Iecture 3:

ML for image classification, then
Face and pedestrian detection

COS 429: Computer Vision

? PRINCETON
UNIVERSITY

Slides adapted from J. Deng



Building on last lecture:

ML for image classification




Classification

Start with simplest example: binary classification

Cat or not cat?

Actually: a feature vector
representing the image



asiest Form of Classification

Just memorize (as in a Python dictionary
Consider cat/dog/hippo classification.




Easiest Form of Classification

Where does this go wrong?

Rule: if this, Hmmm. Not quite the
then cat same.



Easiest Form of Classification

Known Images Test
Labels Image
x1< D(x, xr) > X7
v
D(xy, x7) /
(1) Compute distance between
x x
N feature vectors

(2)Find nearest
(3)Use label.




Nearest Neighbor

“Algorithm”
Training (x.,y.): Memorize training set
Inference (x): bestDist, prediction = Inf, None

foriin range(N):
If dist(x;,x) < bestDist:
bestDist = dist(x;,X)
prediction = .



Nearest Neighbor

2D Datapoints

2D Predictions
(colors = labels)

(colors = labels)
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Diagram Credit: Wikipedia




K-Nearest Neighbors

Take top K-closest points, vote

2D Datapoints
(colors = labels)

2D Predictions
(colors = labels)
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Diagram Credit: Wikipedia




K-Nearest Neighbors

No learning going on but usually effective
Same algorithm for every task

As number of datapoints — o, error rate is
guaranteed to be at most 2x worse than optimal

you could do on data



Alternative: recall last lecture

Cat or not cat?




Classification by Least-Squares

Treat as regression: x; is image feature; y,is 1 if it's a
cat, O if it's not a cat. Minimize least-squares loss.

Training (X,y): argmlnHy XwH

v_— -

Loss Trade off

Inference (x): w!x >t

Unprincipled in theory, but often effective in practice
The reverse (regression via discrete bins) is also common

Rifkin, Yeo, Poggio. Regularized Least Squares Classification (http://cbcl.mit.edu/publications/ps/rlsc.pdf). 2003
Redmon, Divvala, Girshick, Farhadi. You Only Look Once: Unified, Real-Time Object Detection. CVPR 2016.




Solving regularized least squares

Objective: argminHy — XwH2 + A
w 2

0
‘ Take —, set to 0, solve ‘
ow

w* = (XTX + A1) X"y

\ & J

XTX+Al is full-rank (and thus invertible) for A>0

Called lots of things: regularized least-squares, Tikhonov regularization (after
Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate
normal prior.



But really, use the gradient
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Use the gradient

gradient
direction
(scaled to unit
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Use the gradient

gradient
direction
(scaled to unit

N TN Y N
/OO O N N N

4
4

¢
/
4
/
/
Y
3

Y
Y )
Y
Y ¥
T
¥ ¥
¥ ¥
¥ ¥/
5




Gradient descent

Given starting point (blue)
w1 =W +-9.8x10-2 x gradient
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inear Models

Example Setup: 3 classes

Model — one weight per class: wy, v, w,

w, X big if cat
X

T

W, X big if hippo
Stack together: Wixr where x is in RF




[Linear Models

Cat weight vector | 0.2 |-0.5| 0.1 | 2.0 | 1.1 56 -96.8 | Cat score

Dog weight vector | 1.5 |13 | 21 |00 | 3.2 | | 231 | =mp | 437.9 |Dog score

Hippo weight vector | 0.0 | 0.3 | 0.2 |-0.3|-1.2|| 24 61.95 | Hippo score

W ° Wx.

l

Prediction is vector
X. where jth component is
“score” for jth class.

Weight matrix a collection of scoring
functions, one per class

Diagram by: Karpathy, Fei-Fei



Geometric Intuition

What does a linear classifier look like in 2D?

Nt £

deer classifier

Diagram credit: Karpathy & Fei-Fei



Visual Intuition

CIFAR 10:
32x32x3 Images, 10 Classes

et EUER - MIERMIEE S« Turn each image
automobile EEEE!EﬂH..‘ into feature by

unrolling all pixels
Fit 10 linear
models

cat

deer

dog

frog

horse
ship

truck

L KBS

Slide credit: Karpathy & Fei-Fei



Guess The Classifier

Decision rule is wTx. If w. is big, then big values
of x. are indicative of the class.

Deer or Plane?

Diagram credit: Karpathy & Fei-Fei



Guess The Classifier

Decision rule is wTx. If w. is big, then big values
of x. are indicative of the class.

Ship or Dog?

Diagram credit: Karpathy & Fei-Fei



Interpreting a Linear Classifier

Decision rule is wTx. If w, is big, then big values
of x. are indicative of the class.

plane car berd cat deer

dog frog

Diagram credit: Karpathy & Fei-Fei

horse truck




Going forward

Consider several computer vision tasks:
Today: face detection, pedestrian detection
Lectures 9,10: image classification, generic object detection
Lectures 11,12: segmentation, texture
For each one:
Discuss use cases, data, evaluation
Key method: representation, model, learning
Results: quantitative, qualitative

=

ill revisit many of these tasks in Module 4 on deep learning



Midterm

Everything through lecture 11 on Thursday, Oct 17th

Will need to be able to articulate the connection
between the design decisions (image
representation, evaluation criteria, modeling
architecture) and the outcome (expected sources of
errors, comparative performance)




Face detection




Face detection 1in cameras

FinePix S6000fd, by Fujifilm, 2006 Viola & Jones. 2001
)



E.g., Snapchat

https://medium.com/@anidaro/how-snapchats-filters-work-86973c3e2e9f




Search over scale and space

BATS

paskn rmakes you Deautitul

=
Jupy




How many sliding window boxes are there?

A
by

v

of size by, bx.

Q. How many sub-boxes are there of
size (by,bx)?

A. (H-by)*(W-bx)

Given a HxW image and a “template” I:I
bx

This is before considering adding:
» Scales (by*s,bx*s)

» aspect ratios (by*sy,bx*sx)
(although not for face detection)



Challenges of face detection

- Sliding window detector must evaluate tens of
thousands of location/scale combinations

» Faces are rare: 0-10 per image

- A megapixel image has ~106 pixels and a comparable number of
candidate face locations

- For computational efficiency, we should try to spend as little time as
possible on the non-face windows

« To avoid having a false positive in every image, our false positive
rate has to be less than 106

Source: S. Lazebnik



The Viola/Jones Face Detector

» A seminal approach to real-time object detection
 Training is slow, but detection is very fast

» Key ideas
 Integral images for fast feature evaluation
« Boosting for feature selection
« Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

Source: S. Lazebnik



Image Features

recengeties m

Value =

> (pixels in white area) —
> (pixels in black area)

Source: S. Lazebnik



Example

Source

Result

Source: S. Lazebnik



Key idea 1: Fast computation with integral images

- The integral image computes a value at each pixel
(x,y) that is the sum of the pixel values above and

to the left of (x,y), inclusive

- This can quickly be computed in one pass through
the image

(X,y)

Source: S. Lazebnik



Computing the integral image

Source: S. Lazebnik



Computing the integral image

Cumulative row sum: s(x, y) = s(x=1, y) + i(X, y)
Integral image: ii(x, y) = ii(x, y—1) + s(x, y)

li(x, y-1)
S(X-1 ’ y) ™N

i(x, y)

Source: S. Lazebnik



Computing sum within a rectangle

- Let A,B,C,D be the values of the
integral image at the corners of a

rectangle D B
- Then the sum of original image

values within the rectangle can
be computed as:
sum=A-B-C+D
+ Only 3 additions are required for
any size of rectangle!

Source: S. Lazebnik



Computing a rectangle feature

Integral
Image

Source: S. Lazebnik



Feature selection

For a 24x24 detection region, the number of possible
rectangle features is ~160,000!
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Source: S. Lazebnik




Feature selection

* For a 24x24 detection region, the number of
possible rectangle features is ~160,000!

+ At test time, it is impractical to evaluate the entire
feature set

- Can we create a good classifier using just a small
subset of all possible features?

« How to select such a subset?

Source: S. Lazebnik



Key idea 2: Boosting

« Boosting is a classification scheme that combines weak learners into a
more accurate ensemble classifier

- Weak learners based on rectangle filters:

ht (X) =

window

« Ensemble class

C(X) = 3

value of rectangle feature

/
{1 if p, f,(x)> p,

0 otherwise ‘_ AN
parity  threshold

ification function:

<

1 if ioc h (x)>l§0c .~ leamed
=0 24

weights

0 otherwise

Source: S. Lazebnik



Training procedure

* |nitially, weight each training example equally
* |In each boosting round:

* Find the weak learner that achieves the lowest weighted training error

* Raise the weights of training examples misclassified by current weak
learner

* Compute final classifier as linear combination of all
weak learners (weight of each learner is directly
proportional to its accuracy)

« Exact formulas for re-weighting and combining weak learners depend
on the particular boosting scheme (e.g., AdaBoost)

Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese Society for
Artificial Intelligence, 14(5):771-780, September, 1999.

Source: S. Lazebnik



Boosting tor face detection

» First two features selected by boosting:

This feature combination can yield 100% detection rate and
50% false positive rate

Source: S. Lazebnik



Boosting

- Advantages of boosting

 Flexibility in the choice of weak learners, boosting scheme
« Testing is fast
- Easy to implement

- Disadvantages

* Needs many training examples
« Training is slow

Source: S. Lazebnik



Boosting tor face detection

» A 200-feature classifier can yield 95% detection
rate and a false positive rate of 1 in 14084

Receiver operating characteristic (ROC)
curve for 200 feature classifier

Correct detection rate

f//

' Not good enough!

1
0.5

1 175 ; ?TS 3
False positive rate

1
3.5

4

x107°

Source: S. Lazebnik



Key 1dea 3: Attentional cascade

» We start with simple classifiers which reject many of the
negative sub-windows while detecting almost all positive
sub-windows

 Positive response from the first classifier triggers the
evaluation of a second (more complex) classifier, and so on

+ A negative outcome at any point leads to the immediate
rejection of the sub-window

T T T
IMAGE p— Classifier 2 FACE
SUB-WINDOW

F F F

NON-FACE NON-FACE NON-FACE

Source: S. Lazebnik



Attentional cascade

Receiver operating

- Chain classifiers that are characteristic
progressively more complex and %% False Pos
have lower false positive rates: / 0 30

% Detection

IMAGE T | T " ack
v lassifier 2 ,
SUB-WINDOW Classifier @

‘F lF F
NON-FACE NON-FACE NON-FACE
Source: S. Lazebnik



Training the cascade

« Set target detection and false positive rates for each
stage

- Keep adding features to the current stage until its
target rates have been met

 Need to lower AdaBoost threshold to maximize detection
(as opposed to minimizing total classification error)

 Test on a validation set

- If the overall false positive rate is not low enough,
then add another stage

» Use false positives from current stage as the negative
training examples for the next stage

Source: S. Lazebnik



The implemented system

 Training Data

« 5000 faces

— All frontal, rescaled to
24x24 pixels

« 300 million non-faces
— 9500 non-face images

« Faces are normalized
— Scale, translation

» Many variations

« Across individuals

* lllumination
* Pose

Source: S. Lazebnik



System performance

- Training time: “weeks” on 466 MHz Sun workstation
- 38 layers, total of 6061 features

» Average of 10 features evaluated per window on
test set

« “On a 700 Mhz Pentium Ill processor, the face
detector can process a 384 by 288 pixel image In

about .067 seconds”
« 15 Hz

« 15 times faster than previous detector of comparable accuracy
(Rowley et al., 1998)

Source: S. Lazebnik



Output of Face Detector on Test Images

JUDYBATS @

Al

Source: S. Lazebnik



Summary: Viola/Jones detector

* Rectangle features
* Integral images for fast computation
» Boosting for feature selection

- Attentional cascade for fast rejection of negative
windows

- Caveat: Haar features work very well on
structured faces, but much worse on other objects
(coming up)

Source: S. Lazebnik



Related detection tasks

M +3.042
=3 F -1.385

Source: S. Lazebnik



Pedestrian detection




Pedestrian detection use cases

Alahi & Fei-Fei, 2014



Faces vs pedestrians

Pedestrian: much more about shape



Chamfer matching

g
Input Image Edge Detection Template Best Match

- l Z .
Denamer (12 = 1y 2,410 .
teT

Distance Transform

Gavrila & Philomin ICCV 1999



Chamfer matching

Hierarchy of templates

Gavrila & Philomin ICCV 1999



Positive and negative examples

) ," “" — - =
e G » ﬁ !
b2 9 7 3 e

+ millions more...

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005




Window representation: edges/gradients

=)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

Used to describe small patches, but now consider
describing a whole detection window
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Histograms of oriented gradients (HOG)

Partition image into blocks and compute histogram of
gradient orientations in each block

HxWx3 Image H xW XxC’ Image
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“Image credit: N. Snavely

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

Slide Credit: S. Lazebnik



Person detection, ca. 2005 (Dalal Triggs)

Represent each example with a single, fixed HoG template

- A -

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005




Training

Nearest neighbor classifier

Least squares classifier
Objective

in||y — Xwl| +J
argm;}nHy— wH2+

Inference

X2 Y2

wlix >t




Alternate objective: Multiclass SVM

W- (Take the class whose
Inference (X): argml?x ( x)k weight vector gives the
highest score)



Alternate objective: Multiclass SVM

W- (Take the class whose
Inference (X): argml?x ( x)k weight vector gives the
highest score)

Training (X Y;):

arg min + Z Z max (0, w;!x; — TXi + m)
v L JFY; 7

/ Pay no penalty If prediction
Over all data » for class yi is bigger than |
by m ("margin”). Otherwise,

¥ pay proportional to the

For every class | i |
that's NOT the score of the wrong class.

correct one (y,)

points



Pedestrian detection with HOG

Train HOG-based pedestrian “template” with a linear model

At test time, convolve feature map with template

Find local maxima of response

For multi-scale detection, repeat over multiple levels of a HOG pyramid

HOG feature map Template Detector response map

\\.
'_/.
*1
- *
-+
£¥
+

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

Slide Credit: S. Lazebnik



What 1s learned

(a)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005




Example detections

[Dalal and Triggs, CVPR 2005]

Slide Credit: S. Lazebnik




Evaluation: effect of hyperparameters

DET - effect of gradient scale ¢

false positives per window (FPPW)

Slide Credit: S. Lazebnik

DET - effect of number of orientation bins

0.5

false positives per window (FPPW)

DET - effect of normalization methods

0'2&

[Dalal and Triggs, CVPR 2005]
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Summary: key concepts

ML for image classification (NN, kNN, linear models)
Viola Jones face detection

Dalal Triggs pedestrian detection



Next time: object classification




