
Language Models

Fall 2019

COS 484: Natural Language Processing



• Assignment 1 is out — due 9/23, 11:59pm


• Download the updated code — a1.zip


• Project grading:


• 25% for final report


• 10% for final presentation (all team members must be 
present)



Today, in New York, it is 76 F and red

Today, in New York, it is 76 F and sunny

Last week

vs

• Both are grammatical


• But which is more likely?



Applications

• Predicting words is important in many situations


• Machine translation


• Speech recognition/Spell checking


• Information extraction, Question answering

P (a smooth finish) > P (a flat finish)

P (high school principal) > P (high school principle)



Language models are everywhere



Impact on downstream applications

(Miki et al., 2006)



What is a language model?

• Probabilistic model of a sequence of words


• How likely is a given phrase/sentence/paragraph/
document?


• Joint distribution:


P (w1, w2, w3, ..., wn)



Chain rule

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat” 



Estimating probabilities

• With a vocabulary of size v, 


• # sequences of length n = vn


• Typical vocabulary ~ 40k words


• even sentences of length <= 11 results in more than 4 * 10^50 
sequences! (# of atoms in the earth ~ 10^50)

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum 
likelihood 
estimate


(MLE)



Markov assumption

• Use only the recent past to predict the next word


• Reduces the number of estimated parameters in 
exchange for modeling capacity


• 1st order


• 2nd order

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the)



kth order Markov

• Consider only the last k words for context


which implies the probability of a sequence is:

(k+1) gram



n-gram models

P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model (but 
also higher costs)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

Caveat: Assuming infinite data!



Generations

release millions See ABC accurate President of Donald 
Will cheat them a CNN megynkelly experience @ these 

word out- the

Thank you believe that @ ABC news, Mississippi 
tonight and the false editorial I think the great people 

Bill Clinton . ''

We are going to MAKE AMERICA GREAT AGAIN! 
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Unigram

Bigram

Trigram

arg max
(w1,w2,...,wn)

⇧n
i=1P (wi|w<i)



Generations

release millions See ABC accurate President of Donald 
Will cheat them a CNN megynkelly experience @ these 

word out- the

Thank you believe that @ ABC news, Mississippi 
tonight and the false editorial I think the great people 

Bill Clinton . ''

We are going to MAKE AMERICA GREAT AGAIN! 
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Unigram

Bigram

Trigram

“Alice/Bob could not go to work that day because 
she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies



Evaluating language models

• A good language model should assign higher probability to typical, 
grammatically correct sentences


• Research process:


• Train parameters on a suitable training corpus


• Assumption: observed sentences ~ good sentences


• Test on different, unseen corpus


• Training on any part of test set not acceptable!


• Evaluation metric



Extrinsic evaluation

• Train LM -> apply to task -> observe accuracy


• Directly optimized for downstream tasks


• higher task accuracy -> better model


• Expensive, time consuming


• Hard to optimize downstream objective (indirect feedback)

Language 
model

Machine 
Translation Eval

refine



Perplexity

• Measure of how well a probability distribution (or model) 
predicts a sample


• For a corpus S with sentences                     


    where W is the total number of words in test corpus


• Unigram model: 


• Minimizing perplexity ~ maximizing probability

S1, S2, ...Sn

Cross-
Entropy

ppl(S) = 2x where x = � 1

W

nX

i=1

log2 P (Si)

x = � 1

W

nX

i=1

mX

j=1

log2P (wi
j)



Intuition on perplexity

• If our n-gram model (with vocabulary V) has following 
probability:  


   what is the perplexity of the test corpus?


 


    (model is ‘fine’ with observing any word at every step)


Measure of model’s uncertainty about next word

P (wi|wi�n, ...wi�1) =
1

|V | 8wi

ppl = 2�
1
W W⇤log(1/|V |) = |V |



Pros and cons of perplexity

Pros Cons



Generalization of n-grams

• Not all n-grams will be observed in training data!


• Test corpus might have some that have zero probability under 
our model


• Training set: Google news


• Test set: Shakespeare


• P (affray | voice doth us) = 0                   P(test set) = 0


• Undefined perplexity 



Sparsity in language
Fr
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Rank

• Long tail of infrequent words


• Most finite-size corpora will have this problem.

Zipf’s Law


freq / 1

rank



Smoothing

• Handle sparsity by making sure all probabilities are non-zero in 
our model


• Additive: Add a small amount to all probabilities


• Discounting: Redistribute probability mass from observed n-
grams to unobserved ones


• Back-off: Use lower order n-grams if higher ones are too 
sparse


• Interpolation: Use a combination of different granularities of n-
grams



Smoothing intuition
Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total
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(Credits: Dan Klein)



Laplace smoothing

• Also known as add-alpha


• Simplest form of smoothing: Just add alpha to all counts 
and renormalize!


• Max likelihood estimate for bigrams:


• After smoothing:


P (wi|wi�1) =
C(wi�1, wi)

C(wi�1)

P (wi|wi�1) =
C(wi�1, wi) + ↵

C(wi�1 + ↵|V |



Raw bigram counts
 (Berkeley restaurant corpus)Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Credits: Dan Jurafsky)



Smoothed bigram counts

(Credits: Dan Jurafsky)

Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts



Smoothed bigram probabilities

(Credits: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams



The problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw 

counts

Reconstituted

countsDan*Jurafsky

Reconstituted(counts



The problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw 

counts

Reconstituted

countsDan*Jurafsky

Reconstituted(counts



Linear Interpolation

• Use a combination of models to estimate probability


• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)X

i

�i = 1



Choosing lambdas

• First, estimate n-gram prob. on training set


• Then, estimate lambdas (hyperparameters) to maximize 
probability on the held-out dev set

Text corpus

Train Dev Test



Average-count (Chen and Goodman, 1996)

• Like simple interpolation, but with more specific lambdas, 


• Partition               according to average number of counts per 
non-zero element:


• Larger                  for denser estimates of n-gram probabilities



Intuition for average-count

• Case 1: C (on the mat) = 10, C(on the cat) = 10, C(on the 
rat) = 10, C(on the bat) = 10, …


• Case 2: C (on the mat) = 40, C(on the cat) = 0, C (on the 
rat) = 0, C(on the bat) = 0, …


• Which provides a better estimate for P(mat | on the)?


• Larger weights on non-sparse estimates


• What if C (the mat) = 37, C(the cat) = 1, C (the rat) = 1, 
C(the bat) = 1, … ?



Discounting

• Determine some “mass” to 
remove from probability 
estimates


• Redistribute mass among 
unseen n-grams


• Just choose an absolute value 
to discount:

Pabs discount(wi|wi�1) =
c(wi�1, wi)� d

c(wi�1)
+ ↵(wi�1)P (w)



Absolute Discounting

• Define Count*(x) = Count(x) - 0.5


• Missing probability mass:


• Divide this mass between words 
w for which Count(the, w) = 0



Back-off

• Use n-gram if enough evidence, else back off to  
(n-1)-gram

(Katz back-off)

• d = amount of discounting


•     = back-off weight↵



Other language models

• Discriminative models:


• train n-gram probabilities to directly maximize 
performance on end task (e.g. as feature weights)


• Parsing-based models


• handle syntactic/grammatical dependencies


• Topic models




