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Overview

• Constituency structure vs dependency structure 
• Context-free grammar (CFG) 
• Probabilistic context-free grammar (PCFG) 
• The CKY algorithm 
• Evaluation 
• Lexicalized PCFGs 



Syntactic structure: constituency and dependency

Two views of linguistic structure 
• Constituency  

• = phrase structure grammar  
• = context-free grammars (CFGs) 

• Dependency



Constituency structure

• Phrase structure organizes words into nested constituents

• Starting units: words

the, cuddly, cat, by, the, door

• Words combine into phrases

the cuddly cat, by the door

are given a category: part-of-speech tags

Det,  Adj,    N,   P,   Det,    N

NP Det Adj N→

with categories

PP P NP→

recursively

NP  NP PP→

• Phrases can combine into bigger phrases
the cuddly cat by the door



Dependency structure

• Dependency structure shows which words depend on (modify or 
are arguments of) which other words.

Satellites   spot   whales   from   space

Satellites   spot   whales   from   space
❌

This Thursday

nsubj

nmod

dobj case



Why do we need sentence structure?

• We need to understand sentence structure in order to be able to 
interpret language correctly 

• Human communicate complex ideas by composing words together 
into bigger units  

• We need to know what is connected to what



Syntactic parsing

• Syntactic parsing is the task of recognizing a sentence and 
assigning a structure to it.

Input: Output:

Beoing is located in Seattle.



Syntactic parsing
• Used as intermediate representation for downstream applications

Image credit: http://vas3k.com/blog/machine_translation/

English word order: subject — verb — object
Japanese word order: subject — object — verb

http://vas3k.com/blog/machine_translation/


Syntactic parsing
• Used as intermediate representation for downstream applications

Image credit: (Zhang et al, 2018)



Context-free grammars

• The most widely used formal system for modeling 
constituency structure in English and other natural languages

• A context free grammar  where 

•  is a set of non-terminal symbols 

•  is a set of terminal symbols 

•  is a set of rules of the form  for , 
 

•  is a distinguished start symbol

G = (N, Σ, R, S)
N
Σ
R X → Y1Y2…Yn n ≥ 1
X ∈ N, Yi ∈ (N ∪ Σ)
S ∈ N



A Context-Free Grammar for English

Grammar Lexicon

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, 
DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition



(Left-most) Derivations

• Given a CFG , a left-most derivation is a sequence of strings 
, where

G
s1, s2, …, sn

• s1 = S

• : all possible strings made up of words from sn ∈ Σ* Σ

• Each  for  is derived from  by picking the left-most 
non-terminal  in  and replacing it by some  where  

si i = 2,…, n si−1
X si−1 β X → β ∈ R

• : yield of the derivationsn



(Left-most) Derivations
• Ss1 =

• NP VPs2 =

• DT NN VPs3 =

• the NN VPs4 =

• the man VPs5 =

• the man Vis6 =

A derivation can be represented as a parse tree!

• A string  is in the language defined by the CFG if 
there is at least one derivation whose yield is 

s ∈ Σ*
s

• The set of possible derivations may be finite or infinite

• the man sleepss7 =



Ambiguity

• Some strings may have more than one derivations (i.e. more 
than one parse trees!). 



“Classical” NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of 
Toronto] [for $27 a share] [at its monthly meeting].

((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd)) 

Catalan number:  Cn =
1

n + 1 (2n
n )

• It is also difficult to construct a grammar with enough coverage 
• A less constrained grammar can parse more sentences but 

result in more parses for even simple sentences 
• There is no way to choose the right parse!



Statistical parsing

• Learning from data: treebanks

• Adding probabilities to the rules: probabilistic CFGs (PCFGs)

Treebanks: a collection of sentences paired with their parse trees

The Penn Treebank Project (Marcus et al, 1993)



Treebanks

• Standard setup (WSJ portion of Penn Treebank):  
• 40,000 sentences for training 
• 1,700 for development 
• 2,400 for testing

• Why building a treebank instead of a grammar?

• Broad coverage

• Frequencies and distributional information

• A way to evaluate systems



Probabilistic context-free grammars (PCFGs)

• A probabilistic context-free grammar (PCFG) consists of:

• A context-free grammar: G = (N, Σ, R, S)

• For each rule , there is a parameter . 
For any ,

α → β ∈ R q(α → β) ≥ 0
X ∈ N

∑
α→β:α=X

q(α → β) = 1



Probabilistic context-free grammars (PCFGs)
For any derivation (parse tree) containing rules: 

, the probability of the parse is:α1 → β1, α2 → β2, …, αl → βl
l

∏
i=1

q(αi → βi)

P(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the)

× q(NN → man) × q(VP → Vi) × q(Vi → sleeps)

= 1.0 × 0.3 × 1.0 × 0.7 × 0.4 × 1.0 = 0.084

Why do we want ?∑
α→β:α=X

q(α → β) = 1



Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG : 

•  is the set of all non-terminals seen in the trees 

•  is the set of all words seen in the trees 

•  is taken to be S. 

•  is taken to be the set of all rules  seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β

• The maximum-likelihood parameter estimates are:

qML(α → β) =
Count(α → β)

Count(α)

If we have seen the rule  105 times, and the the non-terminal 
 1000 times, 

VP → Vt NP
VP q(VP → Vt NP) = 0.105



Parsing with PCFGs

• Given a sentence  and a PCFG, how to find the highest scoring 
parse tree for ?

s
s

• The CKY algorithm: applies to a PCFG in Chomsky normal 
form (CNF)

• Chomsky Normal Form (CNF): all the rules take one 
of the two following forms:

•  where  

•  where 
X → Y1Y2 X ∈ N, Y1 ∈ N, Y2 ∈ N
X → Y X ∈ N, Y ∈ Σ

• It is possible to convert any PCFG into an equivalent grammar in CNF! 
• However, the trees will look differently; It is possible to do “reverse 

transformation”

argmaxt∈𝒯(s)P(t)



Converting PCFGs into a CNF grammar

• -ary rules ( ): n n > 2 NP → DT NNP VBG NN

• Unary rules: VP → Vi, Vi → sleeps

• Eliminate all the unary rules recursively by adding VP → sleeps

• We will come back to this later!



The CKY algorithm

• Dynamic programming

• Given a sentence , denote  as the highest score 
for any parse tree that dominates words  and has non-
terminal  as its root.

x1, x2, …, xn π(i, j, X)
xi, …, xj

X ∈ N

• Output: π(1,n, S)

• Initially, for , i = 1,2,…, n

π(i, i, X) = {q(X → xi) if X → xi ∈ R
0 otherwise



The CKY algorithm

• For all  such that  for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y ) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree



The CKY algorithm

Running time?

O(n3 |R | )



CKY with unary rules

• In practice, we also allow unary rules:

 where X → Y X, Y ∈ N

conversion to/from the normal form is easier

How does this change CKY?

π(i, j, X) = max
X→Y∈R

q(X → Y ) × π(i, j, Y )

• Compute unary closure: if there is a rule chain 
, add X → Y1, Y1 → Y2, …, Yk → Y

q(X → Y ) = q(X → Y1) × ⋯ × q(Yk → Y )

• Update unary rule once after the binary rules



Evaluating constituency parsing



Evaluating constituency parsing

• Recall: (# correct constituents in candidate) / (# constituents in 
gold tree) 

• Precision: (# correct constituents in candidate) / (# constituents in 
candidate) 

• Labeled precision/recall require getting the non-terminal label 
correct 

• F1 = (2 * precision * recall) / (precision + recall)



Evaluating constituency parsing

• Precision: 3/7 = 42.9% 
• Recall: 3/8 = 37.5% 
• F1 = 40.0% 
• Tagging accuracy: 100%



Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

The only difference between these two parses:
 vs q(VP → VP PP) q(NP → NP PP)

… without looking at the words!



Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

Exactly the same set of context-free rules!



Lexicalized PCFGs
• Key idea: add headwords to trees

• Each context-free rule has one special child that is the 
head of the rule (a core idea in syntax)



Lexicalized PCFGs

• Further reading: Michael Collins. 2003. Head-Driven 
Statistical Models for Natural Language Parsing. 

• Results for a PCFG: 70.6% recall, 74.8% precision

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

http://nlpprogress.com/english/constituency_parsing.html

http://nlpprogress.com/english/constituency_parsing.html

