=

COS 484: Natural Language Processing

Language Models

Fall 2019

e Assignment 1 is out — due 9/23, 11:59pm
e Download the updated code — al.zip
* Project grading:

e 25% for final report

e 10% for final presentation (all team members must be
present)

Last week

Today, in New York, it is 76 F and red
VS

Today, in New York, it is 76 F and sunny

 Both are grammatical

e But which is more likely?

Applications

* Predicting words is important in many situations

 Machine translation

P(a smooth finish) > P(a flat finish)

« Speech recognition/Spell checking

P(high school principal) > P(high school principle)

» Information extraction, Question answering

Language models are

Gofgle

how is the weather in new|

how is the weather in new york

how is the weather in new orleans

how is the weather in new orleans in october
how is the weather in new jersey

how is the weather in new york in october

how is the weather in new orleans in november
how is the weather in new orleans in december
how is the weather in new orleans in september
how is the weather in new mexico

how is the weather in new york in september

everywhere

New Message Cancel
n Language models are the 0
best models same
giwlelrfitiyjulijolp

Impact on downstream applications

PP

49972

1856.5

318.4

442.3

225.1

247.5

Language Resources Adaptation | Word
Cor. Acc.

1. Doc-A 54.5% 45.1%
2. Trans-C(L) 63.3% 50.6%
3. Trans-B(L) 70.2% 60.3%
4. Trans-A(S) 70.4% 59.3%
5. Trans-B(L)+Trans-A(S) | CM 72.6% 63.9%
6. Trans-B(L)+Doc-A KW 72.1% 64.2%
7. Trans-B(L)+Doc-A KP 73.1% 65.6%
8. Trans-A(L) 75.2% 67.3%

259.7

Alexa Alexa research

{ December 13, 2018
ﬁ Ankur Gandhe

Alexa science

148.6

(Miki et al., 20006)

What is a language model?

» Probabilistic model of a sequence of words

- How likely is a given phrase/sentence/paragraph/
document?

« Joint distribution:

P(wy,ws, w3, ..., wy,)

Chain rule

Sentence: “the cat sat on the mat”

P(the cat sat on the mat) = P(the) x P(cat|the) * P(sat|the cat)
+P(on|the cat sat) x P(the|the cat sat on)
+P(mat|the cat sat on the)

Estimating probabilities

count(the cat sat)

P(sat|the cat) = Maximum
count(the cat) likelihood
t(the cat sat estimate

P(on|the cat sat) = count (the cat sat on)

count(the cat sat) (MLE)

* With a vocabulary of size v,

* # sequences of length n = v"

* Typical vocabulary ~ 40k words

e even sentences of length <= 11 results in more than 4 * 10750
sequences! (# of atoms in the earth ~ 10°50)

Markov assumption

Use only the recent past to predict the next word

Reduces the number of estimated parameters in
exchange for modeling capacity

1st order

P(mat|the cat sat on the) ~ P(mat|the)

2nd order

P(mat|the cat sat on the) ~ P(mat|on the)

kth order Markov

 Consider only the last k words for context

Pw lww,..w._)=Pw. Ilw, _ ..w._,)

l

which implies the probability of a sequence is:

Pww,...w)= HP(wi W oW)

(k+1) gram

n-gram models

Unigram P(wi,ws, ... wy,) = H P(w;)
i—1
Bigram P(wi, wa, ...wy,) = H P(w;|w;—1)

and Trigram, 4-gram, and so on.

Larger the n, more accurate and better the language model (but
also higher costs)

Caveat: Assuming infinite datal

Unigram

Bigram

Trigram

Generations

release millions See ABC accurate President of Donald
Will cheat them a CNN megynkelly experience @ these
word out- the

Thank you believe that @ ABC news, Mississippi
tonight and the false editorial | think the great people
Bill Clinton . "

We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

arg max 1" P(w;|w<;)
(w1 ,wg,...,wn)

Generations

. release millions See ABC accurate President of Donald
Unigram Will cheat them a CNN megynkelly experience @ these
word out- the

Bigram Thank you believe that @ ABC news, Mississippi
tonight and the false editorial | think the great people
Bill Clinton . "
Trigram We are going to MAKE AMERICA GREAT AGAIN!

#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Typical LMs are not sufficient to handle long-range dependencies

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”

Evaluating language models

* A good language model should assign higher probability to typical,
grammatically correct sentences

e Research process:
* Train parameters on a suitable training corpus
e Assumption: observed sentences ~ good sentences
* Test on different, unseen corpus
e Training on any part of test set not acceptable!

e Evaluation metric

&

Extrinsic evaluation

Train LM -> apply to task -> observe accuracy

Language g Machine
model Translation

\ refine /

Directly optimized for downstream tasks

» Eval

* higher task accuracy -> better model
Expensive, time consuming

Hard to optimize downstream objective (indirect feedback)

Perplexity

Measure of how well a probability distribution (or model)
predicts a sample

For a corpus S with sentences S, .55, ...,

X 1 -
ppl(S) = 2 where z = W > log, P(S;) Cross-

>

=1 Entropy
where W is the total number of words in test corpus

1 n ™m ‘
Unigram model: @ = — > logaP(w})

i=1 j=1

Minimizing perplexity ~ maximizing probability

Intuition on perplexity

e |f our n-gram model (with vocabulary V) has following
probability:

1

P(wi|wi—n7 ---wi—l) — |—V‘ sz

what is the perplexity of the test corpus?
ppl = o— 3 Wxlog(1/|V]) _ V|
(model is ‘fine’ with observing any word at every step)

Measure of model’s uncertainty about next word

Pros and cons of perplexity

...
...
...

...

Generalization of n-grams

* Not all n-grams will be observed in training data!

* Test corpus might have some that have zero probability under
our model

e Training set: Google news
e Test set: Shakespeare
e P (affray | voice doth us) =0 =) P(testset) =0

 Undefined perplexity

Frequency

Sparsity in language

T the

14000
|

10000
|

6000
|

0 2000

0 20 40 60 80 100

Rank

e [ong tail of infrequent words

* Most finite-size corpora will have this problem.

1
rank

freq

Zipt’'s Law

Smoothing

e Handle sparsity by making sure all probabillities are non-zero In
our model

e Additive: Add a small amount to all probabilities

 Discounting: Redistribute probability mass from observed n-
grams to unobserved ones

e Back-off: Use lower order n-grams if higher ones are too
sparse

e |nterpolation: Use a combination of different granularities of n-
grams

Smoothing intuition

When we have sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request

attack
man
outcome

7 total

Steal probability mass to generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other

allegations

reports l

attack
man
outcome

7 total

(Credits: Dan Klein)

Laplace smoothing

Also known as add-alpha

Simplest form of smoothing: Just add alpha to all counts

and renormalize!

Max likelihood estimate for bigrams:

C(wi—1,w;
P(w;|w;_1) = (C’(wl_l))
After smoothing:
C 1—1y Wy
P(w;|w;_1) = (wi—1,wi) +a

C(wi—1

alV

(Berkeley restaurant corpus)

Raw bigram counts

e Qutof 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

(Credits: Dan Jurafsky)

Smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

(Credits: Dan Jurafsky)

Smoothed bigram probabilities

C(Wn—lwn) 1

P:\‘:(Wn‘wn—l) —

C(Wn—l) +V

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025(0.00025| 0.00025| 0.00075
want 0.0013 0.00042 | 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062 | 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039(0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056] 0.0011 0.00056| 0.00056
spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

(Credits: Dan Jurafsky)

The problem with Laplace smoothing

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
Raw to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
counts chinese || 1 | 0 o |0 |o 82 | 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
1 want to eat chinese | food| Ilunch| spend
i 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
Reconstrtuted eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
counts food 69 | 043 | 6.9 043 | 0.86 22 | 043 | 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

[C(Wn—lwn) + 1] X C(Wn—l)

C:+:(W'11—lwr'z) —

Cwp—1)+V

(Credits: Dan Jurafsky)

The problem with Laplace smoothing

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
Raw to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
counts chinese || 1 | 0 o |0 |o 82 | 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
1 want to eat chinese | food| Ilunch| spend
i 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
Reconstrtuted eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
counts food 69 | 043 | 6.9 043 | 0.86 22 | 043 | 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16| 0.16 0.16

[C(Wn—lwn) + 1] X C(Wn—l)

C:+:(W'11—lwr'z) —

Cwp—1)+V

(Credits: Dan Jurafsky)

Linear Interpolation

P(wiwi—1,wi—2) = M P(wg|wi_1,w;_2)
+)\2P(wi\wi_1)

Z N =1

 Use a combination of models to estimate probability

e Strong empirical performance

Choosing lambdas

Text corpus

Train Dev Test

* First, estimate n-gram prob. on training set

* Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out dev set

Average-count (Chen and Goodman, 1996)

Pmterp(wtlwz n+1) -

’\w::;_ﬂ PML(w%Iwz n+1) +

(1- o) Plnterp(wzlwz n+2)

:--n

» Like simple interpolation, but with more specific lambdas, Au:-! |

D W .
e Partition "wiZ.+1 according to average number of counts per
non-zero element:

1—1

c(wt—n+1
|wie(w!_ i }> 0]

e Larger Awi‘_‘iﬂ for denser estimates of n-gram probabilities

Intuition for average-count

Case 1: C (on the mat) = 10, C(on the cat) = 10, C(on the
rat) = 10, C(on the bat) = 10, ...

Case 2: C (on the mat) = 40, C(on the cat) = 0, C (on the
rat) = 0, C(on the bat) =0, ...

Which provides a better estimate for P(mat | on the)?

Larger weights on non-sparse estimates

What if C (the mat) = 37, C(the cat) = 1, C (the rat) = 1,
C(the bat)=1, ... ?

Discounting

Bigram count
in training

Bigram count in
heldout set

0

.0000270

0.448

1.25

2.24

323

4.21

3.23

6.21

7.21

LI INIO DN HAHR|WIN|-=

8.26

Paps_discount (w@ |w7;_1) —

c(wi_l, wz) — d

e Determine some “mass” to
remove from probability
estimates

* Redistribute mass among
unseen n-grams

e Just choose an absolute value
to discount:

c(w;_1) Falwi-)Pw)

Absolute Discounting

e Define Count*(x) = Count(x) - 0.5
* Missing probability mass:

& t¥ W;—1,W
(jy(_'u.r,-_l) - —Z oun (U 1 lL)

Count('ll’,‘ o)

u‘

a(the) =10 x 0.5/48 = 5/48

e Divide this mass between words
w for which Count(the, w) =0

Count™ (z)

T Count(x) | Count™ () Coutitis
the 48

the, dog 15 14.5 14.5/48
the, woman 11 10.5 10.5/48
the, man 10 9.5 9.5/48
the, park 5 4.5 4.5/48
the, job 2 b 1.5/48
the, telescope 1 0.5 0.5/48
the, manual | 0.5 0.5/48
the, afternoon 1 0.5 0.5/48
the, country I 0.5 0.5/48
the, street] 0.5 0.5/48

Back-off

e Use n-gram if enough evidence, else back off to
(n-1)-gram

Py (w; | wi—py1 - wi—1)

f C(Wi—py1 *+ - Wi_1w;)

B < Wi—n+1° W4 C(wz_n+1 o wz_l)

ifC(wi_nH > wz) > k

Qo qew; g Pho(Wi | Wi—pqo - -w;—1) otherwise

(Katz back-off)

e d =amount of discounting

e (X = pback-off weight

Other language models

e Discriminative models:

e train n-gram probabilities to directly maximize
performance on end task (e.g. as feature weights)

e Parsing-based models
e handle syntactic/grammatical dependencies

e Jopic models

