
Language Models

Fall 2019

COS 484: Natural Language Processing

• Assignment 1 is out — due 9/23, 11:59pm

• Download the updated code — a1.zip

• Project grading:

• 25% for final report

• 10% for final presentation (all team members must be
present)

Today, in New York, it is 76 F and red

Today, in New York, it is 76 F and sunny

Last week

vs

• Both are grammatical

• But which is more likely?

Applications

• Predicting words is important in many situations

• Machine translation

• Speech recognition/Spell checking

• Information extraction, Question answering

P (a smooth finish) > P (a flat finish)

P (high school principal) > P (high school principle)

Language models are everywhere

Impact on downstream applications

(Miki et al., 2006)

What is a language model?

• Probabilistic model of a sequence of words

• How likely is a given phrase/sentence/paragraph/
document?

• Joint distribution:

P (w1, w2, w3, ..., wn)

Chain rule

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat”

Estimating probabilities

• With a vocabulary of size v,

• # sequences of length n = vn

• Typical vocabulary ~ 40k words

• even sentences of length <= 11 results in more than 4 * 10^50
sequences! (# of atoms in the earth ~ 10^50)

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

Markov assumption

• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in
exchange for modeling capacity

• 1st order

• 2nd order

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)

kth order Markov

• Consider only the last k words for context

which implies the probability of a sequence is:

(k+1) gram

n-gram models

P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model (but
also higher costs)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

Caveat: Assuming infinite data!

Generations

release millions See ABC accurate President of Donald
Will cheat them a CNN megynkelly experience @ these

word out- the

Thank you believe that @ ABC news, Mississippi
tonight and the false editorial I think the great people

Bill Clinton . ''

We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Unigram

Bigram

Trigram

arg max
(w1,w2,...,wn)

⇧n
i=1P (wi|w<i)

Generations

release millions See ABC accurate President of Donald
Will cheat them a CNN megynkelly experience @ these

word out- the

Thank you believe that @ ABC news, Mississippi
tonight and the false editorial I think the great people

Bill Clinton . ''

We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Unigram

Bigram

Trigram

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies

Evaluating language models

• A good language model should assign higher probability to typical,
grammatically correct sentences

• Research process:

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• Training on any part of test set not acceptable!

• Evaluation metric

Extrinsic evaluation

• Train LM -> apply to task -> observe accuracy

• Directly optimized for downstream tasks

• higher task accuracy -> better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

Language
model

Machine
Translation Eval

refine

Perplexity

• Measure of how well a probability distribution (or model)
predicts a sample

• For a corpus S with sentences

 where W is the total number of words in test corpus

• Unigram model:

• Minimizing perplexity ~ maximizing probability

S1, S2, ...Sn

Cross-
Entropy

ppl(S) = 2x where x = � 1

W

nX

i=1

log2 P (Si)

x = � 1

W

nX

i=1

mX

j=1

log2P (wi
j)

Intuition on perplexity

• If our n-gram model (with vocabulary V) has following
probability:

 what is the perplexity of the test corpus?

 (model is ‘fine’ with observing any word at every step)

Measure of model’s uncertainty about next word

P (wi|wi�n, ...wi�1) =
1

|V | 8wi

ppl = 2�
1
W W⇤log(1/|V |) = |V |

Pros and cons of perplexity

Pros Cons

Generalization of n-grams

• Not all n-grams will be observed in training data!

• Test corpus might have some that have zero probability under
our model

• Training set: Google news

• Test set: Shakespeare

• P (affray | voice doth us) = 0 P(test set) = 0

• Undefined perplexity

Sparsity in language
Fr

eq
ue

nc
y

Rank

• Long tail of infrequent words

• Most finite-size corpora will have this problem.

Zipf’s Law

freq / 1

rank

Smoothing

• Handle sparsity by making sure all probabilities are non-zero in
our model

• Additive: Add a small amount to all probabilities

• Discounting: Redistribute probability mass from observed n-
grams to unobserved ones

• Back-off: Use lower order n-grams if higher ones are too
sparse

• Interpolation: Use a combination of different granularities of n-
grams

Smoothing intuition
Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

(Credits: Dan Klein)

Laplace smoothing

• Also known as add-alpha

• Simplest form of smoothing: Just add alpha to all counts
and renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

P (wi|wi�1) =
C(wi�1, wi)

C(wi�1)

P (wi|wi�1) =
C(wi�1, wi) + ↵

C(wi�1 + ↵|V |

Raw bigram counts
 (Berkeley restaurant corpus)Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Credits: Dan Jurafsky)

Smoothed bigram counts

(Credits: Dan Jurafsky)

Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

Smoothed bigram probabilities

(Credits: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams

The problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw

counts

Reconstituted

countsDan*Jurafsky

Reconstituted(counts

The problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw

counts

Reconstituted

countsDan*Jurafsky

Reconstituted(counts

Linear Interpolation

• Use a combination of models to estimate probability

• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)X

i

�i = 1

Choosing lambdas

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out dev set

Text corpus

Train Dev Test

Average-count (Chen and Goodman, 1996)

• Like simple interpolation, but with more specific lambdas,

• Partition according to average number of counts per
non-zero element:

• Larger for denser estimates of n-gram probabilities

Intuition for average-count

• Case 1: C (on the mat) = 10, C(on the cat) = 10, C(on the
rat) = 10, C(on the bat) = 10, …

• Case 2: C (on the mat) = 40, C(on the cat) = 0, C (on the
rat) = 0, C(on the bat) = 0, …

• Which provides a better estimate for P(mat | on the)?

• Larger weights on non-sparse estimates

• What if C (the mat) = 37, C(the cat) = 1, C (the rat) = 1,
C(the bat) = 1, … ?

Discounting

• Determine some “mass” to
remove from probability
estimates

• Redistribute mass among
unseen n-grams

• Just choose an absolute value
to discount:

Pabs discount(wi|wi�1) =
c(wi�1, wi)� d

c(wi�1)
+ ↵(wi�1)P (w)

Absolute Discounting

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words
w for which Count(the, w) = 0

Back-off

• Use n-gram if enough evidence, else back off to  
(n-1)-gram

(Katz back-off)

• d = amount of discounting

• = back-off weight↵

Other language models

• Discriminative models:

• train n-gram probabilities to directly maximize
performance on end task (e.g. as feature weights)

• Parsing-based models

• handle syntactic/grammatical dependencies

• Topic models

