=

COS 484: Natural Language Processing

Dependency Parsing

Fall 2019

Overview

¢ What is dependency parsing?
e Two families of algorithms
e Transition-based dependency parsing

e Graph-based dependency parsing

Constituency vs dependency structure

S
/\
NP VP
/\
Pro Verb NP
/\
I pre‘fer Det Nom

! T

the Nom PP
Nom/\Noun P/\NP
Noun ﬂillht throlugh Pro
morning Denver

|det}

(dey)
[

nmod

I prefer the morning flight through Denver

prefer

N

Il flight

%\

the morning Denver

through

Dependency structure
(det)

@
[

I prefer the morning flight through Denver

Consists of relations between lexical items, normally binary, asymmetric
relations (“arrows”) called dependencies

The arrows are commonly typed with the name of grammatical relations
(subject, prepositional object, apposition, etc)

The arrow connects a head (governor) and a dependent (modifier)

Usually, dependencies form a tree (single-head, connected, acyclic)

Dependency relations

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

CcC Coordinating conjunction

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

Dependency relations

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
[OBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

https://universaldependencies.org/

obj

T

hon har sett honom

(she) (has) (seen) (him)

obj

Vg

sbj J
honom har hon sett

(him) (has) (she) (seen)

Advantages of dependency structure

e More suitable for free word order languages

PRP VB VBN PRP

hon har sett honom

(she) (has) (seen) (him)

/l\'\

PRP VB PRP VBN

honom har hon sett

(him) (has) (she) (seen)

Advantages of dependency structure

e More suitable for free word order languages

e The predicate-argument structure is more
useful for many applications

Relation: per:city of death Relation: per:employee of Relation: org.founded by

Benoit B. Mandelbrot, a maverick In a career that spanned seven decades, Ginzburg Anil Kumar, a former director at the consulting
mathematician who developed an innovative authored several groundbreaking studies in various firm McKinsey & Co, pleaded guilty on
theory of roughness and applied it to physics, fields -- such as quantum theory, astrophysics, Thursday to providing inside information to
biology, finance and many other fields, died radio-astronomy and diffusion of cosmic radiation , the founder of the Galleon Group,
Thursday in , Mass. in the Earth's atmosphere -- that were of “Nobel in exchange for payments of at least $ 175
Prize caliber,” said Gennady Mesyats, the director million from 2004 through 2009.
of the in Moscow, where
died Ginzburg worked . Raj‘tigmam
T . 7
// T~ / Ln/stttu\te\ to Raj founder
Mandelbrot Thursday Cambridge T T T D
/\ of the Lebedev Physics Moscow worked the Group
" T
“ v v T

Benoit B. in Mass where Ginzburg of the Galleon

Dependency parsing

I prefer the morning flight
through Denver

I prefer the morning flight through Denver

e A sentence is parsed by choosing for each word what other word is it a
dependent of (and also the relation type)

e We usually add a fake ROOT at the beginning so every word has one head

e Usually some constraints:

¢ Only one word is a dependent of ROOT
e NocyclessA—>B,B—>C,C—> A

Learning from data: treebanks!

Dependency treebanks

¢ The major English dependency treebank: converting from Penn
Treebank using rule-based algorithms

¢ (De Marneffe et al, 2006): Generating typed dependency parses
from phrase structure parses

¢ (Johansson and Nugues, 2007): Extended Constituent-to-
dependency Conversion for English

e Universal Dependencies: more than 100 treebanks in 70
languages were collected since 2016

Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort with over 200 contributors producing more than 100 treebanks in
over 70 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation

guidelines.

https://universaldependencies.org/

Universal

T =B 1 Ll T

SMgmCESEA[HEER=NAQHH N RNENH=ERMEFY

Afrikaans
Akkadian
Ambharic
Ancient Greek
Arabic
Armenian
Assyrian
Bambara
Basque
Belarusian
Breton
Bulgarian
Buryat
Cantonese
Catalan
Chinese
Classical Chinese
Coptic
Croatian
Czech
Danish
Dutch
English
Erzya
Estonian
Faroese
Finnish
French
Galician
German
Gothic
Greek
Hebrew
Hindi
Hindi English
Hungarian
Indonesian
Irish
Italian
Japanese
Karelian
Kazakh
Komi Zyrian
Korean

VI N o0 NN BN WRMNRMO NN WV b e U e b e b e e et e bt et WN e

49K
1K
10K
416K
1,042K
36K
<1K
13K
121K
13K
10K
156K
10K
13K
531K
161K
55K
25K
199K
2,222K
100K
307K
603K
15K
461K
10K
377K
1,156K
164K
3,409K
55K
63K
161K
375K
26K
42K
141K
23K
781K
1,688K
3K
10K
3K
446K

IEH 1

IEH i

8450
87605V
S4E

876

()

TEOOW

i)

&850

EAW
S42E00W
SEE0O

EW

B A ATOCAOW

Dependencies

IE, Germanic
Afro-Asiatic, Semitic
Afro-Asiatic, Semitic
IE, Greek
Afro-Asiatic, Semitic
IE, Armenian
Afro-Asiatic, Semitic
Mande

Basque

IE, Slavic

IE, Celtic

IE, Slavic

Mongolic
Sino-Tibetan

IE, Romance
Sino-Tibetan
Sino-Tibetan
Afro-Asiatic, Egyptian
IE, Slavic

IE, Slavic

IE, Germanic

IE, Germanic

IE, Germanic

Uralic, Mordvin
Uralic, Finnic

IE, Germanic

Uralic, Finnic

IE, Romance

IE, Romance

IE, Germanic

IE, Germanic

IE, Greek
Afro-Asiatic, Semitic
IE, Indic

Code switching
Uralic, Ugric
Austronesian, Malayo-Sumbawan
IE, Celtic

IE, Romance
Japanese

Uralic, Finnic

Turkic, Northwestern
Uralic, Permic
Korean

Manning’s Law:

Universal Dependencies

UD needs
UD needs
UD must |
UD must |

0

/am
1/

to be satistactory for analysis of individual languages.

to be good for linguistic typology.
oe suitable for rapid, consistent annotation.
ve suitable for computer parsing with high accuracy.

UD must |

oe easily comprehended and used by a non-linguist.

UD must provide good support for downstream NLP tasks.

Two families of algorithms

Input buffer
Transition-based dependency parsing “ | .
e Also called “shift-reduce parsing” v
Stack | - =3

Graph-based dependency parsing i
\

Two families of algorithms

Test
Parser UAS LAS
(Chen and Manning, 2014) 01.8 89.6
(Dyer et al., 2015) 03.1 90.9
(Ballesteros et al., 2016) T 93.56 9241
(Weiss et al., 2015) 90426 9142
(Andor et al., 2016) 9461 92.79
(Ma et al., 2018) § 95.87 94.19
(Kiperwasser and Goldberg, 2016a) § 93.0 90.9
(Kiperwasser and Goldberg, 2016b) 93.1 91.0
(Wang and Chang, 2016) 94.08 91.82
(Cheng et al., 2016) G | 9410 9149
(Kuncoro et al., 2016) 9426 92.06
(Zheng, 2017) § 95.53 93.94
(Dozat and Manning, 2017) 905.74 94.08
Baseline G 95.68 93.96
Our Model § 95.97 94.31

T: transition-based / G: graph-based

Evaluation

e Unlabeled attachment score (UAS)
= percentage of words that have been assigned the correct head
e Labeled attachment score (LAS)
= percentage of words that have been assigned the correct head & label
(nmod]

Book me the flight through Houston B(;ok me the flight through Houston
Reference System

UAS=? LAS=7?

Projectivity

e Definition: there are no crossing dependency arcs when the words
are laid out in their linear order, with all arcs above the words

l roo
1dobj;

t .
]
(@e)
|

I prefer the morning flight through Denver

projective

Non-projectivity arises due to long distance
dependencies or in languages with flexible word order.

This class: focuses on projective parsing

e

JetBlue canceled our flight this morning which was already late

non-projective

Dataset | # Sentences | (%) Projective
English 39,832 99.9
Chinese 16,091 100.0
Czech 72,319 76.9
German 38,845 72.2

Transition-based dependency parsing

e The parsing process is modeled as a sequence of transitions

e A configuration consists of a stack s, a buffer » and a set of
dependency arcs A: ¢ = (s,b, A)

e Initially, s = [ROOT], b = [w,w,, ..., w,], A =

e Three types of transitions (s;, s,: the top 2 words on the stack; b, : the first word in
the buffer)

e LEFT-ARC (7): add an arc (s, 5 s,) to A, remove s, from the stack
e RIGHT-ARC (r): add an arc (s, 5 s1) to A, remove s, from the stack
e SHIFT: move b, from the buffer to the stack

e A configuration is terminal if s = [ROOT] and b = &

This is called “Arc-standard”; There are other transition schemes...

|I'00 l

(dobj) “Book me the morning flight”

= | A running example

Book me the morning flight

stack buffer action added arc

0) [ROOT] [Book, me, the, morning, flight] SHIFT

1 [ROOT,Book] [me, the, morning, flight] | SHIFT
2 [ROOT, Book, me] [the, morning, flight] RIGHT-ARC(iobj) | (Book, iobj, me)
3 [ROOT, Book] [the, morning, flight] SHIFT .
4 [ROOT, Book, the] [morning, flight] | sur,r
5. [ROOT, Book, the, morning] | [flight] SHIFT .
6 [ROOT, Book, themomning,flightt [] | LEFT-ARC(nmod) | (flight,nmod,morning)
7 [ROOT, Book, the, flightl [] LEFT-ARC(det) = (flight,det,the)
'8 [ROOT,Book flightt] RIGHT-ARC(dobj) | (Book,dobj,flight)
9 [ROOT,Boo] RIGHT-ARC(root) = (ROOT,root,Book)
0 ROOTI[T

Transition-based dependency parsing

- r ’
TealaTalaTalFaYaTaaY, A" rerTmm

l J : 3] (4 [i —] | \J ’ e \ [\J
o’ N s’ N . L N Y : A B | &

"\ / '/ :\
I booked a

J/
7

ticket to Google

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Transition-based dependency parsing

How many transitions are needed? How many times of SHIFT?

Correctness:

e For every complete transition sequence, the
resulting graph is a projective dependency

) N
forest (soundness) T / \ \

. . JetBlue canceled our flight this morning which was already late
e For every projective dependency forest G,
there is a transition sequence that generates G
(completeness)

o However, one parse tree can have multiple valid transition sequences. Why?

e “He likes dogs”
e Stack = [ROOT He likes]
e Buffer = [dogs]
e Action ="??

Train a classifier to predict actions!

e Given{x; y;} where x;is a sentence and y; is a dependency parse

e For each x; with n words, we can construct a transition sequence
of length 2n which generates y,, so we can generate 2n training
examples: {(Ck, ak)} ;. configuration, g;: action

e “shortest stack” strategy: prefer LEFT-ARC over SHIFT.

Given this information, the oracle chooses transitions as follows:
LEFTARC(r): if (S1 7 S2) €R,

RIGHTARC(r): if (S2 7 S1) € R, and V¥ ,w s.t.(S1 ¥ w) € R, then (S; ' w) €
R,

SHIFT: otherwise

e The goal becomes how to learn a classifier from c; to g,

How many training examples? How many classes?

Train a classifier to predict actions!

e During testing, we use the classifier to repeat predicting the action,
until we reach a terminal configuration

function DEPENDENCYPARSE(words) returns dependency tree

state < {[root], [words], [] } ; initial configuration

while state not final
t < Classifier (state) ; choose a transition operator to apply
state <— APPLY(t, state) ; apply it, creating a new state

return szate

e This is also called “greedy transition-based parsing” because we
always make a local decision at each step

e Itis very fast (linear time!) but less accurate

e Can easily do beam search

MaltParser

punct

root obj Stack Buffer
= e \
2D 2 t ROOT hasVBZ goodJJ i ! control NN .
ROOT He has good control . | ‘-------- J5 e
nsubj
PRP VBZ JJ NN : He PRP

e Extract features from the configuration
e Use your favorite classifier: logistic regression, SVM...

Source Feature templates

One word s;.w S1.t S1.wt
§2.W §7.1 §2.wi
bi.w by.w bo.wt

Two word s;.wosy.w §1.1057.1 si.toby.w
S1.tos».wt S1.WOSs2.wWOs2.I §1.WOS1.1052.1
Si.wos).fos).t S1.wos.0

w: word, t: part-of-speech tag

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

https://universaldependencies.org/

MaltParser

Stack Buffer
i ROOT hasVBZ ~ good JJ : ' control.NN
/nsubj
He_PRP
Feature templates Features
Sy . WosS,. 1t Sy.w=hases,.t = VBZ
S .Wos .tob . w s;.w =goodos;.t=JJob.w = control
lc(sy) . tosy. tos.1 Ic(s,) .t =PRPos,.t =VBZos, .1 = JJ

ZC(Sz) - Wo lC(SQ) Ao 5. W lc(s,).w =Heolc(s,) .l =nsubjes,.w=has

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

https://universaldependencies.org/

From

Single Words

More feature templates

pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }

pair { input(l).tag input(1l).word }

input(1l) { word tag }

pair { input(2).tag input(2).word }

input(2) { word tag }

From
quad {
triple
triple
triple
triple
pair {
pair {
pair {

From
triple
triple
triple
triple
triple
triple

word pairs

stack.tag stack.word input.tag input.word }
{ stack.tag stack.word input.word }

{ stack.word input.tag input.word }

{ stack.tag stack.word input.tag }

{ stack.tag input.tag input.word }

stack.word input.word }
stack.tag input.tag }
input.tag input(1l).tag }

word triples

P N S S N S,

Distance

pair {
pair {
pair {
pair {

triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }

stack.distance
stack.distance
stack.distance
stack.distance

input.tag input(l).tag input(2).tag }
stack.tag input.tag input(l).tag }
stack.head(1l).tag stack.tag input.tag }
stack.tag stack.child(-1).tag input.tag }
stack.tag stack.child(1l).tag input.tag }
stack.tag input.tag input.child(-1).tag }

stack.word }
stack.tag }
input.word }
input.tag }

vale
pair {
pair
pair
pair
pair
pair

N

unig
stack.
stack.
stack.
stack.
input.

thir
stack.
stack.
stack.
stack.
input.
triple
triple
triple
triple

labe
pair {
triple
quad {
pair {
triple
quad {
pair {
triple
quad {

ncy
stack.word stack.valence(-1) }

stack.word stack.valence(l) }
stack.tag stack.valence(-1) }
stack.tag stack.valence(l) }
input.word input.valence(-1) }
input.tag input.valence(-1) }

rams

head(1l) {word tag}

label

child(-1) {word tag label}
child(1l) {word tag label}
child(-1) {word tag label}

d order

head(1l).head(1l) {word tag}

head(1l).label

child(-1).sibling(1l) {word tag label}

child(1l).sibling(~-1) {word tag label}

child(-1).sibling(1l) {word tag label}
{ stack.tag stack.child(-1).tag stack.child(-1).sibling(1)
{ stack.tag stack.child(1l).tag stack.child(1l).sibling(-1).
{ stack.tag stack.head(l).tag stack.head(1l).head(1l).tag }
{ input.tag input.child(-1l).tag input.child(-1).sibling(1)

1 set

stack.tag stack.child(-1).label }
{ stack.tag stack.child(-1).label stack.child(-1).sibling(
stack.tag stack.child(-1).label stack.child(-1).sibling(1)
stack.tag stack.child(1l).label }
{ stack.tag stack.child(1l).label stack.child(1l).sibling(-]
stack.tag stack.child(1l).label stack.child(1l).sibling(-1).
input.tag input.child(-1).label }

{ input.tag input.child(-1).label input.child(-1).sibling
input.tag input.child(-1).label input.child(-1l).sibling(1

Parsing with neural networks

[Chen & Manning, 2014]

1

(000 00) Softmax Layer
(0000000) Hidden Layer

Embedding Layer

(OOO OCT>O) (000) (OOO) ' (words labels pos)
O0000O0O000000 stacko-word = “ticket”
Q000000000 00) buffero-word = “to”

00000 stacko-label = “det”
O0000000 buffere-POS = “IN”

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

Parsing with neural networks

e Used pre-trained word embeddings

600

e Part-of-speech tags and dependency « w L
labels are also represented as vectors ["2 wﬂwm wo

() ® ®
WDT ~ IS NNPNNPS
o_g® Il\: PO.S lNNSNﬁ e o I
SYM ®
®

N B veN o
e No feature template any more! P ¢ o
® DT
200 JJ”§) PD* Uﬁ
Stack Buffer d ¢ EX
{ ROOT has.VBZ good.JJ : . 1 VB(?/,BE cé’-
& nsubj 0 B‘RIID
He PRP o
Wo rd POS d e p - 78()(—: 600 -400 -200 0 2(‘)0 4(‘30 6(‘30
ST good J) @
S2 has VBZ)]
b1 control NN 1)
Ic(S1) =p @ + 0 + 0
rc(si) 1) 1)]
lc(s2) He PRP nsubj
rc(s2) 1) 1)]

e A simple feedforward NN: what is left is backpropagation!

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

Further improvements

e Bigger, deeper networks with better tuned hyperparameters
e Beam search
e Global normalization

Method ________|UAS_____|LAS(PTB WSJSD3.3)

Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

Google’s SyntaxNet and the Parsey McParseFace (English) model

Announcing SyntaxNet: The World’'s Most Accurate Parser

Goes Open Source
Thursday, May 12, 2016

Handling non-projectivity

e The arc-standard algorithm we presented only builds projective
dependency trees

e Possible directions:
e Give up!
e Post-processing
¢ Add new transition types (e.g., SWAP)

e Switch to a different algorithm (e.g., graph-based
parsers such as MSTParser)

Graph-based dependency parsing

e Basicidea: let’s predict the dependency tree directly

Y* = argmaxycgxyscore(X, Y)

X: sentence, Y: any possible dependency tree

e Factorization:
score(X,Y) = Z score(e) = Z wlf(e)

ecY ecY

¢ Inference: finding maximum spanning tree (MST) for weighted,
directed graph

