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Overview

• What is dependency parsing? 

• Two families of algorithms 

• Transition-based dependency parsing 

• Graph-based dependency parsing



Constituency vs dependency structure



Dependency structure

• Consists of relations between lexical items, normally binary, asymmetric 
relations (“arrows”) called dependencies 

• The arrows are commonly typed with the name of grammatical relations 
(subject, prepositional object, apposition, etc) 

• The arrow connects a head (governor) and a dependent (modifier) 
• Usually, dependencies form a tree (single-head, connected, acyclic)



Dependency relations

(de Marneffe and Manning, 2008): Stanford typed dependencies manual



Dependency relations

 
(de Marneffe and Manning, 2008): Stanford typed dependencies manual

https://universaldependencies.org/


Advantages of dependency structure

• More suitable for free word order languages



Advantages of dependency structure

• More suitable for free word order languages

• The predicate-argument structure is more 
useful for many applications



Dependency parsing

Input: Output:

I prefer the morning flight 
through Denver

Learning from data: treebanks!

• A sentence is parsed by choosing for each word what other word is it a 
dependent of (and also the relation type) 

• We usually add a fake ROOT at the beginning so every word has one head

• Usually some constraints: 
• Only one word is a dependent of ROOT 
• No cycles: A —> B, B —> C, C —> A



Dependency treebanks

• The major English dependency treebank: converting from Penn 
Treebank using rule-based algorithms 

• (De Marneffe et al, 2006): Generating typed dependency parses 
from phrase structure parses 

• (Johansson and Nugues, 2007): Extended Constituent-to-
dependency Conversion for English

• Universal Dependencies: more than 100 treebanks in 70 
languages were collected since 2016 

https://universaldependencies.org/



Universal Dependencies



Universal Dependencies

Manning’s Law: 
• UD needs to be satisfactory for analysis of individual languages.  
• UD needs to be good for linguistic typology.  
• UD must be suitable for rapid, consistent annotation.  
• UD must be suitable for computer parsing with high accuracy.  
• UD must be easily comprehended and used by a non-linguist.  
• UD must provide good support for downstream NLP tasks.



Two families of algorithms

Transition-based dependency parsing 
• Also called “shift-reduce parsing”

Graph-based dependency parsing



Two families of algorithms

T: transition-based / G: graph-based



Evaluation

• Unlabeled attachment score (UAS) 
         = percentage of words that have been assigned the correct head 

• Labeled attachment score (LAS)   
         = percentage of words that have been assigned the correct head & label

UAS = ?       LAS = ?



Projectivity

• Definition: there are no crossing dependency arcs when the words 
are laid out in their linear order, with all arcs above the words

projective non-projective

Non-projectivity arises due to long distance 
dependencies or in languages with flexible word order.

This class: focuses on projective parsing



Transition-based dependency parsing

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer  and a set of 
dependency arcs : 

s b
A c = (s, b, A)

• Initially, , , s = [ROOT] b = [w1, w2, …, wn] A = ∅

• Three types of transitions ( : the top 2 words on the stack; : the first word in 
the buffer) 

• LEFT-ARC ( ): add an arc ( ) to , remove  from the stack 

• RIGHT-ARC ( ): add an arc ( ) to , remove  from the stack 

• SHIFT: move  from the buffer to the stack

s1, s2 b1

r s1
r s2 A s2

r s2
r s1 A s1

b1

• A configuration is terminal if  and s = [ROOT] b = ∅

This is called “Arc-standard”; There are other transition schemes…



A running example

0 [ROOT] [Book, me, the, morning, flight] SHIFT

1 [ROOT, Book] [me, the, morning, flight] SHIFT

2 [ROOT, Book, me] [the, morning, flight] RIGHT-ARC(iobj) (Book, iobj, me)

3 [ROOT, Book] [the, morning, flight] SHIFT

4 [ROOT, Book, the] [morning, flight] SHIFT

5 [ROOT, Book, the, morning] [flight] SHIFT

6 [ROOT, Book, the,morning,flight] [] LEFT-ARC(nmod) (flight,nmod,morning)

7 [ROOT, Book, the, flight] [] LEFT-ARC(det) (flight,det,the)

8 [ROOT, Book, flight] [] RIGHT-ARC(dobj) (Book,dobj,flight)

9 [ROOT, Book] [] RIGHT-ARC(root) (ROOT,root,Book)

10 [ROOT] []

“Book me the morning flight”

stack buffer    action added arc



Transition-based dependency parsing

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


Transition-based dependency parsing

• For every projective dependency forest G, 
there is a transition sequence that generates G 
(completeness)

• However, one parse tree can have multiple valid transition sequences. Why?
• “He likes dogs” 

• Stack = [ROOT He likes] 
• Buffer = [dogs] 
• Action = ??

Correctness:

• For every complete transition sequence, the 
resulting graph is a projective dependency 
forest (soundness)

How many transitions are needed? How many times of SHIFT?



Train a classifier to predict actions!

• Given  where  is a sentence and  is a dependency parse{xi, yi} xi yi

• For each  with  words, we can construct a transition sequence 
of length  which generates , so we can generate 2n training 
examples: 

xi n
2n yi
{(ck, ak)}

• “shortest stack” strategy: prefer LEFT-ARC over SHIFT.

• The goal becomes how to learn a classifier from  to ci ai

How many training examples? How many classes?

: configuration, : actionck ak



Train a classifier to predict actions!

• During testing, we use the classifier to repeat predicting the action, 
until we reach a terminal configuration

• This is also called “greedy transition-based parsing” because we 
always make a local decision at each step

• It is very fast (linear time!) but less accurate

• Can easily do beam search

Classifier



MaltParser 

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

• Extract features from the configuration
• Use your favorite classifier: logistic regression, SVM…

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

w: word, t: part-of-speech tag

https://universaldependencies.org/


MaltParser 

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Feature templates

s2 . w ∘ s2 . t
s1 . w ∘ s1 . t ∘ b1 . w
lc(s2) . t ∘ s2 . t ∘ s1 . t

lc(s2) . w ∘ lc(s2) . l ∘ s2 . w

Features
s2 . w = has ∘ s2 . t = VBZ

s1 . w = good ∘ s1 . t = JJ ∘ b1 . w = control

lc(s2) . t = PRP ∘ s2 . t = VBZ ∘ s1 . t = JJ

lc(s2) . w = He ∘ lc(s2) . l = nsubj ∘ s2 . w = has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

https://universaldependencies.org/


More feature templates



Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks



Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

• Used pre-trained word embeddings

• Part-of-speech tags and dependency 
labels are also represented as vectors

• A simple feedforward NN: what is left is backpropagation!

• No feature template any more!



Further improvements

• Bigger, deeper networks with better tuned hyperparameters 
• Beam search 
• Global normalization

Google’s SyntaxNet and the Parsey McParseFace (English) model



Handling non-projectivity

• The arc-standard algorithm we presented only builds projective 
dependency trees

• Possible directions: 
• Give up! 
• Post-processing 
• Add new transition types (e.g., SWAP) 
• Switch to a different algorithm (e.g., graph-based 

parsers such as MSTParser)



Graph-based dependency parsing

• Basic idea: let’s predict the dependency tree directly

Y* = argmaxY∈Φ(X)score(X, Y )

X: sentence, Y: any possible dependency tree

• Factorization: 
score(X, Y ) = ∑

e∈Y

score(e) = ∑
e∈Y

w⊺f(e)

• Inference: finding maximum spanning tree (MST) for weighted, 
directed graph


