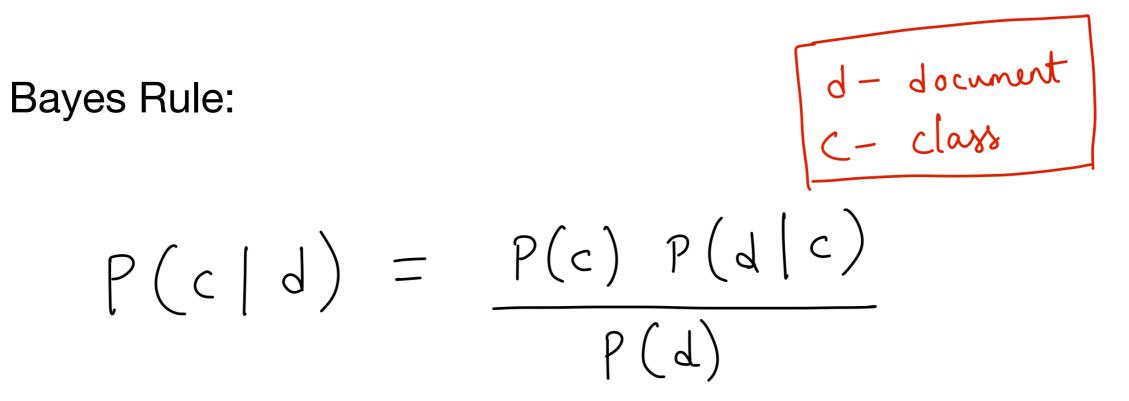
Logistic regression



k-nearest neighbors

Multinomial Naive Bayes

• Simple classification model making use of Bayes rule



• Makes strong (naive) independence assumptions

Predicting a class
• Best class,
$$C_{MAP} = asgmax P(c|d)$$

 $c \in C$
 $= asgmax \frac{P(c) P(d|c)}{P(d)}$
 $= asgmax P(c) P(d|c)$
 c
 $P(c) \rightarrow Prior probability of class c
 $P(d|c) \rightarrow Conditional probability of generating
document d from class c.$$

How to represent P(d | c)?

(too many sequences!)

- Option 1: represent the entire sequence of words
 - P(w₁, w₂, w₃, ..., w_k | c)
- Option 2: Bag of words
 - Assume position of each word is irrelevant (both absolute and relative)
 - $P(w_1, w_2, w_3, ..., w_k | c) = P(w_1 | c) P(w_2 | c) ... P(w_k | c)$
 - Probability of each word is *conditionally independent* given class c

Bag of words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

it 6 5 the 4 3 to 3 and 2 seen yet would whimsical times sweet satirical adventure genre fairy humor have great . . .

Predicting with Naive Bayes

• We now have:

$$C_{MAP} = a_{symax} P(d|c) P(c)$$

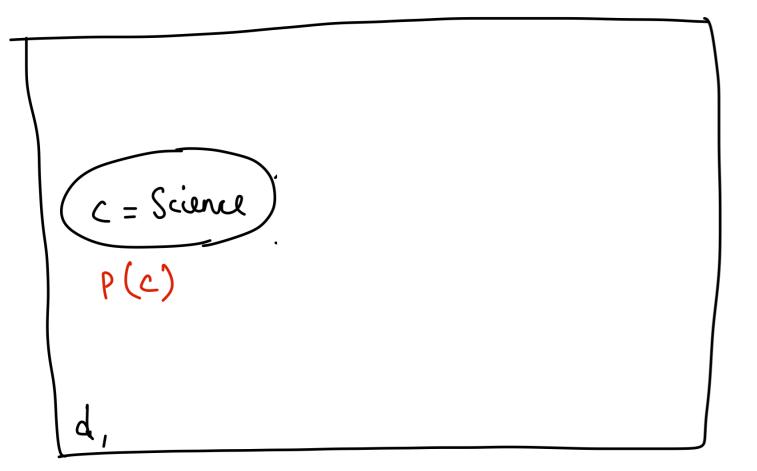
$$= a_{symax} P(w_1, w_2, \dots w_k | c) P(c)$$

$$= a_{symax} P(c) \frac{k}{11} P(w_1 | c)$$

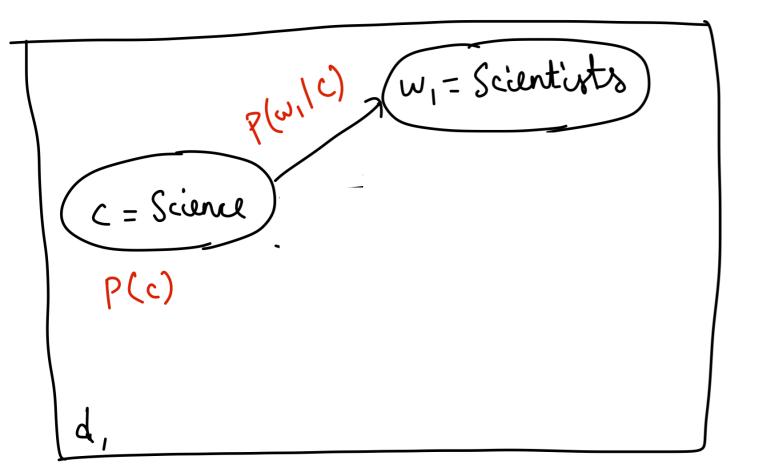
$$= a_{symax} P(c) \frac{k}{11} P(w_1 | c)$$

$$(using Bow assumption)$$

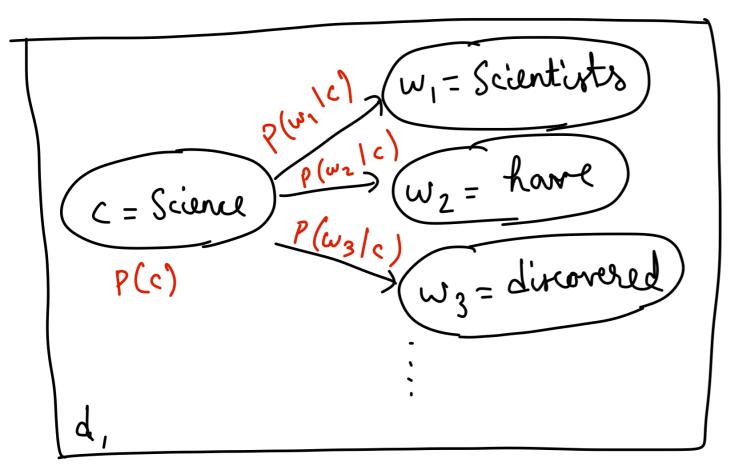
Naive Bayes as a generative classifier



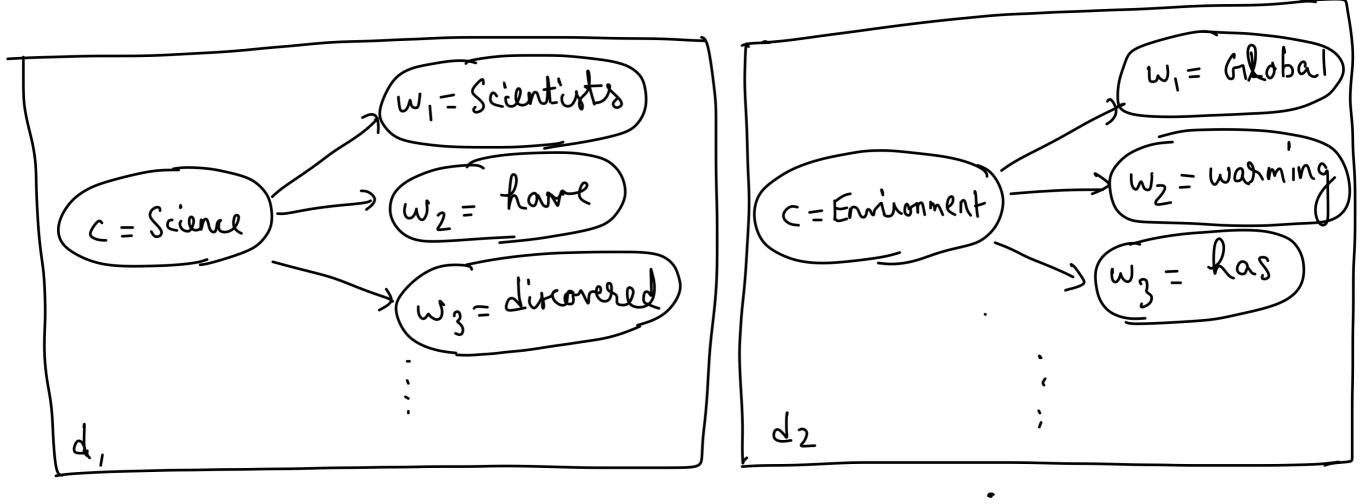
Naive Bayes as a generative model



Naive Bayes as a generative model



Naive Bayes as a generative model



Generate the entire data set one document at a time

Estimating probabilities

• Maximum likelihood estimates:

•
$$\hat{P}(c_j) = \frac{(ount(class = c_j))}{\sum_{c} (ount(class = c))}$$
 Total
 $\sum_{c} (ount(class = c)) \leftarrow Total$
 $\# of documents$

$$\hat{P}(w_i|c_j) = (ount(w_i,c_j)) = \sum_{w} (ount(w,c_j))$$

Data sparsity

- What is count('amazing', positive) = 0?
 - Implies P('amazing' | positive) = 0
- Given a review document, d = ``... most amazing movieever ...'' $C_{MAP} = algmax \hat{p}(c) \prod_{i=1}^{K} p(\omega_i (c))$ $= algmax \hat{p}(c) \cdot 0$

Solution: Smoothing!

• Laplace smoothing:

$$\hat{P}(w_{i}|c) = \frac{Count(w_{i},c) + \alpha}{\left[\sum_{w} (ount(w,c)] + \alpha|v|\right]}$$

$$\sum_{w} Vocabulary$$
Size

- Simple, easy to use
- Effective in practice

Overall process

- Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$
 - A. Compute vocabulary ${\bm V}$ of all words

B. Calculate
$$\hat{P}(c_j) = \frac{Court(c_j)}{Total \# docs}$$

C. Calculate $\hat{P}(w_j | c_j) = Court(w_j, c_j) + \alpha$
 $\sum_{w \in V} Court(w_j, c_j) + \alpha$
D. (Prediction) Given document $d = (w_1, w_2, \dots, w_k)$
 $C_{MAP} = \alpha \log \max \hat{P}(c) \cdot \prod \hat{P}(w_j | c_j)$

Naive Bayes Example

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w|c) = \frac{count(w,c)+1}{count(c)+|V|}$$

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$
$$P(j) = \frac{3}{4} \frac{1}{4}$$

Choosing a class: $P(c|d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14$ ≈ 0.0003

Conditional Probabilities:

P(Chinese | c) = (5+1) / (8+6) = 6/14 = 3/7 P(Tokyo | c) = (0+1) / (8+6) = 1/14 P(Japan | c) = (0+1) / (8+6) = 1/14 P(Chinese | j) = (1+1) / (3+6) = 2/9 P(Tokyo | j) = (1+1) / (3+6) = 2/9 P(Japan | j) = (1+1) / (3+6) = 2/9

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9$$

≈ 0.0001

Features

- In general, Naive Bayes can use any set of features, not just words
 - URLs, email addresses, Capitalization, ...
 - Domain knowledge crucial to performance

Rank	Category	Feature	Rank	Category	Feature
1	Subject	Number of capitalized words	1	Subject	Min of the compression ratio for the bz2 compressor
2	Subject	Sum of all the character lengths of words	2	Subject	Min of the compression ratio for the zlib compressor
3	Subject	Number of words containing letters and numbers	3	Subject	Min of character diversity of each wor
4	Subject	Max of ratio of digit characters to all characters of each word	4	Subject	Min of the compression ratio for the lzw compressor
5	Header	Hour of day when email was sent	5	Subject	Max of the character lengths of word
	(a)				(b)
		Spam URLs Fea	tures		
1	URL	The number of all URLs in an email	1	Header	Day of week when email was sent
2	URL	The number of unique URLs in an email	2	Payload	Number of characters
3	Payload	Number of words containing letters and numbers	3	Payload	Sum of all the character lengths of wo
4	Payload	Min of the compression ratio for the bz2 compressor	4	Header	Minute of hour when email was sen
5	Payload	Number of words containing only letters	5	Header	Hour of day when email was sent

Top features for Spam detection

Naive Bayes and Language Models

- If features = bag of words, each class is a unigram language model!
- For class c, assigning each word: $P(\omega | c)$ assigning sentence: $p(s|c) = \pi P(\omega | c)$

0.1 I I love this fun film	
0.1 love 0.1 0.1 0.1 0.1	
0.1 0.1 .05 0.01 0.1 0.1	
0.05 fun	
0.1 film P(s pos) = 0.00	00005

Naive Bayes as a language model

• Which class assigns the higher probability to s?

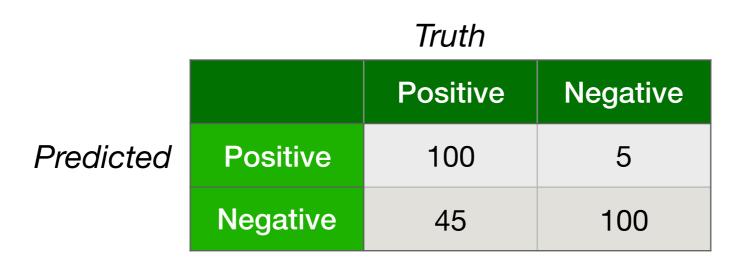
Model pos Model neg			
0.1 I 0.2 I I love	this	fun	film
0.1 love 0.001 love 0.1		0.05	0 1
0.01this0.10.10.010.010.010.001	0.01 0.01	0.05 0.005	0.1 0.1
0.05 fun 0.005 fun			
0.1 film 0.1 film P(s po	os) > P(s	(neg)	

Evaluation

- Consider binary classification
- Table of predictions *Truth Truth Predicted Positive Positive Negative Added to the positive Predicted Positive Added to the positive Added to the positive Predicted Positive Added to the positive Added to the positive Added to the positive Predicted Positive Added to the positive*
- Ideally, we want:

	Positive	Negative
Positive	145	0
Negative	0	105

Evaluation Metrics



- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

$$\mathbf{Accuracy} = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Evaluation Metrics

	Truth			
		Positive	Negative	
Predicted	Positive	100	5	
	Negative	45	100	

	Positive	Negative
Positive	100	25
Negative	25	100

Coarse metric

- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

$$\mathbf{Accuracy} = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Precision and Recall

Precision: % of selected classes that are correct

$$Precision(+) = \frac{TP}{TP + FP} \qquad Precision(-) = \frac{TN}{TN + FN}$$

Recall: % of correct items selected

$$\mathbf{Recall}(+) = \frac{TP}{TP + FN} \qquad \qquad \mathbf{Recall}(-) = \frac{TN}{TN + FP}$$

F-Score

- Combined measure
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

• Or more generally,

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

Choosing Beta

Truth

		Positive	Negative
Predicted	Positive	200	100
	Negative	50	100

 $F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$

• Which value of Beta maximizes F_{β} for positive class?

A.
$$\beta = 0.5$$

B. $\beta = 1$
C. $\beta = 2$

Aggregating scores

- We have Precision, Recall, F1 for each class
- How to combine them for an overall score?
 - Macro-average: Compute for each class, then average
 - Micro-average: Collect predictions for all classes and jointly evaluate

Macro vs Micro average

Class	1
Class	┻

Class 2

Micro Ave. Table

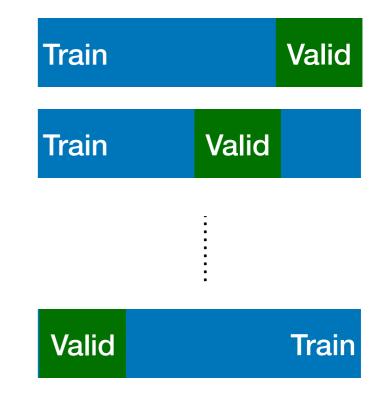
Classifier: yes	Truth: yes 10	Truth: no 10	Classifier: yes	Truth: yes 90	Truth: no 10	Classifier:
Classifier: no	10	970	Classifier: no	10	890	Classifier:

	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Microaveraged score is dominated by score on common classes

Validation

- Choose a metric: Precision/Recall/F1
- Optimize for metric on Validation (aka Development) set
- Finally evaluate on 'unseen' test set
- Cross-validation:
 - Repeatedly sample several train-val splits
 - Reduces bias due to sampling errors



Advantages of Naive Bayes

- Very Fast, low storage requirements
- Robust to Irrelevant Features

Irrelevant Features cancel each other without affecting results

- Very good in domains with many equally important features
 Decision Trees suffer from *fragmentation* in such cases especially if little data
- Optimal if the independence assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- A good dependable baseline for text classification
 - But we will see other classifiers that give better accuracy

Practical Naive Bayes

- Small data sizes:
 - Naive Bayes is great! (high bias)
 - Rule-based classifiers might work well too
- Medium size datasets:
 - More advanced classifiers might perform better (e.g. SVM, logistic regression)
- Large datasets:
 - Naive Bayes becomes competitive again (although most classifiers work well)

Failings of Naive Bayes (1)

• Independence assumptions are too strong

x1	x2	Class: x ₁ XOR x ₂
1	1	0
0	1	1
1	0	1
0	0	0

- XOR problem: Naive Bayes cannot learn a decision boundary
- Both variables are jointly required to predict class

Failings of Naive Bayes (2)

- Class imbalance:
 - One or more classes have more instances than others
 - Data skew causes NB to prefer one class over the other
 - Solution: Complement Naive Bayes (Rennie et al., 2003)

$$\hat{P}(w_{i} | \hat{c}_{j}) = \sum_{\substack{c \neq c_{j} \\ c \neq c_{j}}} (ount(w_{i}, c)) \longrightarrow (ount \# times whd)$$

$$occurs in classes
other than c$$

$$\sum_{\substack{c \neq c_{j} \\ c \neq c_{j} \\ w}} (ount(w_{i}, c)) \longrightarrow (ount \# times whd)$$

0

Failings of Naive Bayes (3)

- Weight magnitude errors:
 - Classes with larger weights are preferred
 - 10 documents with class=MA and "Boston" occurring once each
 - 10 documents with class=CA and "San Francisco" occurring once each
 - New document: "Boston Boston Boston San Francisco San Francisco"

Practical text classification

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities
- Since log(xy) = log(x) + log(y)
 - Better to sum logs of probabilities instead of multiplying probabilities.
- Class with highest un-normalized log probability score is still most probable.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} | c_{j})$$

• Model is now just max of sum of weights