

COS 484: Natural Language Processing

Contextualized Word Embeddings

Fall 2019

Overview

Contextualized Word Representations

• ELMo = Embeddings from Language **Mo**dels

Deep contextualized word representations

https://arxiv.org > cs ▼

by ME Peters - 2018 - Cited by 1683 - Related articles

Deep contextualized word representations. ... Our **word** vectors are learned functions of the internal states of a **deep** bidirectional language model (biLM), which is pre-trained on a large text corpus.

• BERT = Bidirectional Encoder Representations from Transformers

BERT: Pre-training of Deep Bidirectional Transformers for ...

https://arxiv.org > cs ▼

by J Devlin - 2018 - Cited by 2259 - Related articles

Oct 11, 2018 - Unlike recent language representation models, **BERT** is designed to pre-train deep ... As a result, the pre-trained **BERT** model can be fine-tuned with just one additional output ... Which authors of this **paper** are endorsers?

Overview

Transformers

Attention Is All You Need

https://arxiv.org > cs ▼

by A Vaswani - 2017 - Cited by 4323 - Related articles

Jun 12, 2017 - **Attention Is All You Need**. The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an **attention** mechanism.

Encoder Layer 6

Encoder Layer 5

Encoder Layer 4

Encoder Layer 3

Encoder Layer 2

Encoder Layer 1

Feed Forward Feed Forward Multi-Head Attention Feed Forward Multi-Head Attention Feed Forward Multi-Head Attention Forward Add & Norm Multi-Head Attention in

out

Forward

Recap: word2vec

	Word	Cosine	distance
	norway		0.760124
	denmark		0.715460
word = "sweden"	finland		0.620022
	switzerland		0.588132
	belgium		0.585835
	netherlands		0.574631
	iceland		0.562368
	estonia		0.547621
	slovenia		0.531408

What's wrong with word2vec?

One vector for each word type

$$v(\text{bank}) = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix}$$

- Complex characteristics of word use: semantics, syntactic behavior, and connotations
- Polysemous words, e.g., bank, mouse

mouse¹: a mouse controlling a computer system in 1968.

mouse²: a quiet animal like a mouse

bank¹: ...a bank can hold the investments in a custodial account ...

bank²: ...as agriculture burgeons on the east bank, the river ...

Contextualized word embeddings

Let's build a vector for each word conditioned on its **context!**

$$f: (w_1, w_2, ..., w_n) \longrightarrow \mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$$

Contextualized word embeddings

	Source	Nearest Neighbors			
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer			
	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended			
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round			
1.:T N/	grounder {}	excellent play.			
biLM	Olivia De Havilland	{} they were actors who had been handed fat roles in			
	signed to do a Broadway	a successful play, and had talent enough to fill the roles			
	\underline{play} for Garson $\{\dots\}$	competently, with nice understatement.			

ELMo

- NAACL'18: Deep contextualized word representations
- Key idea:
 - Train an LSTM-based language model on some large corpus
 - Use the hidden states of the LSTM for each token to compute a vector representation of each word

ELMo

How to use ELMo?

$$R_{k} = \{\mathbf{x}_{k}^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\} \longleftarrow \text{\# of layers}$$

$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

$$\mathbf{h}_{k,0}^{lM} = \mathbf{x}_{k}^{LM}, \mathbf{h}_{k,j}^{LM} = [\overrightarrow{\mathbf{h}}_{k,j}^{LM}; \overleftarrow{\mathbf{h}}_{k,j}^{LM}]$$

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}$$

- γ^{task} : allows the task model to scale the entire ELMo vector
- s_i^{task} : softmax-normalized weights across layers
- Plug ELMo into any (neural) NLP model: freeze all the LMs weights and change the input representation to:

$$[\mathbf{x}_k; \mathbf{ELMo}_k^{task}]$$

(could also insert into higher layers)

More details

- Forward and backward LMs: 2 layers each
- Use character CNN to build initial word representation
 - 2048 char n-gram filters and 2 highway layers, 512 dim projection
- User 4096 dim hidden/cell LSTM states with 512 dim projections to next input
- A residual connection from the first to second layer
- Trained 10 epochs on 1B Word Benchmark

Experimental results

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

- SQuAD: question answering
- SNLI: natural language inference
- SRL: semantic role labeling
- Coref: coreference resolution
- NER: named entity recognition
- SST-5: sentiment analysis

Intrinsic Evaluation

First Layer > Second Layer

Second Layer > First Layer

syntactic information is better represented at lower layers while semantic information is captured a higher layers

Use ELMo in practice

https://allennlp.org/elmo

Pre-trained ELMo Models

Model	Link(Weights/Options File)		# Parameters (Millions)	LSTM Hidden Size/Output size	# Highway Layers>
Small	weights	options	13.6	1024/128	1
Medium	weights	options	28.0	2048/256	1
Original	weights	options	93.6	4096/512	2
Original (5.5B)	weights	options	93.6	4096/512	2

```
from allennlp.modules.elmo import Elmo, batch_to_ids

options_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x409
weight_file = "https://allennlp.s3.amazonaws.com/models/elmo/2x4096]

# Compute two different representation for each token.
# Each representation is a linear weighted combination for the
# 3 layers in ELMo (i.e., charcnn, the outputs of the two BiLSTM))
elmo = Elmo(options_file, weight_file, 2, dropout=0)

# use batch_to_ids to convert sentences to character ids
sentences = [['First', 'sentence', '.'], ['Another', '.']]
character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)
```

Also available in TensorFlow

BERT

- First released in Oct 2018.
- NAACL'19: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

How is BERT different from ELMo?

- #1. Unidirectional context vs bidirectional context
- #2. LSTMs vs Transformers (will talk later)
- #3. The weights are not freezed, called fine-tuning

Bidirectional encoders

- Language models only use left context or right context (although ELMo used two independent LMs from each direction).
- Language understanding is bidirectional

Bidirectional encoders

- Language models only use left context or right context (although ELMo used two independent LMs from each direction).
- Language understanding is bidirectional

Masked language models (MLMs)

 Solution: Mask out 15% of the input words, and then predict the masked words

- Too little masking: too expensive to train
- Too much masking: not enough context

Masked language models (MLMs)

A little more complication:

- Rather than always replacing the chosen words with [MASK], the data generator will do the following:
- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy → my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

Next sentence prediction (NSP)

Always sample two sentences, predict whether the second sentence is followed after the first one.

Recent papers show that NSP is not necessary...

Pre-training and fine-tuning

Pre-training

Fine-tuning

Key idea: all the weights are fine-tuned on downstream tasks

Applications

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

More details

Input representations

- Use word pieces instead of words: playing => play ##ing ← Assignment 4
- Trained 40 epochs on Wikipedia (2.5B tokens) + BookCorpus (0.8B tokens)
- Released two model sizes: BERT_base, BERT_large

Experimental results

BiLSTM: 63.9

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7
$XLNet_{LARGE}$						
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

Use BERT in practice

TensorFlow: https://github.com/google-research/bert

PyTorch: https://github.com/huggingface/transformers

Contextualized word embeddings in context

- TagLM (Peters et, 2017)
- CoVe (McCann et al. 2017)
- ULMfit (Howard and Ruder, 2018)
- ELMo (Peters et al, 2018)
- OpenAI GPT (Radford et al, 2018)
- BERT (Devlin et al, 2018)
- OpenAI GPT-2 (Radford et al, 2019)
- XLNet (Yang et al, 2019)
- SpanBERT (Joshi et al, 2019)
- RoBERTa (Liu et al, 2019)
- AlBERT (Anonymous)

• ...

Transformers

- NIPS'17: Attention is All You Need
- Key idea: Multi-head self-attention
- No recurrence structure any more so it trains much faster
- Originally proposed for NMT (encoderdecoder framework)
- Used as the base model of BERT (encoder only)

Useful Resources

nn.Transformer:

```
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
```

nn.TransformerEncoder:

```
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
```

The Annotated Transformer:

http://nlp.seas.harvard.edu/2018/04/03/attention.html

A Jupyter notebook which explains how Transformer works line by line in PyTorch!

RNNs vs Transformers

Multi-head Self Attention

- Attention: a query q and a set of key-value (k_i, v_i) pairs to an output
- Dot-product attention:

A(q, K, V) =
$$\sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$

$$K, V \in \mathbb{R}^{n \times d}, q \in \mathbb{R}^d$$

• If we have multiple queries:

$$A(Q, K, V) = \operatorname{softmax}(QK^{\intercal})V$$

$$Q \in \mathbb{R}^{n_Q \times d}, K, V \in \mathbb{R}^{n \times d}$$

- **Self-attention**: let's use each word as query and compute the attention with all the other words
 - = the word vectors themselves select each other

Multi-head Self Attention

• Scaled Dot-Product Attention:

$$A(Q, K, V) = \operatorname{softmax}(\frac{QK^{\mathsf{T}}}{\sqrt{d}})V$$

• Input: $X \in \mathbb{R}^{n \times d_{in}}$

$$A(XW^Q, XW^K, XW^V) \in \mathbb{R}^{n \times d}$$

$$W^Q, W^K, W^V \in \mathbb{R}^{d_{in} \times d}$$

• Multi-head attention: using more than one head is always useful..

$$A(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O$$

$$head_i = A(XW_i^Q, XW_i^K, XW_i^V)$$

In practice,
$$h=8, d=d_{out}/h, W^O=d_{out}\times d_{out}$$

Putting it all together

- Each Transformer block has two sub-layers
 - Multi-head attention
 - 2-layer feedforward NN (with ReLU)
- Each sublayer has a residual connection and a layer normalization

LayerNorm(x + SubLayer(x))

Input layer has a positional encoding

- BERT_base: 12 layers, 12 heads, hidden size = 768, 110M parameters
- BERT_large: 24 layers, 16 heads, hidden size = 1024, 340M parameters

Have fun with using ELMo or BERT in your final project:)

