

#### COS 484: Natural Language Processing

# Neural Machine Translation

Fall 2019

### Announcements

- Sign up for project meetings ASAP
  - Link will be posted on Piazza by 3pm today
  - Will be held this week

### Last time



- Statistical MT
  - Word-based
  - Phrase-based
  - Syntactic



# Neural Machine Translation

- A single neural network is used to translate from source to target
- Architecture: Encoder-Decoder
  - Two main components:
    - Encoder: Convert source sentence (input) into a vector/matrix
    - Decoder: Convert encoding into a sentence in target language (output)

### Recall: RNNs

 $\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^d$ 



# Sequence to Sequence learning (Seq2seq)



- Encode entire input sequence into a single vector (using an RNN)
- Decode one word at a time (again, using an RNN!)
- Beam search for better inference
- Learning is not trivial! (vanishing/exploding gradients)

(Sutskever et al., 2014)

Sentence: This cat is cute



Sentence: This cat is cute



Sentence: This cat is cute













• A conditioned language model



# Seq2seq training

- Similar to training a language model!
- Minimize cross-entropy loss:

$$\sum_{t=1}^{T} -\log P(y_t | y_1, \dots, y_{t-1}, x_1, \dots, x_n)$$

- Back-propagate gradients through both decoder and encoder
- Need a really big corpus

36M sentence pairs Russian: Машинный перевод - это круто! figlish: Machine translation is cool!

# Seq2seq training



<sup>(</sup>slide credit: Abigail See)

# Greedy decoding



- Compute argmax at every step of decoder to generate word
- What's wrong?

### Exhaustive search?

Find arg max 
$$P(y_1, \dots, y_T | x_1, \dots, x_n)$$
  
 $y_1, \dots, y_T$ 

- Requires computing all possible sequences
  - $O(V^T)$  complexity!
  - Too expensive

# A middle ground: Beam search

- Key idea: At every step, keep track of the k most probable partial translations (hypotheses)
- Score of each hypothesis = log probability

$$\sum_{t=1}^{j} \log P(y_t | y_1, \dots, y_{t-1}, x_1, \dots, x_n)$$

- Not guaranteed to be optimal
- More efficient than exhaustive search

Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^t \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 



Beam size = k = 2. Blue numbers =  $score(y_1, \ldots, y_t) = \sum_{i=1}^t \log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$ 





### Backtrack



- Different hypotheses may produce  $\langle e \rangle$  (end) token at different time steps
  - When a hypothesis produces  $\langle e \rangle$ , stop expanding it and place it aside
- Continue beam search until:
  - All k hypotheses produce  $\langle e \rangle$  OR
  - Hit max decoding limit T
- Select top hypotheses using the normalized likelihood score

$$\frac{1}{T} \sum_{t=1}^{T} \log P(y_t | y_1, \dots, y_{t-1}, x_1, \dots, x_n)$$

Otherwise shorter hypotheses have higher scores

### NMT vs SMT



#### Cons

# NMT vs SMT

#### Pros

- Better performance
  - Fluency
  - Longer context
- Single NN optimized end-toend
- Less engineering
- Works out of the box for many language pairs

#### Cons

- Requires more data and compute
- Less interpretable
  - Hard to debug
- Uncontrollable
  - Heavily dependent on data could lead to unwanted biases
- More parameters

# How seq2seq changed the MT landscape



# **MT** Progress



(source: Rico Sennrich)

**RESEARCH > PUBLICATIONS >** 

### **Google's Neural Machine Translation System: Bridging** the Gap between Human and **Machine Translation**

| Table 10: Mean                          | of side-by- | side score | s on prou | uction data |
|-----------------------------------------|-------------|------------|-----------|-------------|
|                                         | PBMT        | GNMT       | Human     | Relative    |
|                                         |             |            |           | Improvement |
| $English \rightarrow Spanish$           | 4.885       | 5.428      | 5.504     | 87%         |
| $\mathbf{English} \to \mathbf{French}$  | 4.932       | 5.295      | 5.496     | 64%         |
| $\mathbf{English} \to \mathbf{Chinese}$ | 4.035       | 4.594      | 4.987     | 58%         |
| $\text{Spanish} \to \text{English}$     | 4.872       | 5.187      | 5.372     | 63%         |
| French $\rightarrow$ English            | 5.046       | 5.343      | 5.404     | 83%         |
| $\mathbf{Chinese} \to \mathbf{English}$ | 3.694       | 4.263      | 4.636     | 60%         |
|                                         |             |            |           |             |

Table 10. Moon of side by side secres on production date

(Wu et al., 2016)

# Versatile seq2seq

- Seq2seq finds applications in many other tasks!
- Any task where inputs and outputs are sequences of words/ characters
  - Summarization (input text  $\rightarrow$  summary)
  - Dialogue (previous utterance  $\rightarrow$  reply)
  - Parsing (sentence  $\rightarrow$  parse tree in sequence form)
  - Question answering (context+question  $\rightarrow$  answer)

# Issues with vanilla seq2seq



- A single encoding vector, h<sup>enc</sup>, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients
- Overfitting

### Remember alignments?





Τ

$$\mathbf{a} = (3, 4, 2, 1)^{\top}$$
  $\mathbf{a} = (1, 2, 3, 0, 4)$ 

### Attention

- The neural MT equivalent of alignment models
- Key idea: At each time step during decoding, focus on a particular part of source sentence
  - This depends on the decoder's current hidden state (i.e. notion of what you are trying to decode)
  - Usually implemented as a probability distribution over the hidden states of the encoder ( $h_i^{enc}$ )











Use the attention distribution to take a **weighted sum** of the encoder hidden states.

The attention output mostly contains information from the hidden states that received high attention.

Decoder RNN





# Computing attention

- Encoder hidden states:  $h_1^{enc}, \ldots, h_n^{enc}$
- Decoder hidden state at time *t*:  $h_t^{dec}$
- First, get attention scores for this time step (we will see what g is soon!):  $e^t = [g(h_1^{enc}, h_t^{dec}), \dots, g(h_n^{enc}, h_t^{dec})]$
- Obtain the attention distribution using softmax:

 $\alpha^t = \operatorname{softmax} (e^t) \in \mathbb{R}^n$ 

Compute weighted sum of encoder hidden states:

$$a_t = \sum_{i=1}^n \alpha_i^t h_i^{enc} \in \mathbb{R}^h$$

Finally, concatenate with decoder state and pass on to output layer:  $[a_t; h_t^{dec}] \in \mathbb{R}^{2h}$ 

# Types of attention

- Assume encoder hidden states  $h_1, h_2, \ldots, h_n$  and decoder hidden state z
- 1. Dot-product attention (assumes equal dimensions for *a* and *b*:  $e_i = g(h_i, z) = z^T h_i \in \mathbb{R}$
- 2. Multiplicative attention:

 $g(h_i, z) = z^T W h_i \in \mathbb{R}$ , where W is a weight matrix

3. Additive attention:

 $g(h_i, z) = v^T \tanh(W_1 h_i + W_2 z) \in \mathbb{R}$ 

where  $W_1$ ,  $W_2$  are weight matrices and v is a weight vector

# Issues with vanilla seq2seq



- A single encoding vector, h<sup>enc</sup>, needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients

#### Overfitting

# Dropout

- Form of regularization for RNNs (and any NN in general)
- Idea: "Handicap" NN by removing hidden units stochastically
  - set each hidden unit in a layer to 0 with probability *p* during training (*p* = 0.5 usually works well)
  - scale outputs by 1/(1-p)
  - hidden units forced to learn more general patterns
- Test time: Simply compute identity



(a) Standard Neural Net



(b) After applying dropout.

# Existing challenges with NMT

- Out-of-vocabulary words
- Low-resource languages
- Long-term context
- Common sense knowledge (e.g. hot dog, paper jam)
- Fairness and bias
- Uninterpretable

# Massively multilingual MT

| 02 -    | Slavic                        | u be                             | Turkic<br>• <sup>kk</sup> | bn gur Indo         | o-Aryan<br>ian           |
|---------|-------------------------------|----------------------------------|---------------------------|---------------------|--------------------------|
| 0.01 -  | • <sup>bg</sup>               | uk<br>Baltic                     | hy ky ky ja <sub>fa</sub> | si<br>ps<br>am      | d                        |
| 0-      | cs. <sup>sk</sup> pl<br>hr sl | ethu<br>es <sup>phu</sup> Uralic | iw tr ar az<br>th<br>yi   | km<br>my<br>Kra-Dai |                          |
| -0.01 - | sv fr<br>Plda<br>gl           | de<br>ro sq eo<br>af             | is ga vi<br>mt ht b       | Niger-              | Congo<br><sup>xh</sup>   |
| -       | Romance                       | Germanic                         | Austronesian              | su ceb              | st sh ha mi ig<br>ny haw |

- Train a single neural network on 103 languages paired with English (remember Interlingua?)
- Massive improvements on low-resource languages

(Arivazhagan et al., 2019)