
Neural Machine Translation

Fall 2019

COS 484: Natural Language Processing



• Sign up for project meetings ASAP


• Link will be posted on Piazza by 3pm today


• Will be held this week

Announcements



• Statistical MT


• Word-based


• Phrase-based


• Syntactic

Last time



Neural Machine Translation

‣ A single neural network is used to translate from source 
to target


‣ Architecture: Encoder-Decoder


‣ Two main components:


‣ Encoder: Convert source sentence (input) into a 
vector/matrix


‣ Decoder: Convert encoding into a sentence in target 
language (output)



Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd



Sequence to Sequence learning 
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)


• Decode one word at a time (again, using an RNN!)


• Beam search for better inference


• Learning is not trivial! (vanishing/exploding gradients)

(Sutskever et al., 2014)
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Seq2seq training

‣ Similar to training a language model!


‣ Minimize cross-entropy loss:





‣ Back-propagate gradients through both decoder and encoder


‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo! 



Seq2seq training

(slide credit: Abigail See)



Greedy decoding

‣ Compute argmax at every step of decoder to generate 
word


‣ What’s wrong?



Exhaustive search?

‣ Find 


‣ Requires computing all possible sequences 


‣  complexity!


‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)



A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most 
probable partial translations (hypotheses)


‣ Score of each hypothesis = log probability





‣ Not guaranteed to be optimal


‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



Beam decoding

(slide credit: Abigail See)



Beam decoding
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Beam decoding

(slide credit: Abigail See)



Backtrack

(slide credit: Abigail See)



Beam decoding

‣ Different hypotheses may produce  (end) token at different time steps


‣ When a hypothesis produces , stop expanding it and place it aside


‣ Continue beam search until:


‣ All  hypotheses produce  OR


‣ Hit max decoding limit T


‣ Select top hypotheses using the normalized likelihood score





‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



NMT vs SMT

Cons


‣
Pros


‣



NMT vs SMT

Pros


‣ Better performance


‣ Fluency


‣ Longer context


‣ Single NN optimized end-to-
end


‣ Less engineering


‣ Works out of the box for many 
language pairs

Cons


‣ Requires more data and compute


‣ Less interpretable


‣ Hard to debug


‣ Uncontrollable


‣ Heavily dependent on data - 
could lead to unwanted 
biases


‣ More parameters



How seq2seq changed the MT 
landscape



MT Progress

(source: Rico Sennrich)



(Wu et al., 2016)



Versatile seq2seq

‣ Seq2seq finds applications in many other tasks!


‣ Any task where inputs and outputs are sequences of words/
characters


‣ Summarization (input text  summary)


‣ Dialogue (previous utterance  reply)


‣ Parsing (sentence  parse tree in sequence form)


‣ Question answering (context+question  answer)

→

→

→

→



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the 
information about source sentence


‣ Longer sequences can lead to vanishing gradients


‣ Overfitting

henc

Bottleneck



Remember alignments?



Attention

‣ The neural MT equivalent of alignment models


‣ Key idea: At each time step during decoding, focus on a 
particular part of source sentence


‣ This depends on the decoder’s current hidden state 
(i.e. notion of what you are trying to decode)


‣ Usually implemented as a probability distribution over 
the hidden states of the encoder (  )henc

i



Seq2seq with attention

(slide credit: Abigail See)



Seq2seq with attention

(slide credit: Abigail See)



Seq2seq with attention

(slide credit: Abigail See)



Seq2seq with attention

(slide credit: Abigail See)

Can also use  as input 
for next time step 

̂y1



Seq2seq with attention

(slide credit: Abigail See)



Computing attention

‣ Encoder hidden states: 


‣ Decoder hidden state at time : 


‣ First, get attention scores for this time step (we will see what  is soon!): 
                                 


‣ Obtain the attention distribution using softmax: 
                                        


‣ Compute weighted sum of encoder hidden states: 

                                        


‣ Finally, concatenate with decoder state and pass on to output layer: 

henc
1 , . . . , henc

n

t hdec
t

g
et = [g(henc

1 , hdec
t ), . . . , g(henc

n , hdec
t )]

αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

[at; hdec
t ] ∈ ℝ2h



Types of attention

‣ Assume encoder hidden states  and decoder hidden 
state 


1. Dot-product attention (assumes equal dimensions for  and : 
                    


2. Multiplicative attention: 
             , where  is a weight matrix


3. Additive attention:  
                   
where  are weight matrices and  is a weight vector

h1, h2, . . . , hn

z

a b
ei = g(hi, z) = zThi ∈ ℝ

g(hi, z) = zTWhi ∈ ℝ W

g(hi, z) = vT tanh (W1hi + W2z) ∈ ℝ
W1, W2 v



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the 
information about source sentence


‣ Longer sequences can lead to vanishing gradients


‣Overfitting

henc

Bottleneck



Dropout

‣ Form of regularization for RNNs (and any NN 
in general)


‣ Idea: “Handicap” NN  by removing hidden 
units stochastically


‣ set each hidden unit in a layer to 0 with 
probability  during training (  
usually works well)


‣ scale outputs by 


‣ hidden units forced to learn more general 
patterns


‣ Test time: Simply compute identity

p p = 0.5

1/(1 − p)



Existing challenges with NMT

‣ Out-of-vocabulary words


‣ Low-resource languages 


‣ Long-term context


‣ Common sense knowledge (e.g. hot dog, paper jam)


‣ Fairness and bias


‣ Uninterpretable



Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with 
English (remember Interlingua?)


‣ Massive improvements on low-resource languages




