
Neural Machine Translation

Fall 2019

COS 484: Natural Language Processing

• Sign up for project meetings ASAP

• Link will be posted on Piazza by 3pm today

• Will be held this week

Announcements

• Statistical MT

• Word-based

• Phrase-based

• Syntactic

Last time

Neural Machine Translation

‣ A single neural network is used to translate from source
to target

‣ Architecture: Encoder-Decoder

‣ Two main components:

‣ Encoder: Convert source sentence (input) into a
vector/matrix

‣ Decoder: Convert encoding into a sentence in target
language (output)

Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd

Sequence to Sequence learning
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)

• Decode one word at a time (again, using an RNN!)

• Beam search for better inference

• Learning is not trivial! (vanishing/exploding gradients)

(Sutskever et al., 2014)

Encoder

xt

ht−1

xt+1

ht

xt+2

ht+1 ht+2

xt+3

ht+3

h

This								cat											is									cute

Sentence: This cat is cute

word

embedding

Encoder

x1

h0

xt+1

h1

xt+2

ht+1 ht+2

xt+3

ht+3

h

This								cat											is									cute

Sentence: This cat is cute

word

embedding

x1

h0

x2

h1

x3

h2 h3

x4

h4

Encoder

xt+2

ht+2

xt+3

ht+3

h

This								cat											is									cute

Sentence: This cat is cute

word

embedding

Encoder

x1

h0

x2

h1

x3

h2 h3

x4

h4

This								cat											is									cute

(encoded	representation)Sentence: This cat is cute

word

embedding

henc

Decoder

x′�1 x′�2

z1

x′�3

z2

ce

o o

z3

o

x′�4

z4

o

<s>										ce										chat							est

chat mignonest

x′�5

z5

o

<e>

mignon

word

embedding

henc

Decoder

y1

henc

x′�2

z1

x′�3

z2

ce

o o

z3

o

x′�4

z4

o

<s>										ce										chat							est

chat mignonest

x′�5

z5

o

<e>

mignon

word

embedding

Decoder

y1 y2

z1

x′�3

z2

ce

o o

z3

o

x′�4

z4

o

<s>										ce										chat							est

chat mignonest

x′�5

z5

o

<e>

mignon

word

embedding

henc

Decoder

y1 y2

z1

y3

z2

ce

o o

z3

o

y4

z4

o

<s>										ce										chat							est

chat mignon
• A conditioned language model

est

y5

z5

o

<e>

mignon

word

embedding

henc

Seq2seq training

‣ Similar to training a language model!

‣ Minimize cross-entropy loss:

‣ Back-propagate gradients through both decoder and encoder

‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo!

Seq2seq training

(slide credit: Abigail See)

Greedy decoding

‣ Compute argmax at every step of decoder to generate
word

‣ What’s wrong?

Exhaustive search?

‣ Find

‣ Requires computing all possible sequences

‣ complexity!

‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)

A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most
probable partial translations (hypotheses)

‣ Score of each hypothesis = log probability

‣ Not guaranteed to be optimal

‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)

Beam decoding

(slide credit: Abigail See)

Beam decoding

(slide credit: Abigail See)

Beam decoding

(slide credit: Abigail See)

Backtrack

(slide credit: Abigail See)

Beam decoding

‣ Different hypotheses may produce (end) token at different time steps

‣ When a hypothesis produces , stop expanding it and place it aside

‣ Continue beam search until:

‣ All hypotheses produce OR

‣ Hit max decoding limit T

‣ Select top hypotheses using the normalized likelihood score

‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)

NMT vs SMT

Cons

‣
Pros

‣

NMT vs SMT

Pros

‣ Better performance

‣ Fluency

‣ Longer context

‣ Single NN optimized end-to-
end

‣ Less engineering

‣ Works out of the box for many
language pairs

Cons

‣ Requires more data and compute

‣ Less interpretable

‣ Hard to debug

‣ Uncontrollable

‣ Heavily dependent on data -
could lead to unwanted
biases

‣ More parameters

How seq2seq changed the MT
landscape

MT Progress

(source: Rico Sennrich)

(Wu et al., 2016)

Versatile seq2seq

‣ Seq2seq finds applications in many other tasks!

‣ Any task where inputs and outputs are sequences of words/
characters

‣ Summarization (input text summary)

‣ Dialogue (previous utterance reply)

‣ Parsing (sentence parse tree in sequence form)

‣ Question answering (context+question answer)

→

→

→

→

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the
information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Overfitting

henc

Bottleneck

Remember alignments?

Attention

‣ The neural MT equivalent of alignment models

‣ Key idea: At each time step during decoding, focus on a
particular part of source sentence

‣ This depends on the decoder’s current hidden state
(i.e. notion of what you are trying to decode)

‣ Usually implemented as a probability distribution over
the hidden states of the encoder ()henc

i

Seq2seq with attention

(slide credit: Abigail See)

Seq2seq with attention

(slide credit: Abigail See)

Seq2seq with attention

(slide credit: Abigail See)

Seq2seq with attention

(slide credit: Abigail See)

Can also use as input
for next time step

̂y1

Seq2seq with attention

(slide credit: Abigail See)

Computing attention

‣ Encoder hidden states:

‣ Decoder hidden state at time :

‣ First, get attention scores for this time step (we will see what is soon!): 

‣ Obtain the attention distribution using softmax: 

‣ Compute weighted sum of encoder hidden states: 

‣ Finally, concatenate with decoder state and pass on to output layer:

henc
1 , . . . , henc

n

t hdec
t

g
et = [g(henc

1 , hdec
t), . . . , g(henc

n , hdec
t)]

αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

[at; hdec
t] ∈ ℝ2h

Types of attention

‣ Assume encoder hidden states and decoder hidden
state

1. Dot-product attention (assumes equal dimensions for and : 

2. Multiplicative attention: 
 , where is a weight matrix

3. Additive attention:  
  
where are weight matrices and is a weight vector

h1, h2, . . . , hn

z

a b
ei = g(hi, z) = zThi ∈ ℝ

g(hi, z) = zTWhi ∈ ℝ W

g(hi, z) = vT tanh (W1hi + W2z) ∈ ℝ
W1, W2 v

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the
information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣Overfitting

henc

Bottleneck

Dropout

‣ Form of regularization for RNNs (and any NN
in general)

‣ Idea: “Handicap” NN by removing hidden
units stochastically

‣ set each hidden unit in a layer to 0 with
probability during training (
usually works well)

‣ scale outputs by

‣ hidden units forced to learn more general
patterns

‣ Test time: Simply compute identity

p p = 0.5

1/(1 − p)

Existing challenges with NMT

‣ Out-of-vocabulary words

‣ Low-resource languages

‣ Long-term context

‣ Common sense knowledge (e.g. hot dog, paper jam)

‣ Fairness and bias

‣ Uninterpretable

Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with
English (remember Interlingua?)

‣ Massive improvements on low-resource languages

