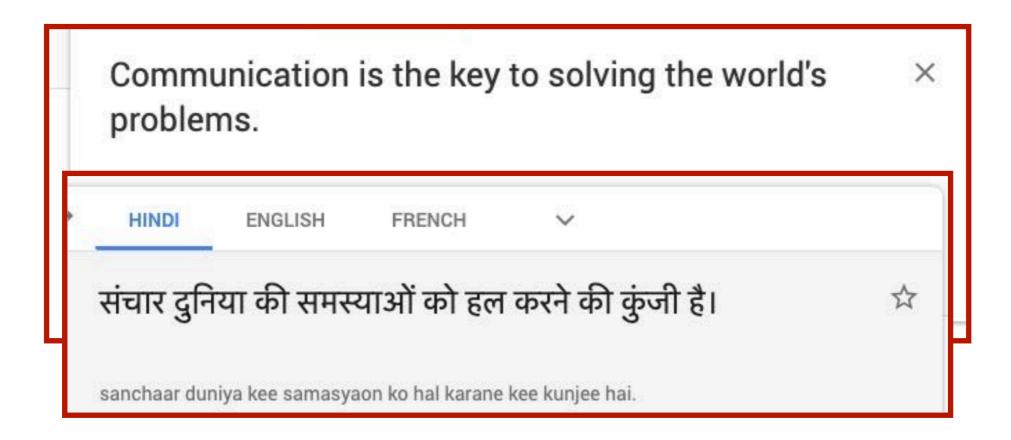


COS 484: Natural Language Processing

Machine Translation

Fall 2019

Translation



- One of the "holy grail" problems in artificial intelligence
- Practical use case: Facilitate communication between people in the world
- Extremely challenging (especially for low-resource languages)

Easy and not so easy translations

- Easy:
 - I like apples ↔ ich mag Äpfel (German)
- Not so easy:

 - les ↔ the but les pommes ↔ apples

MT basics

- Goal: Translate a sentence $w^{(s)}$ in a source language (input) to a sentence in the target language (output)
- Can be formulated as an optimization problem:

•
$$\hat{w}^{(t)} = \arg \max_{w^{(t)}} \psi (w^{(s)}, w^{(t)})$$

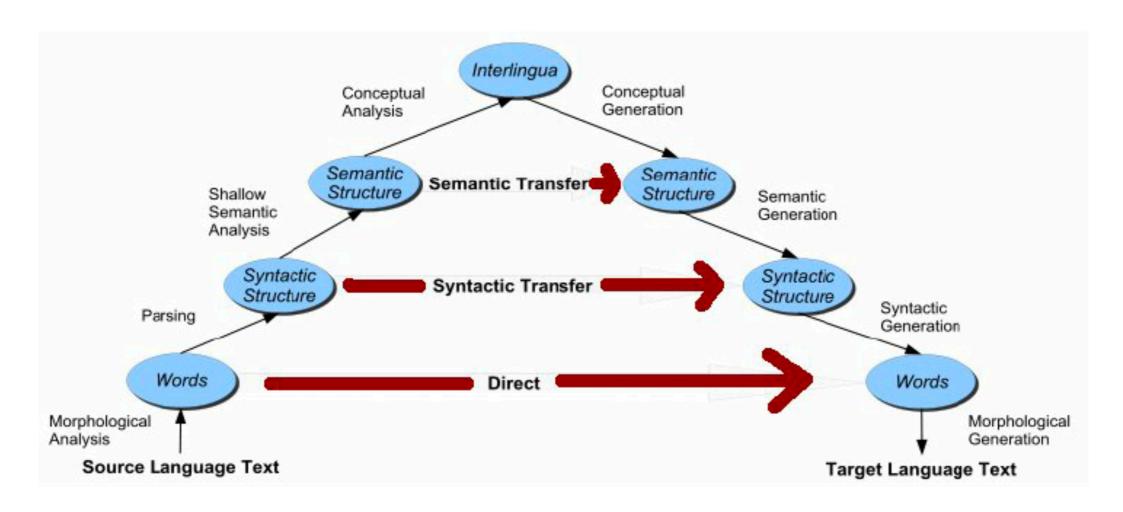
- where ψ is a scoring function over source and target sentences
- Requires two components:
 - Learning algorithm to compute parameters of ψ
 - Decoding algorithm for computing the best translation $\hat{w}^{(t)}$

Why is MT challenging?

- Single words may be replaced with multi-word phrases
- Reordering of phrases
- Contextual dependence
 - les ↔ the but les pommes ↔ apples

Extremely large output space \Longrightarrow Decoding is NP-hard

Vauquois Pyramid



- Hierarchy of concepts and distances between them in different languages
- Lowest level: individual words/characters
- Higher levels: syntax, semantics
- Interlingua: Generic language-agnostic representation of meaning

Evaluating translation quality

- Two main criteria:
 - Adequacy: Translation $w^{(t)}$ should adequately reflect the linguistic content of $w^{(s)}$
 - Fluency: Translation $w^{(t)}$ should be fluent text in the target language

	Adequate?	Fluent?
To Vinay it like Python	yes	no
Vinay debugs memory leaks	no	yes
Vinay likes Python	yes	yes

Different translations of A Vinay le gusta Python

Evaluation metrics

- Manual evaluation is most accurate, but expensive
- Automated evaluation metrics:
 - Compare system hypothesis with reference translations
 - BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):
 - Modified n-gram precision

 $p_n = \frac{\text{number of } n\text{-grams appearing in both reference and hypothesis translations}}{\text{number of } n\text{-grams appearing in the hypothesis translation}}$

BLEU

BLEU =
$$\exp \frac{1}{N} \sum_{n=1}^{N} \log p_n$$

Two modifications:

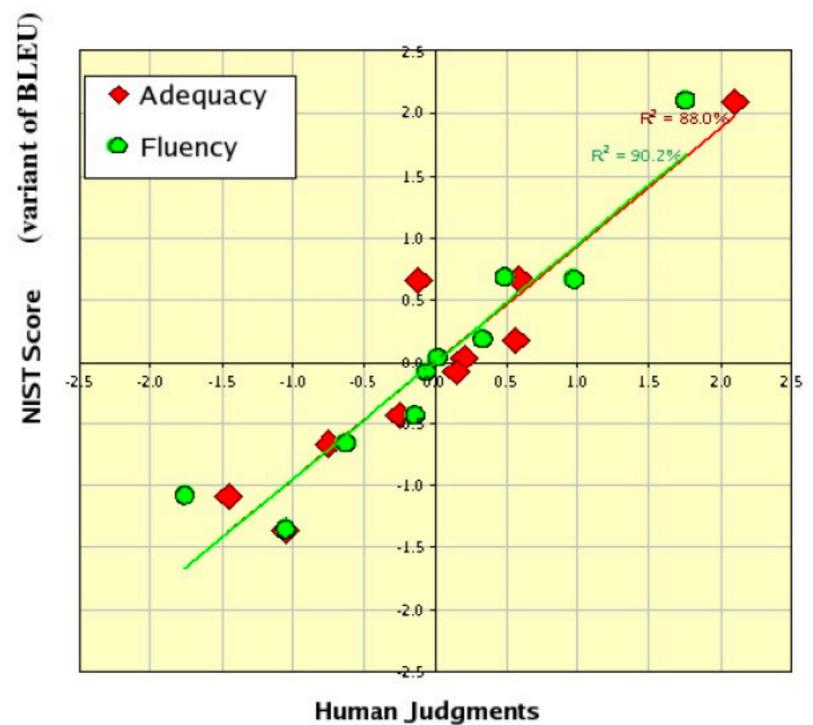
- To avoid log 0, all precisions are smoothed
- Each n-gram in reference can be used at most once
 - Ex. **Hypothesis**: to to to to to vs **Reference**: to be or not to be should not get a unigram precision of 1

Precision-based metrics favor short translations

• Solution: Multiply score with a brevity penalty for translations shorter than reference, $e^{1-r/h}$

BLEU

Correlates somewhat well with human judgements



(G. Doddington, NIST)

BLEU scores

	Translation	p_1	p_2	p_3	p_4	BP	BLEU
Reference	Vinay likes programming in Python						
Sys1	To Vinay it like to program Python	$\frac{2}{7}$	0	0	0	1	.21
Sys2	Vinay likes Python	$\frac{3}{3}$	$\frac{1}{2}$	0	0	.51	.33
Sys3	Vinay likes programming in his pajamas	$\frac{4}{6}$	$\frac{3}{5}$	$\frac{2}{4}$	$\frac{1}{3}$	1	.76

Sample BLEU scores for various system outputs

• Alternatives have been proposed:

Issues?

- METEOR: weighted F-measure
- Translation Error Rate (TER): Edit distance between hypothesis and reference

Data

Statistical MT relies requires parallel corpora

1. Chapter 4, Koch (DE)	de	es
context We would like to ensure that there is a reference to this as early as the recitals and that the period within which the Council has to make a decision - which is not clearly worded - is set at a maximum of three months.	Wir möchten sicherstellen , daß hierauf bereits in den Erwägungsgründen hingewiesen wird und die uneindeutig formulierte Frist , innerhalb der der Rat eine Entscheidung treffen muß , auf maximal drei Monate fixiert wird .	Quisiéramos asegurar que se aluda ya a esto en los considerandos y que el plazo , imprecisamente formulado , dentro del cual el Consejo ha de adoptar una decisión , se fije en tres meses como máximo .
2. Chapter 3, Färm (SV)	de	es
context Our experience of modern administration tells us that openness, decentralisation of responsibility and qualified evaluation are often as effective as detailed bureaucratic supervision.		Nuestras experiencias en materia de administración moderna nos señalan que la apertura, la descentralización de las responsabilidades y las evaluaciones bien hechas son a menudo tan eficaces como los controles burocráticos detallados.

(Europarl, Koehn, 2005)

- And lots of it!
- Not available for many low-resource languages in the world

Statistical MT

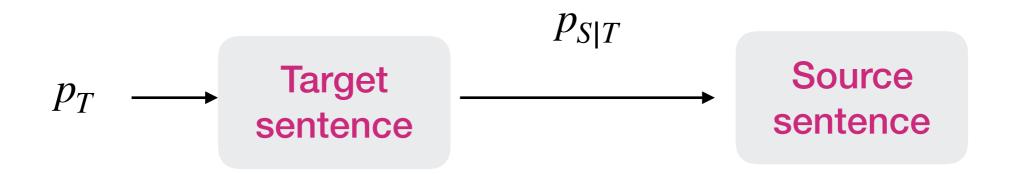
$$\hat{w}^{(t)} = \arg\max_{w^{(t)}} \psi \ (w^{(s)}, w^{(t)})$$

• Scoring function ψ can be broken down as follows:

$$\psi (w^{(s)}, w^{(t)}) = \psi_A (w^{(s)}, w^{(t)}) + \psi_F (w^{(t)})$$
(adequacy) (fluency)

- Allows us to estimate parameters of ψ on separate data
 - ψ_A from aligned corpora
 - ψ_F from monolingual corpora

Noisy channel model



$$egin{aligned} \Psi_A(oldsymbol{w}^{(s)}, oldsymbol{w}^{(t)}) & riangleq \log \mathrm{p}_{S|T}(oldsymbol{w}^{(s)} \mid oldsymbol{w}^{(t)}) \ \Psi_F(oldsymbol{w}^{(t)}) & riangleq \log \mathrm{p}_T(oldsymbol{w}^{(t)}) \ \Psi(oldsymbol{w}^{(s)}, oldsymbol{w}^{(t)}) &= \log \mathrm{p}_{S|T}(oldsymbol{w}^{(s)} \mid oldsymbol{w}^{(t)}) + \log \mathrm{p}_T(oldsymbol{w}^{(t)}) &= \log \mathrm{p}_{S,T}(oldsymbol{w}^{(s)}, oldsymbol{w}^{(t)}). \end{aligned}$$

- Generative process for source sentence
- Use Bayes rule to recover $\boldsymbol{w}^{(t)}$ that is maximally likely under the conditional distribution $p_{T|S}$ (which is what we want)

Noisy channel model

$$\begin{split} \Psi_A(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) &\triangleq \log \mathsf{p}_{S|T}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}) \\ \Psi_F(\boldsymbol{w}^{(t)}) &\triangleq \log \mathsf{p}_T(\boldsymbol{w}^{(t)}) \\ \Psi(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) &= \log \mathsf{p}_{S|T}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}) + \log \mathsf{p}_T(\boldsymbol{w}^{(t)}) = \log \mathsf{p}_{S,T}(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}). \end{split}$$

- Allows us to use a language model p_T to improve fluency
- Use Bayes rule to recover $\boldsymbol{w}^{(t)}$ that is maximally likely under the conditional distribution $p_{T|S}$ (which is what we want)

IBM Models

- Early approaches to statistical MT
- How can we define the translation model $p_{S|T}$?
- How can we estimate the parameters of the translation model from parallel training examples?
- Make use of the idea of alignments

Alignments

 Key question: How should we align words in source to words in target?

 $\mathsf{GOOO} \qquad \mathcal{A}(\boldsymbol{w}^{(s)},\boldsymbol{w}^{(t)}) = \{(A,\varnothing),(Vinay,Vinay),(le,likes),(gusta,likes),(Python,Python)\}.$

bad $A(\mathbf{w}^{(s)}, \mathbf{w}^{(t)}) = \{(A, Vinay), (Vinay, likes), (le, Python), (gusta, \emptyset), (Python, \emptyset)\}.$

Incorporating alignments

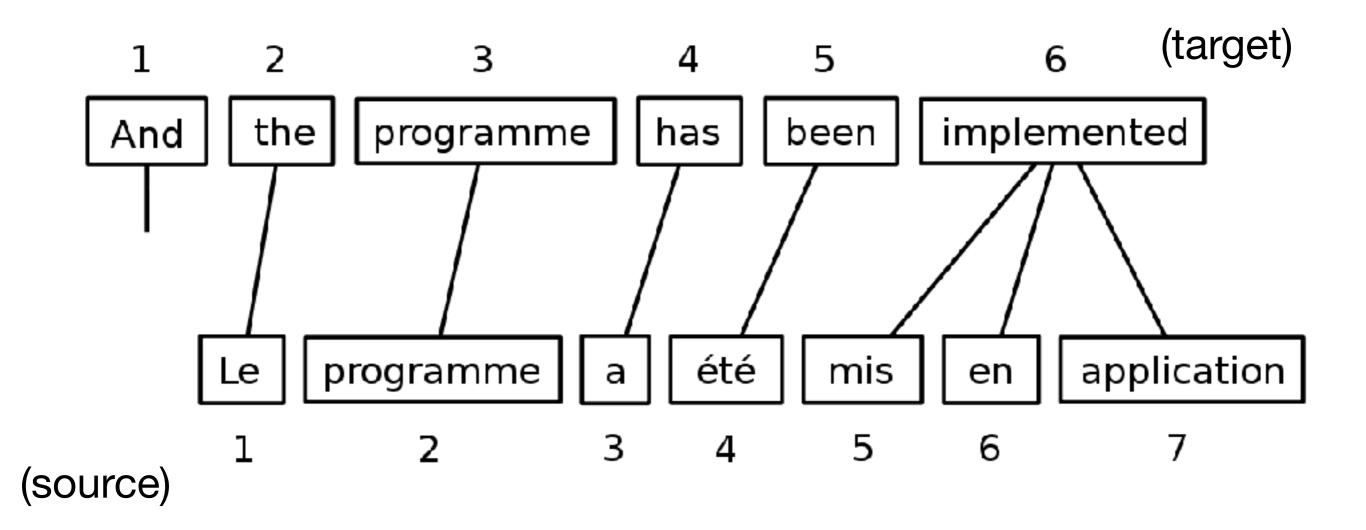
Joint probability of alignment and translation can be defined as:

$$egin{aligned} \mathsf{p}(m{w}^{(s)}, \mathcal{A} \mid m{w}^{(t)}) &= \prod_{m=1}^{M^{(s)}} \mathsf{p}(w_m^{(s)}, a_m \mid w_{a_m}^{(t)}, m, M^{(s)}, M^{(t)}) \ &= \prod_{m=1}^{M^{(s)}} \mathsf{p}(a_m \mid m, M^{(s)}, M^{(t)}) imes \mathsf{p}(w_m^{(s)} \mid w_{a_m}^{(t)}). \end{aligned}$$

- $M^{(s)}$, $M^{(t)}$ are the number of words in source and target sentences
- a_m is the alignment of the m^{th} word in the source sentence, i.e. it specifies that the m^{th} word is aligned to the a_m^{th} word in target

Is this sufficient?

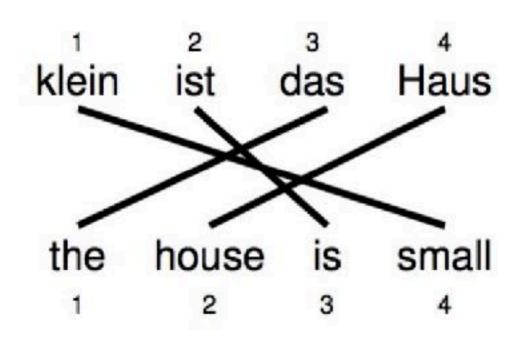
Incorporating alignments

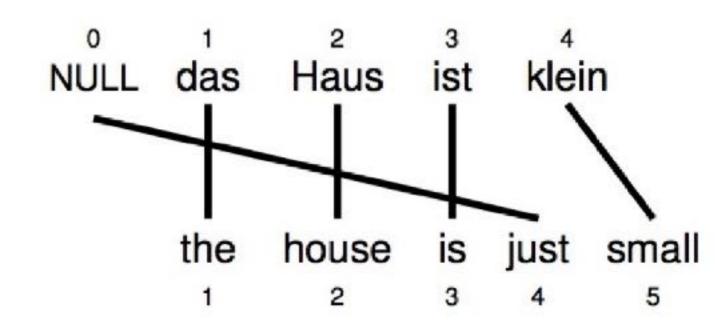


$$a_1 = 2$$
, $a_2 = 3$, $a_3 = 4$,...

Multiple source words may align to the same target word!

Reordering and word insertion





$$\mathbf{a} = (3, 4, 2, 1)^{\top}$$

$$\mathbf{a} = (1, 2, 3, 0, 4)^{\mathsf{T}}$$

Assume extra NULL token

Independence assumptions

$$\begin{aligned} \mathsf{p}(\boldsymbol{w}^{(s)}, \mathcal{A} \mid \boldsymbol{w}^{(t)}) &= \prod_{m=1}^{M^{(s)}} \mathsf{p}(w_m^{(s)}, a_m \mid w_{a_m}^{(t)}, m, M^{(s)}, M^{(t)}) \\ &= \prod_{m=1}^{M^{(s)}} \mathsf{p}(a_m \mid m, M^{(s)}, M^{(t)}) \times \mathsf{p}(w_m^{(s)} \mid w_{a_m}^{(t)}). \end{aligned}$$

- Two independence assumptions:
 - Alignment probability factors across tokens:

$$\mathsf{p}(\mathcal{A} \mid m{w}^{(s)}, m{w}^{(t)}) = \prod_{m=1}^{M^{(s)}} \mathsf{p}(a_m \mid m, M^{(s)}, M^{(t)}).$$

Translation probability factors across tokens:

$$p(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A}) = \prod_{m=1}^{M^{(s)}} p(w_m^{(s)} \mid w_{a_m}^{(t)}),$$

How do we translate?

• We want:
$$\arg \max_{w^{(t)}} p(w^{(t)} | w^{(s)}) = \arg \max_{w^{(t)}} \frac{p(w^{(s)}, w^{(t)})}{p(w^{(s)})}$$

Sum over all possible alignments:

$$p(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) = \sum_{\mathcal{A}} p(\boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}, \mathcal{A})$$
$$= p(\boldsymbol{w}^{(t)}) \sum_{\mathcal{A}} p(\mathcal{A}) \times p(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A})$$

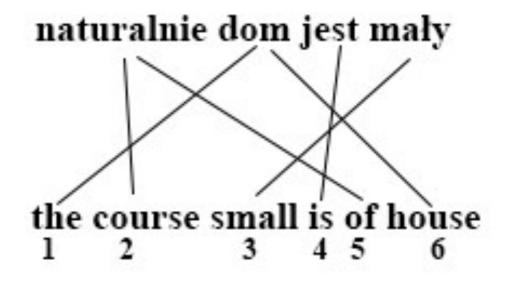
- Alternatively, take the max over alignments
- Decoding: Greedy/beam search

IBM Model I

• Assume
$$p(a_m | m, M^{(s)}, M^{(t)}) = \frac{1}{M^{(t)}}$$

Is this a good assumption?





Every alignment is equally likely!

IBM Model I

Each source word is aligned to at most one target word

• Further, assume
$$p(a_m \mid m, M^{(s)}, M^{(t)}) = \frac{1}{M^{(t)}}$$

• We then have:

$$p(w^{(s)}, w^{(t)}) = p(w^{(t)}) \sum_{A} \left(\frac{1}{M^{(t)}}\right)^{M^{(s)}} p(w^{(s)} \mid w^{(t)})$$

• How do we estimate $p(w^{(s)} = v | w^{(t)} = u)$?

IBM Model I

 If we had word-to-word alignments, we could compute the probabilities using the MLE:

$$p(v | u) = \frac{count(u, v)}{count(u)}$$

- where count(u, v) = #instances where word u was aligned to word v in the training set
- However, word-to-word alignments are often hard to come by

What can we do?

EM for Model I

 (E-Step) If we had an accurate translation model, we can estimate likelihood of each alignment as:

$$q_m(a_m \mid \boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) \propto p(a_m \mid m, M^{(s)}, M^{(t)}) \times p(w_m^{(s)} \mid w_{a_m}^{(t)}),$$

 (M Step) Use expected count to re-estimate translation parameters:

$$p(v | u) = \frac{E_q[count(u, v)]}{count(u)}$$

$$E_q\left[\text{count}(u,v)\right] = \sum_m q_m(a_m \mid \boldsymbol{w}^{(s)}, \boldsymbol{w}^{(t)}) \times \delta(w_m^{(s)} = v) \times \delta(w_{a_m}^{(t)} = u).$$

IBM Model 2

- Slightly relaxed assumption:
 - $p(a_m | m, M^{(s)}, M^{(t)})$ is also estimated, not set to constant
- Original independence assumptions still required:
 - Alignment probability factors across tokens:

$$p(A \mid w^{(s)}, w^{(t)}) = \prod_{m=1}^{M^{(s)}} p(a_m \mid m, M^{(s)}, M^{(t)}).$$

Translation probability factors across tokens:

$$p(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A}) = \prod_{m=1}^{M^{(s)}} p(w_m^{(s)} \mid w_{a_m}^{(t)}),$$

Other IBM models

Model 1: lexical translation

Model 2: additional absolute alignment model

Model 3: extra fertility model

Model 4: added relative alignment model

Model 5: fixed deficiency problem.

Model 6: Model 4 combined with a HMM alignment model in a log linear way

- Models 3 6 make successively weaker assumptions
 - But get progressively harder to optimize
- Simpler models are often used to 'initialize' complex ones
 - e.g train Model 1 and use it to initialize Model 2 parameters

Phrase-based MT

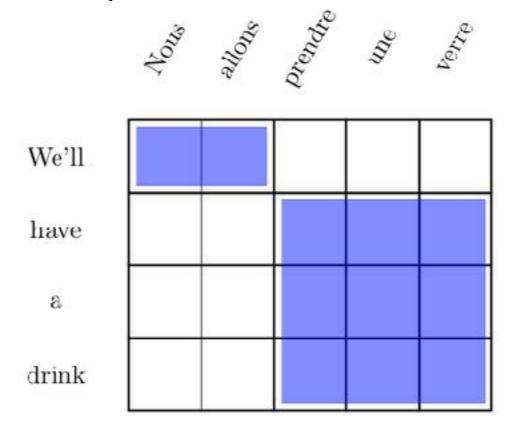
Word-by-word translation is not sufficient in many cases

Nous allons prendre un verre

(literal) We will take a glass

(actual) We'll have a drink

 Solution: build alignments and translation tables between multiword spans or "phrases"

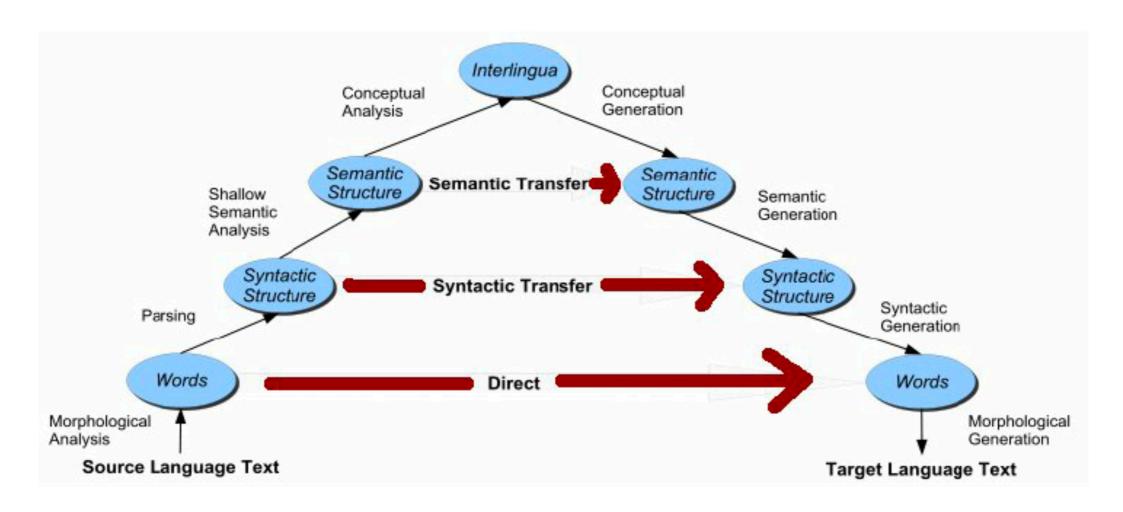


Phrase-based MT

- Solution: build alignments and translation tables between multiword spans or "phrases"
- Translations condition on multi-word units and assign probabilities to multi-word units
- Alignments map from spans to spans

$$\mathbf{p}(\boldsymbol{w}^{(s)} \mid \boldsymbol{w}^{(t)}, \mathcal{A}) = \prod_{\substack{((i,j),(k,\ell)) \in \mathcal{A}}} \mathbf{p}_{w^{(s)}|w^{(t)}}(\{w_{i+1}^{(s)}, w_{i+2}^{(s)}, \dots, w_{j}^{(s)}\} \mid \{w_{k+1}^{(t)}, w_{k+2}^{(t)}, \dots, w_{\ell}^{(t)}\})$$

Vauquois Pyramid



- Hierarchy of concepts and distances between them in different languages
- Lowest level: individual words/characters
- Higher levels: syntax, semantics
- Interlingua: Generic language-agnostic representation of meaning

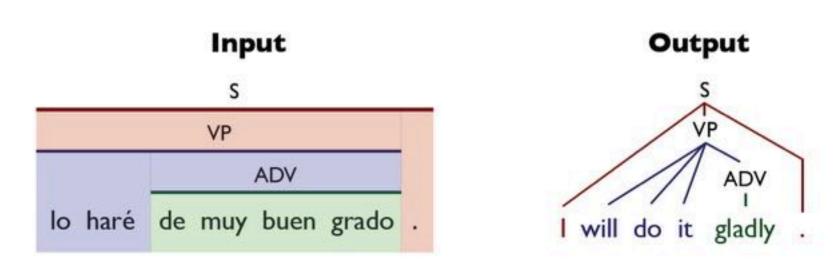
Syntactic MT

Rather than use phrases, use a synchronous context-free grammar: constructs "parallel" trees in two languages simultaneously

```
\begin{split} \text{NP} &\rightarrow [\text{DT}_1 \, \text{JJ}_2 \, \text{NN}_3; \, \text{DT}_1 \, \text{NN}_3 \, \text{JJ}_2] \\ \text{DT} &\rightarrow [\text{the, la}] \\ \text{DT} &\rightarrow [\text{the, le}] \\ \text{NN} &\rightarrow [\text{car, voiture}] \\ \text{JJ} &\rightarrow [\text{yellow, jaune}] \end{split} \qquad \begin{split} \text{DT}_1 \, &\text{JJ}_2 \, &\text{NN}_3 \, &\text{DT}_1 \, &\text{NN}_3 \, &\text{JJ}_2 \\ \text{the yellow car} &\text{la voiture jaune} \end{split}
```

- Assumes parallel syntax up to reordering
- Translation = parse the input with "half" the grammar, read off other half

Syntactic MT



Relax this by using lexicalized rules, like "syntactic phrases"

Leads to HUGE grammars, parsing is slow

Grammar

```
S \rightarrow \langle VP.; | VP. \rangle OR S \rightarrow \langle VP.; you VP. \rangle
VP → ( lo haré ADV ; will do it ADV )
s → ( lo haré ADV . ; I will do it ADV . )
ADV → ( de muy buen grado ; gladly )
```

Slide credit: Dan Klein

Next time: Neural machine translation