

COS 484: Natural Language Processing

Constituency Parsing

Fall 2019

(Some slides adapted from Chris Manning, Mike Collins)

Overview

- Constituency structure vs dependency structure
- Context-free grammar (CFG)
- Probabilistic context-free grammar (PCFG)
- The CKY algorithm
- Evaluation
- Lexicalized PCFGs

Syntactic structure: constituency and dependency

Two views of linguistic structure

- Constituency
 - = phrase structure grammar
 - = context-free grammars (CFGs)
- Dependency

Constituency structure

- Phrase structure organizes words into nested constituents
- Starting units: words are given a category: part-of-speech tags

the, cuddly, cat, by, the, door

Det, Adj, N, P, Det, N

• Words combine into phrases with categories

the cuddly cat, by the door $NP \rightarrow Det Adj N PP \rightarrow PNP$

 Phrases can combine into bigger phrases recursively the cuddly cat by the door
 NP→ NP PP

This Thursday Dependency structure

• Dependency structure shows which words depend on (modify or are arguments of) which other words.

Why do we need sentence structure?

- We need to understand sentence structure in order to be able to interpret language correctly
- Human communicate complex ideas by composing words together into bigger units
- We need to know what is connected to what

Syntactic parsing

• Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.

Input:

Beoing is located in Seattle.

Syntactic parsing

• Used as intermediate representation for downstream applications

English word order: subject – verb – object Japanese word order: subject – object – verb

Image credit: <u>http://vas3k.com/blog/machine_translation/</u>

Syntactic parsing

• Used as intermediate representation for downstream applications

Relation: *per:city_of_death*

Benoit B. Mandelbrot, a maverick mathematician who developed an innovative theory of roughness and applied it to physics, biology, finance and many other fields, died Thursday in *Cambridge*, Mass.

Relation: per:employee_of

In a career that spanned seven decades, Ginzburg authored several groundbreaking studies in various fields -- such as quantum theory, astrophysics, radio-astronomy and diffusion of cosmic radiation in the Earth's atmosphere -- that were of "Nobel Prize caliber," said Gennady Mesyats, the director of the *Lebedev Physics Institute* in Moscow, where Ginzburg worked.

Relation: *org:founded_by*

Anil Kumar, a former director at the consulting firm McKinsey & Co, pleaded guilty on Thursday to providing inside information to *Raj Rajaratnam*, the founder of the Galleon Group, in exchange for payments of at least \$ 175 million from 2004 through 2009.

Image credit: (Zhang et al, 2018)

- The most widely used formal system for modeling constituency structure in English and other natural languages
- A context free grammar $G = (N, \Sigma, R, S)$ where
 - *N* is a set of non-terminal symbols
 - Σ is a set of terminal symbols
 - *R* is a set of rules of the form $X \to Y_1 Y_2 \dots Y_n$ for $n \ge 1$, $X \in N, Y_i \in (N \cup \Sigma)$
 - $S \in N$ is a distinguished start symbol

A Context-Free Grammar for English

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{sleeps, saw, man, woman, telescope, the, with, in\}$

R =

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Grammar

Lexicon

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition

(Left-most) Derivations

- Given a CFG *G*, a left-most derivation is a sequence of strings $s_1, s_2, ..., s_n$, where
 - $s_1 = S$
 - $s_n \in \Sigma^*$: all possible strings made up of words from Σ
 - Each s_i for i = 2, ..., n is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X \rightarrow \beta \in R$
- s_n : yield of the derivation

(Left-most) Derivations

- $s_1 = S$
- $s_2 = \text{NP VP}$
- $s_3 = \text{DT NN VP}$
- $s_4 = \text{the NN VP}$
- $s_5 = \text{the man VP}$
- $s_6 = \text{the man Vi}$
- s_7 = the man sleeps

C			I /D
S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

R =

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

- A derivation can be represented as a parse tree!
- A string $s \in \Sigma^*$ is in the language defined by the CFG if there is at least one derivation whose yield is *s*
- The set of possible derivations may be finite or infinite

Ambiguity

• Some strings may have more than one derivations (i.e. more than one parse trees!).

"Classical" NLP Parsing

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] [for \$27 a share] [at its monthly meeting].

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd)) Catalan number: $C_n = \frac{1}{n+1} {2n \choose n}$

- It is also difficult to construct a grammar with enough coverage
 - A less constrained grammar can parse more sentences but result in more parses for even simple sentences
 - There is no way to choose the right parse!

Statistical parsing

- Learning from data: treebanks
- Adding probabilities to the rules: probabilistic CFGs (PCFGs)

Treebanks: a collection of sentences paired with their parse trees

```
((S
(NP-SBJ (DT That)
                                  ((S
  (JJ cold) (, ,)
                                     (NP-SBJ The/DT flight/NN )
  (JJ empty) (NN sky) )
                                     (VP should/MD
(VP (VBD was)
                                       (VP arrive/VB
  (ADJP-PRD (JJ full)
                                          (PP-TMP at/IN
    (PP (IN of)
                                            (NP eleven/CD a.m/RB ))
      (NP (NN fire)
                                          (NP-TMP tomorrow/NN )))))
        (CC and)
        (NN light) ))))
(. .) ))
                                                    (b)
            (a)
```

The Penn Treebank Project (Marcus et al, 1993)

Treebanks

- Standard setup (WSJ portion of Penn Treebank):
 - 40,000 sentences for training
 - 1,700 for development
 - 2,400 for testing
- Why building a treebank instead of a grammar?
 - Broad coverage
 - Frequencies and distributional information
 - A way to evaluate systems

Probabilistic context-free grammars (PCFGs)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

- A probabilistic context-free grammar (PCFG) consists of:
 - A context-free grammar: $G = (N, \Sigma, R, S)$
 - For each rule $\alpha \rightarrow \beta \in R$, there is a parameter $q(\alpha \rightarrow \beta) \ge 0$. For any $X \in N$,

$$\sum_{\alpha \to \beta: \alpha = X} q(\alpha \to \beta) = 1$$

Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules: $\alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, ..., \alpha_l \rightarrow \beta_l$, the probability of the parse is:

5	\Rightarrow	NΡ	٧P	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

ND

1 0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Why do we want $\sum_{\alpha \to \beta: \alpha = X} q(\alpha \to \beta) = 1$?

Deriving a PCFG from a treebank

- Training data: a set of parse trees $t_1, t_2, ..., t_m$
- A PCFG (N, Σ, S, R, q) :
 - *N* is the set of all non-terminals seen in the trees
 - Σ is the set of all words seen in the trees
 - *S* is taken to be S.
 - *R* is taken to be the set of all rules $\alpha \rightarrow \beta$ seen in the trees
 - The maximum-likelihood parameter estimates are:

$$q_{ML}(\alpha \to \beta) = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

If we have seen the rule VP \rightarrow Vt NP 105 times, and the the non-terminal VP 1000 times, $q(\text{VP} \rightarrow \text{Vt NP}) = 0.105$

Parsing with PCFGs

- Given a sentence *s* and a PCFG, how to find the highest scoring parse tree for *s*? $argmax_{t \in \mathcal{T}(s)}P(t)$
- **The CKY algorithm**: applies to a PCFG in Chomsky normal form (CNF)
- **Chomsky Normal Form (CNF)**: all the rules take one of the two following forms:
 - $X \to Y_1 Y_2$ where $X \in N, Y_1 \in N, Y_2 \in N$
 - $X \to Y$ where $X \in N, Y \in \Sigma$
- It is possible to convert any PCFG into an equivalent grammar in CNF!
 - However, the trees will look differently; It is possible to do "reverse transformation"

Converting PCFGs into a CNF grammar

• *n*-ary rules (n > 2): NP \rightarrow DT NNP VBG NN

- Unary rules: $VP \rightarrow Vi, Vi \rightarrow sleeps$
 - Eliminate all the unary rules recursively by adding VP \rightarrow sleeps
 - We will come back to this later!

The CKY algorithm

- Dynamic programming
- Given a sentence $x_1, x_2, ..., x_n$, denote $\pi(i, j, X)$ as the highest score for any parse tree that dominates words $x_i, ..., x_j$ and has non-terminal $X \in N$ as its root.
- Output: $\pi(1,n,S)$
- Initially, for i = 1, 2, ..., n,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

The CKY algorithm

• For all (i, j) such that $1 \le i < j \le n$ for all $X \in N$,

$$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$$

Also stores backpointers which allow us to recover the parse tree

The CKY algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. **Initialization:**

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i,i,X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- For $l = 1 \dots (n-1)$
 - For i = 1 ... (n l)
 - * Set j = i + l
 - * For all $X \in N$, calculate

$$\pi(i,j,X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i\dots(j-1)\}}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

and

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} \left(q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z) \right)$$

Output: Return $\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$, and backpointers bp which allow recovery of $\arg \max_{t \in \mathcal{T}(s)} p(t)$.

Running time? $O(n^3 | R |)$

CKY with unary rules

• In practice, we also allow unary rules:

 $X \rightarrow Y$ where $X, Y \in N$

conversion to/from the normal form is easier

How does this change CKY?

$$\pi(i, j, X) = \max_{X \to Y \in \mathbb{R}} q(X \to Y) \times \pi(i, j, Y)$$

- Compute unary closure: if there is a rule chain $X \to Y_1, Y_1 \to Y_2, \dots, Y_k \to Y$, add $q(X \to Y) = q(X \to Y_1) \times \dots \times q(Y_k \to Y)$
- Update unary rule once after the binary rules

Evaluating constituency parsing

Gold standard brackets: S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)

Evaluating constituency parsing

- Recall: (# correct constituents in candidate) / (# constituents in gold tree)
- Precision: (# correct constituents in candidate) / (# constituents in candidate)
- Labeled precision/recall require getting the non-terminal label correct
- F1 = (2 * precision * recall) / (precision + recall)

Evaluating constituency parsing

- Precision: 3/7 = 42.9%
- Recall: 3/8 = 37.5%
- F1 = 40.0%
- Tagging accuracy: 100%

Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

The only difference between these two parses: $q(\text{VP} \rightarrow \text{VP PP}) \text{ vs } q(\text{NP} \rightarrow \text{NP PP})$... without looking at the words!

Weaknesses of PCFGs

• Lack of sensitivity to lexical information (words)

Exactly the same set of context-free rules!

Lexicalized PCFGs

• Key idea: add **headwords** to trees

• Each context-free rule has one special child that is the head of the rule (a core idea in syntax)

S	\Rightarrow	NP	VP		(VP is the head)
VP	\Rightarrow	Vt	NP		(Vt is the head)
NP	\Rightarrow	DT	NN	NN	(NN is the head)

Lexicalized PCFGs

S(saw)	\rightarrow_2	NP(man)	VP(saw)
VP(saw)	\rightarrow_1	Vt(saw)	NP(dog)
NP(man)	\rightarrow_2	DT(the)	NN(man)
NP(dog)	\rightarrow_2	DT(the)	NN(dog)
Vt(saw)	\rightarrow	saw	
DT(the)	\rightarrow	the	
NN(man)	\rightarrow	man	
NN(dog)	\rightarrow	dog	

- Further reading: *Michael Collins. 2003. Head-Driven Statistical Models for Natural Language Parsing.*
- Results for a PCFG: 70.6% recall, 74.8% precision
- Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

http://nlpprogress.com/english/constituency_parsing.html