
Dependency Parsing

Fall 2019

COS 484: Natural Language Processing

Overview

• What is dependency parsing?

• Two families of algorithms

• Transition-based dependency parsing

• Graph-based dependency parsing

Constituency vs dependency structure

Dependency structure

• Consists of relations between lexical items, normally binary, asymmetric
relations (“arrows”) called dependencies

• The arrows are commonly typed with the name of grammatical relations
(subject, prepositional object, apposition, etc)

• The arrow connects a head (governor) and a dependent (modifier)
• Usually, dependencies form a tree (single-head, connected, acyclic)

Dependency relations

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

Dependency relations

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

https://universaldependencies.org/

Advantages of dependency structure

• More suitable for free word order languages

Advantages of dependency structure

• More suitable for free word order languages

• The predicate-argument structure is more
useful for many applications

Dependency parsing

Input: Output:

I prefer the morning flight
through Denver

Learning from data: treebanks!

• A sentence is parsed by choosing for each word what other word is it a
dependent of (and also the relation type)

• We usually add a fake ROOT at the beginning so every word has one head

• Usually some constraints:
• Only one word is a dependent of ROOT
• No cycles: A —> B, B —> C, C —> A

Dependency treebanks

• The major English dependency treebank: converting from Penn
Treebank using rule-based algorithms

• (De Marneffe et al, 2006): Generating typed dependency parses
from phrase structure parses

• (Johansson and Nugues, 2007): Extended Constituent-to-
dependency Conversion for English

• Universal Dependencies: more than 100 treebanks in 70
languages were collected since 2016

https://universaldependencies.org/

Universal Dependencies

Universal Dependencies

Manning’s Law:
• UD needs to be satisfactory for analysis of individual languages.
• UD needs to be good for linguistic typology.
• UD must be suitable for rapid, consistent annotation.
• UD must be suitable for computer parsing with high accuracy.
• UD must be easily comprehended and used by a non-linguist.
• UD must provide good support for downstream NLP tasks.

Two families of algorithms

Transition-based dependency parsing
• Also called “shift-reduce parsing”

Graph-based dependency parsing

Two families of algorithms

T: transition-based / G: graph-based

Evaluation

• Unlabeled attachment score (UAS)
 = percentage of words that have been assigned the correct head

• Labeled attachment score (LAS)
 = percentage of words that have been assigned the correct head & label

UAS = ? LAS = ?

Projectivity

• Definition: there are no crossing dependency arcs when the words
are laid out in their linear order, with all arcs above the words

projective non-projective

Non-projectivity arises due to long distance
dependencies or in languages with flexible word order.

This class: focuses on projective parsing

Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer and a set of
dependency arcs :

s b
A c = (s, b, A)

• Initially, , , s = [ROOT] b = [w1, w2, …, wn] A = ∅

• Three types of transitions (: the top 2 words on the stack; : the first word in
the buffer)

• LEFT-ARC (): add an arc () to , remove from the stack

• RIGHT-ARC (): add an arc () to , remove from the stack

• SHIFT: move from the buffer to the stack

s1, s2 b1

r s1
r s2 A s2

r s2
r s1 A s1

b1

• A configuration is terminal if and s = [ROOT] b = ∅

This is called “Arc-standard”; There are other transition schemes…

A running example

0 [ROOT] [Book, me, the, morning, flight] SHIFT

1 [ROOT, Book] [me, the, morning, flight] SHIFT

2 [ROOT, Book, me] [the, morning, flight] RIGHT-ARC(iobj) (Book, iobj, me)

3 [ROOT, Book] [the, morning, flight] SHIFT

4 [ROOT, Book, the] [morning, flight] SHIFT

5 [ROOT, Book, the, morning] [flight] SHIFT

6 [ROOT, Book, the,morning,flight] [] LEFT-ARC(nmod) (flight,nmod,morning)

7 [ROOT, Book, the, flight] [] LEFT-ARC(det) (flight,det,the)

8 [ROOT, Book, flight] [] RIGHT-ARC(dobj) (Book,dobj,flight)

9 [ROOT, Book] [] RIGHT-ARC(root) (ROOT,root,Book)

10 [ROOT] []

“Book me the morning flight”

stack buffer action added arc

Transition-based dependency parsing

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Transition-based dependency parsing

• For every projective dependency forest G,
there is a transition sequence that generates G
(completeness)

• However, one parse tree can have multiple valid transition sequences. Why?
• “He likes dogs”

• Stack = [ROOT He likes]
• Buffer = [dogs]
• Action = ??

Correctness:

• For every complete transition sequence, the
resulting graph is a projective dependency
forest (soundness)

How many transitions are needed? How many times of SHIFT?

Train a classifier to predict actions!

• Given where is a sentence and is a dependency parse{xi, yi} xi yi

• For each with words, we can construct a transition sequence
of length which generates , so we can generate 2n training
examples:

xi n
2n yi
{(ck, ak)}

• “shortest stack” strategy: prefer LEFT-ARC over SHIFT.

• The goal becomes how to learn a classifier from to ci ai

How many training examples? How many classes?

: configuration, : actionck ak

Train a classifier to predict actions!

• During testing, we use the classifier to repeat predicting the action,
until we reach a terminal configuration

• This is also called “greedy transition-based parsing” because we
always make a local decision at each step

• It is very fast (linear time!) but less accurate

• Can easily do beam search

Classifier

MaltParser

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

• Extract features from the configuration
• Use your favorite classifier: logistic regression, SVM…

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

w: word, t: part-of-speech tag

https://universaldependencies.org/

MaltParser

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Feature templates

s2 . w ∘ s2 . t
s1 . w ∘ s1 . t ∘ b1 . w
lc(s2) . t ∘ s2 . t ∘ s1 . t

lc(s2) . w ∘ lc(s2) . l ∘ s2 . w

Features
s2 . w = has ∘ s2 . t = VBZ

s1 . w = good ∘ s1 . t = JJ ∘ b1 . w = control

lc(s2) . t = PRP ∘ s2 . t = VBZ ∘ s1 . t = JJ

lc(s2) . w = He ∘ lc(s2) . l = nsubj ∘ s2 . w = has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

https://universaldependencies.org/

More feature templates

Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

• Used pre-trained word embeddings

• Part-of-speech tags and dependency
labels are also represented as vectors

• A simple feedforward NN: what is left is backpropagation!

• No feature template any more!

Further improvements

• Bigger, deeper networks with better tuned hyperparameters
• Beam search
• Global normalization

Google’s SyntaxNet and the Parsey McParseFace (English) model

Handling non-projectivity

• The arc-standard algorithm we presented only builds projective
dependency trees

• Possible directions:
• Give up!
• Post-processing
• Add new transition types (e.g., SWAP)
• Switch to a different algorithm (e.g., graph-based

parsers such as MSTParser)

Graph-based dependency parsing

• Basic idea: let’s predict the dependency tree directly

Y* = argmaxY∈Φ(X)score(X, Y)

X: sentence, Y: any possible dependency tree

• Factorization:
score(X, Y) = ∑

e∈Y

score(e) = ∑
e∈Y

w⊺f(e)

• Inference: finding maximum spanning tree (MST) for weighted,
directed graph

