

COS 484: Natural Language Processing

Language Models

Fall 2019

- Assignment 1 is out due 9/23, 11:59pm
- Download the updated code a1.zip
- Project grading:
 - 25% for final report
 - 10% for final presentation (all team members must be present)

Last week

Today, in New York, it is 76 F and red

VS

Today, in New York, it is 76 F and sunny

- Both are grammatical
- But which is more likely?

Applications

- Predicting words is important in many situations
 - Machine translation

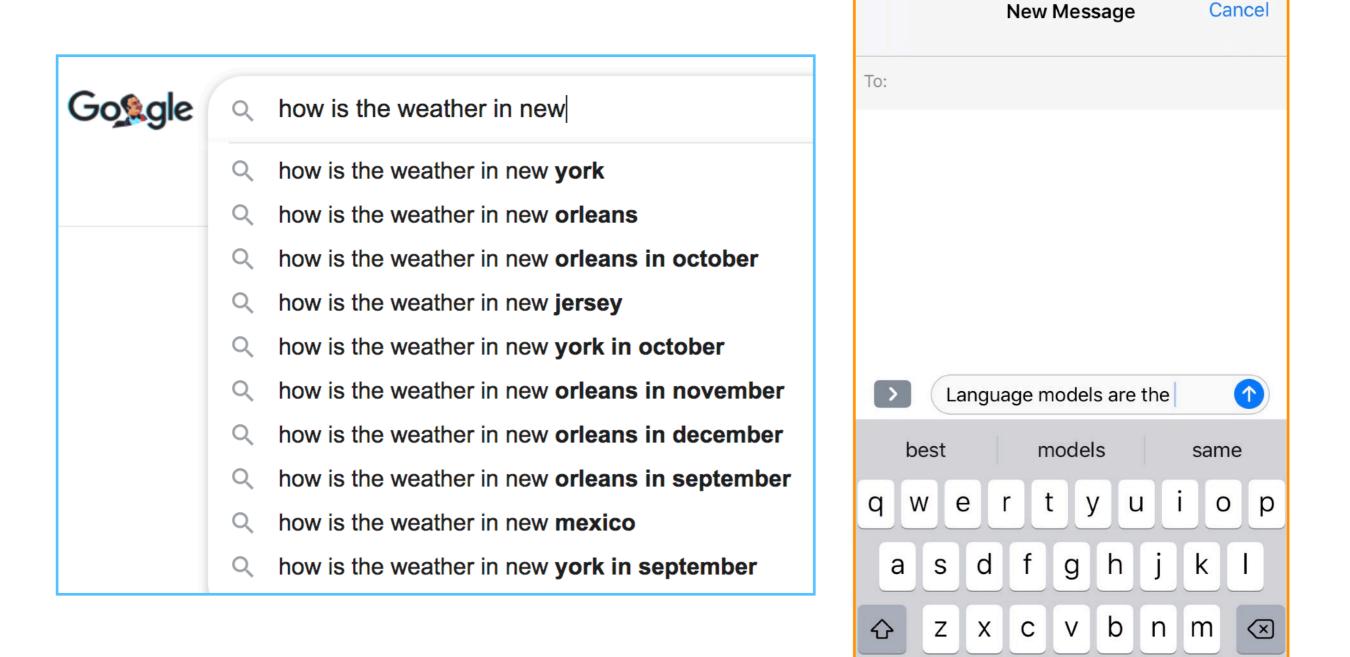
P(a smooth finish) > P(a flat finish)

• Speech recognition/Spell checking

P(high school principal) > P(high school principle)

Information extraction, Question answering

Language models are everywhere



Ŷ

space

return

123

Impact on downstream applications

Language Resources	Adaptation	Word	Word		
		Cor.	Acc.		
1. Doc-A		54.5%	45.1%		
2. Trans-C(L)		63.3%	50.6%		
3. Trans-B(L)		70.2%	60.3%		
4. Trans-A(S)	2020	70.4%	59.3%		
5. Trans-B(L)+Trans-A(S)	CM	72.6%	63.9%		
6. Trans-B(L)+Doc-A	KW	72.1%	64.2%		
7. Trans-B(L)+Doc-A	KP	73.1%	65.6%		
8. Trans-A(L)		75.2%	67.3%		

148.6 (Miki et al., 2006)

PP

49972

1856.5

318.4

442.3

225.1

247.5

259.7

New Approach to Language Modeling Reduces Speech Recognition Errors by Up to 15%

December 13, 2018 Ankur Gandhe

Alexa Alexa research

Alexa science

What is a language model?

- Probabilistic model of a sequence of words
 - How likely is a given phrase/sentence/paragraph/ document?
- Joint distribution:

$$P(w_1, w_2, w_3, ..., w_n)$$

Chain rule

 $p(w_1, w_2, w_3, \dots, w_N) =$ $p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) \times \dots \times p(w_N|w_1, w_2, \dots, w_{N-1})$

Sentence: "the cat sat on the mat"

 $P(\text{the cat sat on the mat}) = P(\text{the}) * P(\text{cat}|\text{the}) * P(\text{sat}|\text{the cat}) \\ * P(\text{on}|\text{the cat sat}) * P(\text{the}|\text{the cat sat on}) \\ * P(\text{mat}|\text{the cat sat on the})$

Estimating probabilities

$$P(\text{sat}|\text{the cat}) = \frac{\text{count}(\text{the cat sat})}{\text{count}(\text{the cat})}$$
$$P(\text{on}|\text{the cat sat}) = \frac{\text{count}(\text{the cat sat on})}{\text{count}(\text{the cat sat})}$$

Maximum likelihood estimate (MLE)

- With a vocabulary of size v,
 - # sequences of length n = vⁿ
- Typical vocabulary ~ 40k words
 - even sentences of length <= 11 results in more than 4 * 10^50 sequences! (# of atoms in the earth ~ 10^50)

Markov assumption

- Use only the recent past to predict the next word
- Reduces the number of estimated parameters in exchange for modeling capacity
- 1st order

 $P(\text{mat}|\text{the cat sat on the}) \approx P(\text{mat}|\text{the})$

• 2nd order

 $P(\text{mat}|\text{the cat sat on the}) \approx P(\text{mat}|\text{on the})$

kth order Markov

• Consider only the last k words for context

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-k} \dots w_{i-1})$$

which implies the probability of a sequence is:

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$

(k+1) gram

n-gram models

Unigram
$$P(w_1, w_2, ..., w_n) = \prod_{i=1}^{n} P(w_i)$$

Bigram
$$P(w_1, w_2, ..., w_n) = \prod_{i=1}^n P(w_i | w_{i-1})$$

 \boldsymbol{n}

and Trigram, 4-gram, and so on.

Larger the n, more accurate and better the language model (but also higher costs)

Caveat: Assuming infinite data!

Generations

Unigram

release millions See ABC accurate President of Donald Will cheat them a CNN megynkelly experience @ these word out- the

Bigram

Thank you believe that @ ABC news, Mississippi tonight and the false editorial I think the great people Bill Clinton . ''

Trigram

We are going to MAKE AMERICA GREAT AGAIN! #MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

$$\arg \max_{(w_1, w_2, \dots, w_n)} \prod_{i=1}^n P(w_i | w_{< i})$$

Generations

Unigram

release millions See ABC accurate President of Donald Will cheat them a CNN megynkelly experience @ these word out- the

Bigram Thank you believe that @ ABC news, Mississippi tonight and the false editorial I think the great people Bill Clinton . ''

Trigram We are going to MAKE AMERICA GREAT AGAIN! #MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Typical LMs are not sufficient to handle long-range dependencies

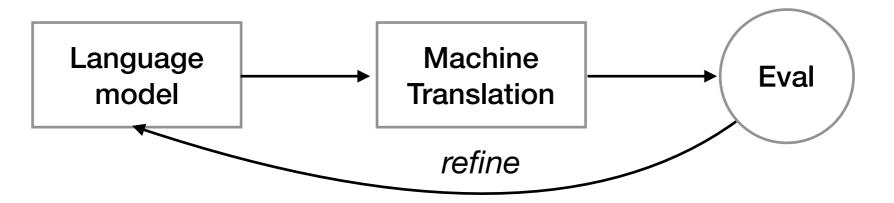
"Alice/Bob could not go to work that day because she/he had a doctor's appointment"

Evaluating language models

- A good language model should assign higher probability to typical, grammatically correct sentences
- Research process:
 - Train parameters on a suitable training corpus
 - Assumption: observed sentences ~ good sentences
 - Test on *different, unseen* corpus
 - Training on any part of test set not acceptable!
 - Evaluation metric

Extrinsic evaluation

Train LM -> apply to task -> observe accuracy



- Directly optimized for downstream tasks
 - higher task accuracy -> better model
- Expensive, time consuming
- Hard to optimize downstream objective (indirect feedback)

Perplexity

- Measure of how well a probability distribution (or model) predicts a sample
- For a corpus S with sentences $S_1, S_2, ... S_n$

$$ppl(S) = 2^x$$
 where $x = -\frac{1}{W} \sum_{i=1}^n \log_2 P(S_i)$ Cross-
Entropy

where W is the total number of words in test corpus

• Unigram model:
$$x = -\frac{1}{W} \sum_{i=1}^{n} \sum_{j=1}^{m} log_2 P(w_j^i)$$

• Minimizing perplexity ~ maximizing probability

Intuition on perplexity

If our n-gram model (with vocabulary V) has following probability:

$$P(w_i | w_{i-n}, \dots w_{i-1}) = \frac{1}{|V|} \quad \forall w_i$$

what is the perplexity of the test corpus?

$$ppl = 2^{-\frac{1}{W}W * log(1/|V|)} = |V|$$

(model is 'fine' with observing any word at every step)

Measure of model's uncertainty about next word

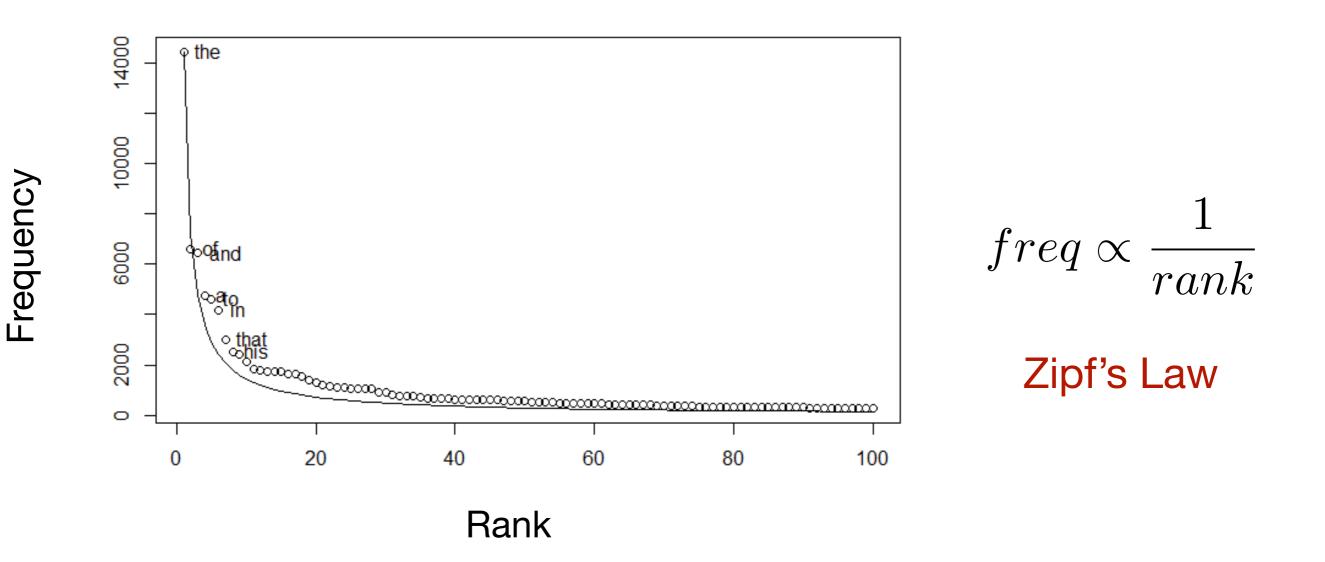
Pros and cons of perplexity

Pros	Cons

Generalization of n-grams

- Not all n-grams will be observed in training data!
- Test corpus might have some that have zero probability under our model
 - Training set: Google news
 - Test set: Shakespeare
 - P (affray | voice doth us) = 0
 P(test set) = 0
 - Undefined perplexity

Sparsity in language



- Long tail of infrequent words
- Most finite-size corpora will have this problem.

Smoothing

- Handle sparsity by making sure all probabilities are non-zero in our model
 - Additive: Add a small amount to all probabilities
 - Discounting: Redistribute probability mass from observed ngrams to unobserved ones
 - Back-off: Use lower order n-grams if higher ones are too sparse
 - Interpolation: Use a combination of different granularities of ngrams

Smoothing intuition

When we have sparse statistics:

P(w | denied the) 3 allegations

2 reports

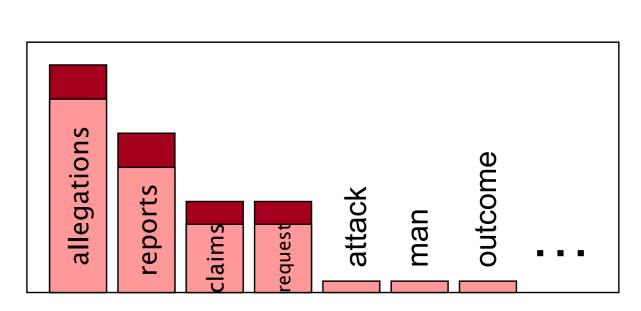
1 claims

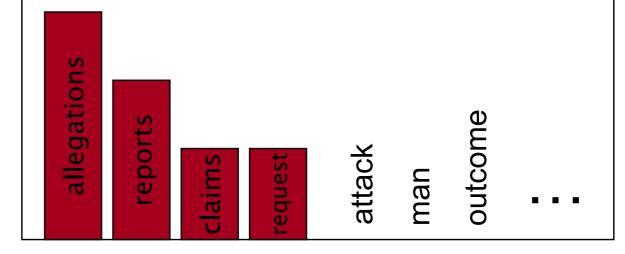
1 request

7 total

Steal probability mass to generalize better

P(w | denied the) 2.5 allegations 1.5 reports 0.5 claims 0.5 request 2 other 7 total





Laplace smoothing

- Also known as add-alpha
- Simplest form of smoothing: Just add alpha to all counts and renormalize!
- Max likelihood estimate for bigrams:

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

• After smoothing:

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1} + \alpha|V|)}$$

Raw bigram counts (Berkeley restaurant corpus)

• Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Smoothed bigram probabilities

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

The problem with Laplace smoothing

Raw counts

Reconstituted counts

	i	want	to	eat	cl	ninese	fc	bod	lu	nch	S	pend	
i	5	827	0	9	0		0		0		2	2	
want	2	0	608	1	6		6		5		1		
to	2	0	4	686	2		0		6		2	211	
eat	0	0	2	0	1	6	2		42	2	0)	
chinese	1	0	0	0	0		82	2	1		C)	
food	15	0	15	0	1		4		0		C)	
lunch	2	0	0	0	0		1		0		C)	
spend	1	0	1	0	0		0		0		0)	
	i	want	to	eat	r	chine	ese	foc	od	luno	ch	sper	nd
i	3.8	527	0.64	6.4		0.64		0.6	64	0.64	4	1.9	
want	1.2	0.39	238	0.7	8	2.7		2.7	7	2.3		0.78	3
to	1.9	0.63	3.1	430	0	1.9		0.6	53	4.4		133	
eat	0.34	0.34	1	0.3	4	5.8		1		15		0.34	1
chinese	0.2	0.098	0.098	0.0	98	0.098	3	8.2	2	0.2		0.09	98
food	6.9	0.43	6.9	0.4	.3	0.86		2.2	2	0.43	3	0.43	3
lunch	0.57	0.19	0.19	0.1	9	0.19		0.3	8	0.19	9	0.19)
spend	0.32	0.16	0.32	0.1	6	0.16		0.1	6	0.10	6	0.16	5

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

The problem with Laplace smoothing

Raw counts

Reconstituted counts

	i	want	to	eat	cl	ninese	fc	bod	lu	nch	S	pend	
i	5	827	0	9	0		0		0		2	2	
want	2	0	608	1	6		6		5		1		
to	2	0	4	686	2		0		6		2	211	
eat	0	0	2	0	1	6	2		42	2	0)	
chinese	1	0	0	0	0		82	2	1		C)	
food	15	0	15	0	1		4		0		C)	
lunch	2	0	0	0	0		1		0		C)	
spend	1	0	1	0	0		0		0		0)	
	i	want	to	eat	r	chine	ese	foc	od	luno	ch	sper	nd
i	3.8	527	0.64	6.4		0.64		0.6	64	0.64	4	1.9	
want	1.2	0.39	238	0.7	8	2.7		2.7	7	2.3		0.78	3
to	1.9	0.63	3.1	430	0	1.9		0.6	53	4.4		133	
eat	0.34	0.34	1	0.3	4	5.8		1		15		0.34	1
chinese	0.2	0.098	0.098	0.0	98	0.098	3	8.2	2	0.2		0.09	98
food	6.9	0.43	6.9	0.4	.3	0.86		2.2	2	0.43	3	0.43	3
lunch	0.57	0.19	0.19	0.1	9	0.19		0.3	8	0.19	9	0.19)
spend	0.32	0.16	0.32	0.1	6	0.16		0.1	6	0.10	6	0.16	5

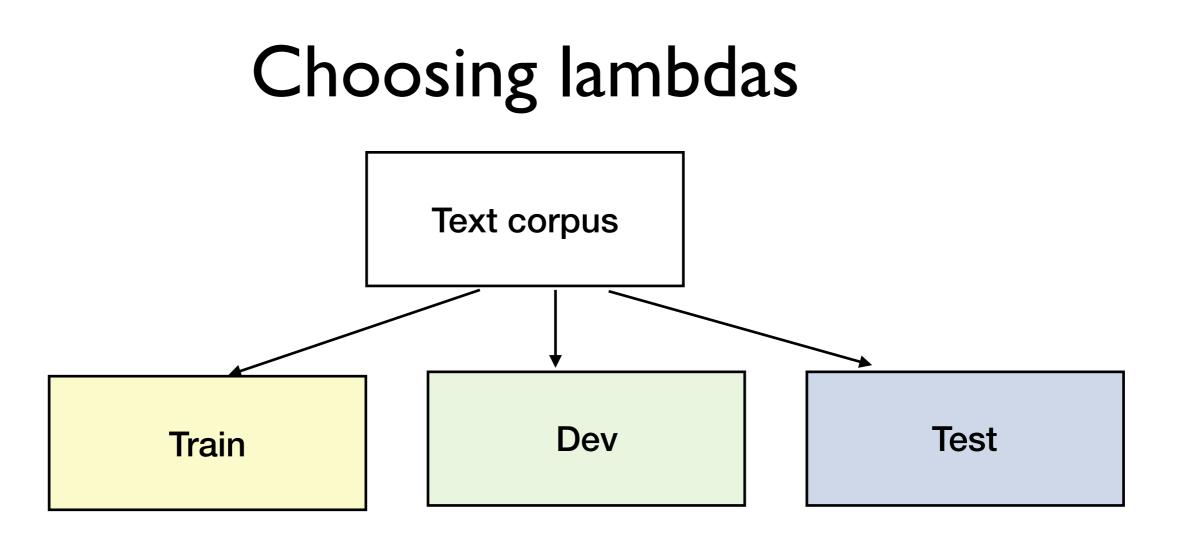
$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

Linear Interpolation

$$\hat{P}(w_i|w_{i-1}, w_{i-2}) = \lambda_1 P(w_i|w_{i-1}, w_{i-2}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_3 P(w_i)$$

$$\sum_i \lambda_i = 1$$

- Use a combination of models to estimate probability
- Strong empirical performance



- First, estimate n-gram prob. on training set
- Then, estimate lambdas (hyperparameters) to maximize probability on the held-out dev set

Average-count (Chen and Goodman, 1996)

$$P_{\text{interp}}(w_i | w_{i-n+1}^{i-1}) = \\\lambda_{w_{i-n+1}^{i-1}} P_{\text{ML}}(w_i | w_{i-n+1}^{i-1}) + \\(1 - \lambda_{w_{i-n+1}^{i-1}}) P_{\text{interp}}(w_i | w_{i-n+2}^{i-1})$$

- Like simple interpolation, but with more specific lambdas, $\lambda_{w_{i-n+1}}^{i-1}$
- Partition $\lambda_{w_{i-n+1}}^{i-1}$ according to average number of counts per non-zero element:

$$\frac{c(w_{i-n+1}^{i-1})}{|w_i:c(w_{i-n+1}^i)>0|}$$

• Larger $\lambda_{w_{i-n+1}}^{i-1}$ for denser estimates of n-gram probabilities

Intuition for average-count

- Case 1: C (on the mat) = 10, C(on the cat) = 10, C(on the rat) = 10, C(on the bat) = 10, ...
- Case 2: C (on the mat) = 40, C(on the cat) = 0, C (on the rat) = 0, C(on the bat) = 0, ...
- Which provides a better estimate for P(mat | on the)?
- Larger weights on non-sparse estimates
- What if C (the mat) = 37, C(the cat) = 1, C (the rat) = 1, C(the bat) = 1, ... ?

Discounting

Bigram count in training	Bigram count in heldout set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

- Determine some "mass" to remove from probability estimates
- Redistribute mass among unseen n-grams
- Just choose an absolute value to discount:

$$P_{\text{abs_discount}}(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \alpha(w_{i-1})P(w)$$

Absolute Discounting

- Define Count*(x) = Count(x) 0.5
- Missing probability mass:

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\operatorname{Count}^*(w_{i-1}, w)}{\operatorname{Count}(w_{i-1})}$$

 $\alpha(the) = 10 \times 0.5/48 = 5/48$

 Divide this mass between words w for which Count(the, w) = 0

x	$\operatorname{Count}(x)$	$\operatorname{Count}^*(x)$	$\frac{\operatorname{Count}^{*}(x)}{\operatorname{Count}(x)}$
the	48		
the, dog	15	14.5	14.5/48
the, woman	11	10.5	10.5/48
the, man	10	9.5	9.5/48
the, park	5	4.5	4.5/48
the, job	2	1.5	1.5/48
the, telescope	1	0.5	0.5/48
the, manual	1	0.5	0.5/48
the, afternoon	1	0.5	0.5/48
the, country	1	0.5	0.5/48
the, street	1	0.5	0.5/48

Back-off

 Use n-gram if enough evidence, else back off to (n-1)-gram

$$P_{bo}(w_i \mid w_{i-n+1} \cdots w_{i-1}) = egin{cases} d_{w_{i-n+1} \cdots w_i} & rac{C(w_{i-n+1} \cdots w_{i-1} w_i)}{C(w_{i-n+1} \cdots w_{i-1})} & ext{if } C(w_{i-n+1} \cdots w_i) > k \ lpha_{w_{i-n+1} \cdots w_{i-1}} P_{bo}(w_i \mid w_{i-n+2} \cdots w_{i-1}) & ext{otherwise} \ (ext{Katz back-off}) \end{cases}$$

- d = amount of discounting
- α = back-off weight

Other language models

- Discriminative models:
 - train n-gram probabilities to directly maximize performance on end task (e.g. as feature weights)
- Parsing-based models
 - handle syntactic/grammatical dependencies
- Topic models