COS 484: Natural Language Processing

Contextualized Word Embeddings

Fall 2019

Overview

Contextualized Word Representations

e ELMo = Embeddings from Language Models

Deep contextualized word representations

https://arxiv.org>cs ~

by ME Peters - 2018 - Cited by 1683 - Related articles

Deep contextualized word representations. ... Our word vectors are learned functions of the
internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text

corpus.

e BERT = Bidirectional Encoder Representations from Transformers

BERT: Pre-training of Deep Bidirectional Transformers for ...

https://arxiv.org»>cs v

by J Devlin - 2018 - Cited by 2259 - Related articles

Oct 11, 2018 - Unlike recent language representation models, BERT is designed to pre-train deep ...
As a result, the pre-trained BERT model can be fine-tuned with just one additional output ... Which

authors of this paper are endorsers?

Overview

e Transformers

out

r | ~
Add & Norm

Feed
I Forward l sub-layer 2

X 1

Add & Norm
' !
I Multi-Head I sub-layer 1

Attention

—)

\ J

Attention Is All You Need

https://arxiv.org>cs v

by A Vaswani - 2017 - Cited by 4323 - Related articles

Jun 12, 2017 - Attention Is All You Need. The dominant sequence transduction models are based on
complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best
performing models also connect the encoder and decoder through an attention mechanism.

Encoder Layer 6

Encoder Layer 5

Encoder Layer 4

Encoder Layer 3

Encoder Layer 2

Encoder Layer 1

——
—{_Add & Norm)

Feed
Forward

—

Add & Norm

Multi-Head
Attention

Recap: word2vec

P(we_p | we) P(Weip | W)

P(we—q | W) P(We1 | we)

problems turning into crises as

L)\ J
!)
Y Y Y

outside context words center word outside context words

in window of size 2 at positiont in window of size 2
Word Cosine distance

norway 0.760124

denmark 0.715460

word = “sweden” finland 0.620022
switzerland 0.588132

belgium 0.585835

netherlands 0.574631

iceland 0.562368

estonia 0.547621

slovenia 0.531408

What'’s wrong with word2vec!

(—0.224\

e One vector for each word type y(bank) — | 0-130
~0.290

\ 0.276 /

e Complex characteristics of word use: semantics, syntactic
behavior, and connotations

e Polysemous words, e.g., bank, mouse

mouse! : a mouse controlling a computer system in 1968.
mouse’ : a quiet animal like a mouse
bank! : ...a bank can hold the investments in a custodial account ...

bank? : ...as agriculture burgeons on the east bank, the river ...

Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!

NOYD
NOYD
NYYD
NI
N
N

(Contextualized word embeddings)
) 4))))

the movie was terribly exciting !

frW,wy,..oow,) — Xy, ..., X, € R?

Contextualized word embeddings

Source Nearest Neighbors
playing, game, games, played, players, plays, player,
GloVe — play Play, football, multiplayer
Chico Ruiz made a spec- | Kieffer , the only junior in the group , was commended
tacular play on Alusik ’s | for his ability to hit in the clutch , as well as his all-round
_ grounder {...} excellent play .
biLM

Olivia De Havilland
signed to do a Broadway
play for Garson {... }

{...} they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

(Peters et al, 2018): Deep contextualized word representations

ELMo

e NAACL’18: Deep contextualized word representations
e Keyidea:

e Train an LSTM-based language model on some
large corpus

e Use the hidden states of the LSTM for each token
to compute a vector representation of each word

ELMo

Forward Language Model

LSTM
Layer #2

_ e oI oo [[oo |]
LSTM -0) &
Layer #1 w w w
Embedding [T 17 (I T171 i [=

words in the
sentence

Backward Language Model

@ © &

= T 151 =111] O =1 =1 (57 =

N

_)
> (logp(ty | t1,.- ., te—1; ©a, O LsTIM, ©s)
k=1

—
+logp(tk | tk:+17 e ,tN;@a;7 @LSTMa@S))

~

softmax

input

How to use ELMo!?

R, = {xiM, hL’IJ‘d,FLM |j=1,...,L} «— # of layers
= {ng}' [j=0,...,L},
th — Xk hLM — [hLM hLM
L
ELMotask (Rka @task) _ ,ytask Z Sgaskhﬁlj\l
j=0

o y'®k: allows the task model to scale the entire ELMo vector

o sk softmax-normalized weights across layers

J

e Plug ELMo into any (neural) NLP model: freeze all the LMs
weights and change the input representation to:

[x1; ELMo}
(could also insert into higher layers)

More details

Forward and backward LMs: 2 layers each
Use character CNN to build initial word representation

e 2048 char n-gram filters and 2 highway layers, 512 dim
projection

User 4096 dim hidden/cell LSTM states with 512 dim projections
to next input

A residual connection from the first to second layer
Trained 10 epochs on 1B Word Benchmark

Experimental results

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liuet al. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £ 0.17 0.7/ 5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 32/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +£0.19 || 90.15 0222 +0.10 2.06/21%
SST-5 McCann et al. (2017) 537 || 514 547+ 0.5 3.3/6.8%
SNLI NER SQuUAD Coref SRL SST-5

SQuAD: question answering

SNLI: natural language inference

SRL: semantic role labeling

Coref: coreference resolution

NER: named entity recognition

SST-5: sentiment analysis

UX Previous SOTA |[mmE Baseline

Intrinsic Evaluation

05.0 PTB POS Tagging Fine Grained WSD
| 97.8 &
97.8 - 70.4
69.0

97.6 A
97.3 i

97.4 - 69

97.2 - . 67.4

97.0 A 96.8

96.8 A 67

96.6 A

_— I | . 66 — i — ! — ! —
First i_ayer Seconclj Layer Ling et all. (2015) First Layer Second Layer lacobacci et al. (2016)
First Layer > Second Layer Second Layer > First Layer

syntactic information is better represented at lower layers
while semantic information is captured a higher layers

htt

Use ELMo in practice

ps://allennlp.org/elmo

Pre-trained ELMo Models

) . . # LSTM Hidden #
Link(Weights/Options . .
Model File) Parameters Size/Output Highway
i
(Millions) size Layers>
Small weights options 13.6 1024/128 1
Medium weights options 28.0 2048/256 1
Original weights options 93.6 4096/512 2
Original))
weights options 93.6 4096/512 2
(5.5B)

from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096,

Compute two different representation for each token.

Each representation is a linear weighted combination for the

3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

use batch_to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'l, ['Another', '.'l]

character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

Also available in TensorFlow

https://allennlp.org/elmo

BERT

e First released in Oct 2018.

e NAACL’'19: BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

How 1s BERT different from ELMo?

#1. Unidirectional context vs bidirectional context

#2. LSTMs vs Transformers (will talk later)

#3. The weights are not freezed, called fine-tuning

Bidirectional encoders

e Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

e Language understanding is bidirectional

Bidirectional RNINs

Bidirectionality is important in language representations:

FE

terribly exciting !

terribly:
e left context “the movie was”

¢ right context “exciting !”

Why are LMs unidirectional?

Bidirectional encoders

e Language models only use left context or right context (although
ELMo used two independent LMs from each direction).

e Language understanding is bidirectional

Bidirectional context
Words can “see themselves”

Unidirectional context
Build representation incrementally

open a bank open a bank

Layer2 (| Layer2 [—| Layer2 Layer2 | | Layer2 | | Layer2
A | A A | Ar

Layer 2 > Layer 2 > Layer 2 Layer2 | .| Layer2 : .| Layer2
<s> open a <s> open a

Masked language models (MLMs)

e Solution: Mask out 15% of the input words, and then predict the
masked words

store gallon

T T
the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: too expensive to train
¢ Too much masking: not enough context

Masked language models (MLMs)

A little more complication:

e Rather than always replacing the chosen
words with [MASK], the data generator will
do the following:

* 80% of the time: Replace the word with the
[MASK] token, e.g., my dog is hairy —
my dog is [MASK]

* 10% of the time: Replace the word with a
random word, €.g2., my dog is hairy — my
dog is apple

e 10% of the time: Keep the word un-
changed, €.g2.,my dog is hairy — my dog
is hairy. The purpose of this is to bias the
representation towards the actual observed
word.

Because [MASK] is never seen when BERT is used...

Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is
followed after the first one.

Ilelt — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label

IsNext

Ilelt — [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

Label — NotNext

Recent papers show that NSP is not necessary...

(Joshi*, Chen* et al, 2019) :SpanBERT: Improving Pre-training by Representing and Predicting Spans
(Liu et al, 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach

Pre-training and fine-tuning

0.1% Aardvark 9
Use the output of the ardvar 85% Spam
Possible classes:

maskeq word’s position All English words ~ |10% | Improvisation 156% Not Spam
to predict the masked word

0% | Zyzzyva

Classifier
[FFNN + Softmax]
LN]

CTTTT 1
BERT
BERT

Randomly mask
15% of tokens

[CLS] Lets stick to [MASK] in this

1 2 3 4 oo 512

|npUt [CLS] Help Prince Mayuko

[CLS] Let’s stick to improvisation in this skit

Pre-training Fine-tuning

Key idea: all the weights are fine-tuned on downstream tasks

Applications

Class
Label
—
L)) e)
BERT
S I = Ey Eser || Ei |~ | Eu
——{r i e B py S gy
=0 MEE- @
Sentence 1 Sentence 2

(@) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,

Class

Label

5

BEEEs
E[CLS] E1 EZ EN

/J_I“_ /J.l; 1 1
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

RTE, SWAG
Start/End Span
. Nm mm &
[T][Tisee)][T]
BERT
Bl E, Ex Eiser) E/ Ew
—G L o LI LT LT

Question Paragraph

(c) Question Answering Tasks:
SQuUAD v1.1

(0] B-PER (0]
S & 43
B
BERT
E[CLS] E1 Ez EN
gy j LI L I . _‘I_Q
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

More details

e Input representations

Input [CLS] 1 my dog is (cute W [SEP] he (likes ” play 1 ##ing] [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes EpIay E##ing E[SEP]
-+ + + -+ + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ -+ -+ + -+ + + + -+ + -+
Position
Embeddings E, E, E, E, E, E, Ee E, Eg E, Eio
e Use word pieces instead of words: playing => play ##ing Assignment 4

e Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)

¢ Released two model sizes: BERT_base, BERT _large

Experimental results

BILSTM: 63.9
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
3902k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 648 799 904 360 733 849 568| 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 800 823 560, 752
BERTgASE 84.6/83.4 71.2 90.1 935 521 858 889 664 79.6
BERT| ARGE 86.7/85.9 721 911 949 605 865 893 70.1| 81.9
Model data bsz steps (3?;‘/‘;‘3) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT | rce
with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNet; arce
with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

(Wang et al, 2018): GLUE:

A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding

Use BERT in practice

TensorFlow: https://github.com/google-research/bert

I google-research / bert ®Watch~ 871 KStar 196k YFork 5.2k

<> Code Issues 498 Pull requests 59 Actions Projects 0 Wiki Security Insights

TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805

nlp google natural-language-processing natural-language-understanding tensorflow

PyTorch: https://github.com/huggingface/transformers

. huggingface / transformers ©OWatch~ 419 YruUnstar 17k YFork 3.9k

<> Code Issues 305 Pull requests 54 Actions Projects 0 Wiki Security Insights

@ Transformers: State-of-the-art Natural Language Processing for TensorfFlow 2.0 and PyTorch. https://huggingface.co/transformers
nlp natural-language-processing natural-language-understanding pytorch language-model natural-language-generation tensorflow bert gpt

xInet language-models xIm transformer-x| pytorch-transformers

https://github.com/google-research/bert
https://github.com/huggingface/transformers

Contextualized word embeddings in context

TaglLM (Peters et, 2017)

CoVe (McCann et al. 2017)

ULM{it (Howard and Ruder, 2018)
ELMo (Peters et al, 2018)
OpenAl GPT (Radford et al, 2018)
BERT (Devlin et al, 2018)
OpenAl GPT-2 (Radford et al, 2019)
XLNet (Yang et al, 2019)
SpanBERT (Joshi et al, 2019)
RoBERTa (Liu et al, 2019)
AIBERT (Anonymous)

Transformers ,

NIPS’17: Attention is All You Need
Key idea: Multi-head self-attention

No recurrence structure any more so it
trains much faster

Originally proposed for NMT (encoder-
decoder framework)

Used as the base model of BERT
(encoder only)

i ~\
Add & Norm
Feed
Forward
A
N Add & Norm
Multi-Head
Attention
* A ’
_ J
Positional ®—O
Encoding
Input
Embedding
Inputs
| Scaled Dot-Product } 4
Attention T
)
MatMul Concat

L1
i | SoftMax P
1 . Scaled Dot-Product
)| Mask (opt.) Attention N
H f E : ul Ml Atl
SC:l = Linear Y Linear P Linear
[Matvul [r [' [r
5 v K Q

Useful Resources

nn.Transtformer:

>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> sxc = toxch.rand((10, 32, 512))

>>> tgt = torch.rand((20, 32, 512))

>>> out = transformer_model(sxc, tgt)

nn.TransformerEncoder:

>>> encoder_layer = nn.TransformerEncoderLayexr(d_model=512, nhead=8)

>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layexrs=6)
>>> src = toxrch.rand(10, 32, 512)

>>> out = transformer_encodexr(sxc)

The Annotated Transformer:

http://nlp.seas.harvard.edu/2018/04/03/attention.html

A Jupyter notebook which explains how Transformer works line by line in PyTorch!

http://nlp.seas.harvard.edu/2018/04/03/attention.html

RNNs vs Transformers

g 5 5
(0000 (0000 - [0000]
0000 (eeee| [(eeee]
@xxxy: o3 oo
(e0oee| (0cee] [(ecee0)
0000 | ' (0000 | ' (0000]
(0000 - |0000] - [000O]

RNN layer 3

RNN layer 2

RNN layer 1

!

was terribly exciting

movie

the

movie

Multi-head Self Attention

e Attention: a query g and a set of key-value (k;, v,) pairs to an output

¢ Dot-product attention:
Ag.K. V)=) —,

e If we have multiple queries:
A(Q,K, V) = softmax(QK")V
Q = RnQXd, K, Ve Rnxd

e Self-attention: let’s use each word as query and compute the
attention with all the other words

= the word vectors themselves select each other

Multi-head Self Attention

e Scaled Dot-Product Attention:
KT

A(QO, K, V) = softmax(Q

)14
Va

o Input: X € R

AXWE, XWK XWV) e R
WQ, WK, WV = Rdmxd

e Multi-head attention: using more than one head is always useful..

A(Q, K, V) = Concat(head,, ..., head,) W?
head; = A(XWEZ, XW, XWY)
/h, W =d

out

In practice,h = 8,d =d

out

X dOl/tt

Add & Norm

Feed
Forward

A

\

Add & Norm

Multi-Head
Attention

1t

\.

J

Positional
Encoding

Ca

Input
Embedding

T

Inputs

Putting it all together

e FEach Transformer block has two sub-layers
e Multi-head attention
e 2-layer feedforward NN (with ReLU)

e FEach sublayer has a residual connection
and a layer normalization

LayerNorm(x

SubLayer(x))

e Input layer has a positional encoding

e BERT base: 12 layers, 12 heads, hidden size = 768, 110M parameters

e BERT large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

(Baetal, 2016): Layer Normalization

Have fun with using ELMo or BERT in your final project :)

