### Lecture 5:

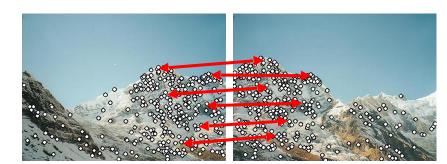
## Fitting, Hough transforms, RANSAC

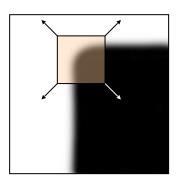
#### COS 429: Computer Vision

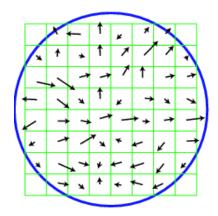


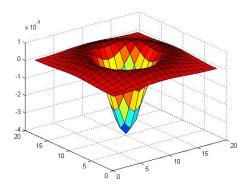
Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Svetlana Lazebnik, David Fouhey

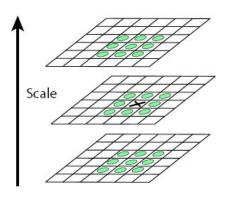
### Last time: interest point detection and description





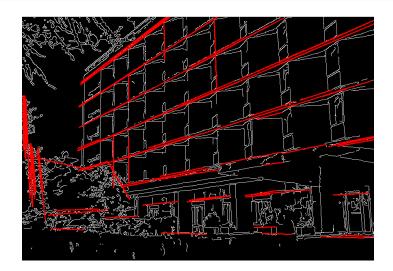












## Fitting

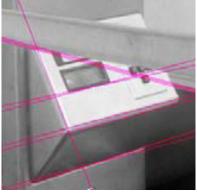
- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model







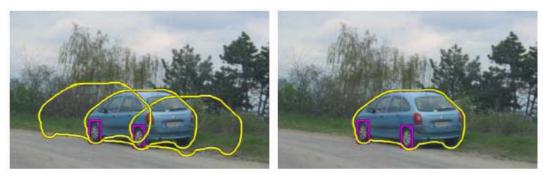
 Choose a parametric model to represent a set of features



simple model: lines



simple model: circles



complicated model: car

Source: K. Grauman

### Fitting: Issues

#### Case study: Line detection



- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

http://vision.caltech.edu/malaa/software/research/caltech-lane-detection/



• Need three ingredients:

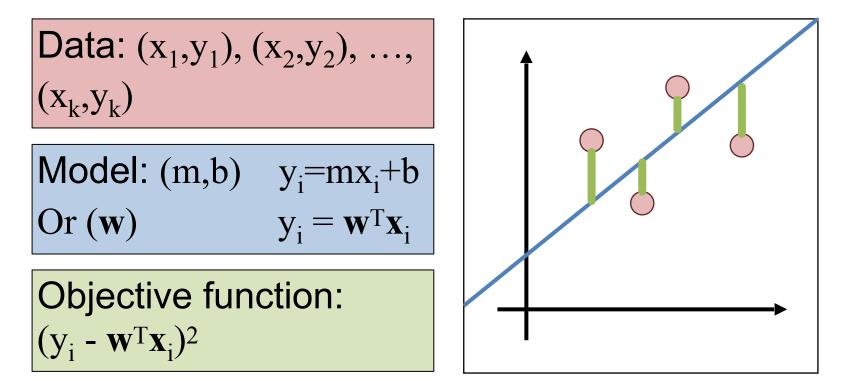
Data: what data are we trying to explain with a model?

Model: what's the compressed, parametric form of the data?

Objective function: given a prediction, how do we evaluate how correct it is?

### Example: Least-Squares

#### Fitting a line to data



### Least Squares Setup

$$\sum_{i=1}^{k} (y_{i} - \boldsymbol{w}^{T}\boldsymbol{x}_{i})^{2} \rightarrow \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{W}\|_{2}^{2}$$
$$\boldsymbol{Y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{k} \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} x_{1} & 1 \\ \vdots & 1 \\ x_{k} & 1 \end{bmatrix} \quad \boldsymbol{W} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Note: I'm writing the most general form here since we'll do it in general and you can make it specific if you'd like.

### Solving Least Squares

$$\|Y - XW\|_{2}^{2}$$

$$\frac{\partial}{\partial W} \|Y - XW\|_{2}^{2} = 2X^{T}XW - 2X^{T}Y$$

$$\frac{\partial}{\partial W} \|Y - XW\|_{2}^{2} = 2X^{T}XW - 2X^{T}Y$$

$$0 = 2X^{T}XW - 2X^{T}Y$$

$$W = (X^{T}X)^{-1}X^{T}Y$$

$$W = (X^{T}X)^{-1}X^{T}Y$$

Aside: 0 is a vector of 0s

### Derivation for the Curious

$$\left\| \mathbf{Y} - \mathbf{X} \mathbf{W} \right\|_{2}^{2} = (\mathbf{Y} - \mathbf{X} \mathbf{W})^{T} (\mathbf{Y} - \mathbf{X} \mathbf{W})$$
$$= \mathbf{Y}^{T} \mathbf{Y} - 2\mathbf{W}^{T} \mathbf{X}^{T} \mathbf{Y} + (\mathbf{X} \mathbf{W})^{T} \mathbf{X} \mathbf{W}$$

$$\frac{\partial}{\partial W} (XW)^T (XW) = 2\left(\frac{\partial}{\partial W} XW^T\right) XW = 2X^T XW$$

$$\frac{\partial}{\partial W} \left\| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{W} \right\|_{2}^{2} = 0 - 2\boldsymbol{X}^{T}\boldsymbol{Y} + 2\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{W}$$
$$= 2\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{W} - 2\boldsymbol{X}^{T}\boldsymbol{Y}$$

Source: David Fouhey

## Two solutions to getting W

In One Go Implicit form (normal equations)  $X^T X W = X^T Y$ 

Explicit form (don't do this)  $W = (X^T X)^{-1} X^T Y$ 

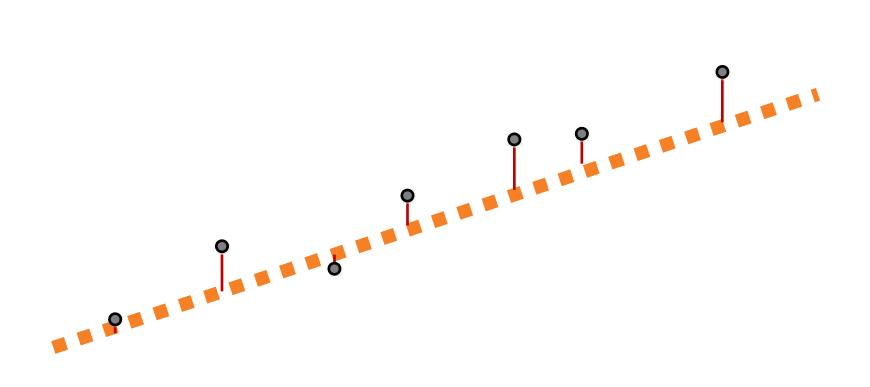
### Iteratively

Recall: gradient is also direction that makes function go up the most. What could we do?

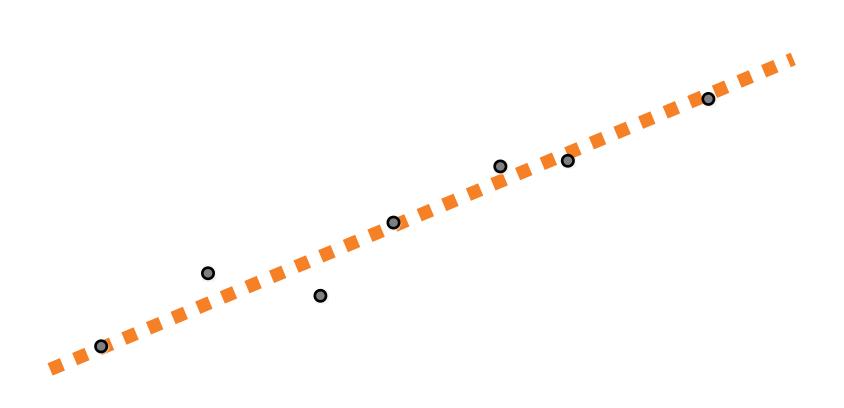
$$W_0 = 0$$

$$W_{i+1} = W_i - \gamma \left(\frac{\partial}{\partial W} \|Y - XW\|_2^2\right)$$

### Least squares minimization

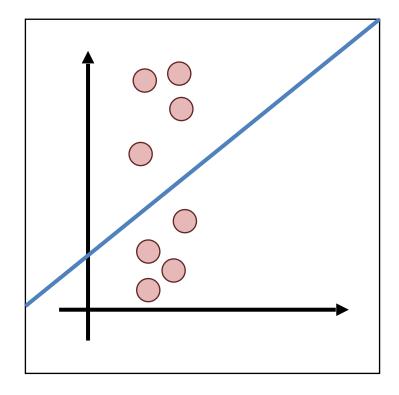


### Least squares minimization



### What's the problem?

- Vertical lines impossible!
- Not rotationally invariant: the line will change depending on the orientation of the points



### Alternative formulation: total least squares

Fitting a line to data

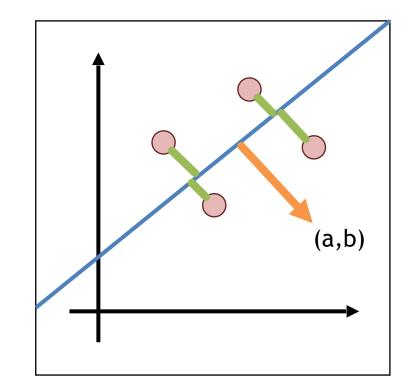
Data: 
$$(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$$
  
Model:  $(a, b, d), a^{2+b^{2}=1} ax_i + by_i = d$   
Objective function:  
 $(ax_i + by_i - d)^2$ 

### Alternative formulation: total least squares

- With a bit of algebra, can show this amounts to minimizing  $E = (UN)^T (UN)$ 
  - where

$$U = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \quad N = \begin{bmatrix} a \\ b \end{bmatrix}$$

- Solution to minimizing E subject to ||N||<sup>2</sup> = 1:
  - Eigenvector of U<sup>T</sup>U associated with the smallest eigenvalue



(derivation in the slides online)

Total least squares derivation, courtesy of Prof. David Fouhey

## **Total Least Squares Setup**

Figure out objective first, then figure out ||n||=1

$$\sum_{i=1}^{k} \left( \boldsymbol{n}^{T}[\boldsymbol{x},\boldsymbol{y}] - \boldsymbol{d} \right)^{2} \rightarrow \left\| \boldsymbol{X}\boldsymbol{n} - \boldsymbol{1}\boldsymbol{d} \right\|_{2}^{2}$$

 $\boldsymbol{X} = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_k & y_k \end{bmatrix} \boldsymbol{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \boldsymbol{n} = \begin{bmatrix} a \\ b \end{bmatrix} \boldsymbol{\mu} = \frac{1}{k} \boldsymbol{1}^T \boldsymbol{X}$ 

The mean / center of mass of the points: we'll use it later

Solving Total Least-Squares  

$$\|Xn - 1d\|_{2}^{2} = (Xn - 1d)^{T}(Xn - 1d)$$

$$= (Xn)^{T}(Xn) - 2d\mathbf{1}^{T}Xn + d^{2}\mathbf{1}^{T}\mathbf{1}$$
First solve for d at optimum (set to 0)  

$$\frac{\partial}{\partial d} \|Xn - 1d\|_{2}^{2} = 0 - 2\mathbf{1}^{T}Xn + 2dk$$

$$0 = -2\mathbf{1}^{T}Xn + 2dk \implies 0 = -\mathbf{1}^{T}Xn + dk$$

$$\implies d = \frac{1}{k}\mathbf{1}^{T}Xn = \mu n$$

Source: David Fouhey

## Solving Total Least-Squares

$$\begin{aligned} \left\| Xn - \mathbf{1}d \right\|_{2}^{2} &= \left\| Xn - \mathbf{1}\mu n \right\|_{2}^{2} \qquad d = \mu n \\ &= \left\| \left( X - \mathbf{1}\mu \right) n \right\|_{2}^{2} \\ Objective is then: \\ &\arg \min_{\left\| |n| \| = 1} \left\| \left\| \left( X - \mathbf{1}\mu \right) n \right\|_{2}^{2} \end{aligned}$$

Source: David Fouhey

# Homogeneous Least Squares

$$\underset{\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{arg min}} \|\boldsymbol{A}\boldsymbol{v}\|_{2}^{2} \longrightarrow \underset{\text{smallest eigenvalue of } A^{\mathsf{T}}A}{\operatorname{Eigenvector corresponding to}}$$

## Why do we need ||v||<sup>2</sup> = 1 or some other constraint?

Applying it in our case:  

$$n = \text{smallest}_{eigenvec}((X - 1\mu)^T (X - 1\mu))$$

Note: technically homogeneous only refers to ||Av||=0 but it's common shorthand in computer vision to refer to the specific problem of ||v||=1

## **Details For ML-People**

Matrix we take the eigenvector of looks like:

$$(\boldsymbol{X} - \boldsymbol{1}\boldsymbol{\mu})^{T} (\boldsymbol{X} - \boldsymbol{1}\boldsymbol{\mu}) = \begin{bmatrix} \sum_{i} (x_{i} - \mu_{x})^{2} & \sum_{i} (x_{i} - \mu_{x}) (y_{i} - \mu_{y}) \\ \sum_{i} (x_{i} - \mu_{x}) (y_{i} - \mu_{y}) & \sum_{i} (y_{i} - \mu_{y})^{2} \end{bmatrix}$$

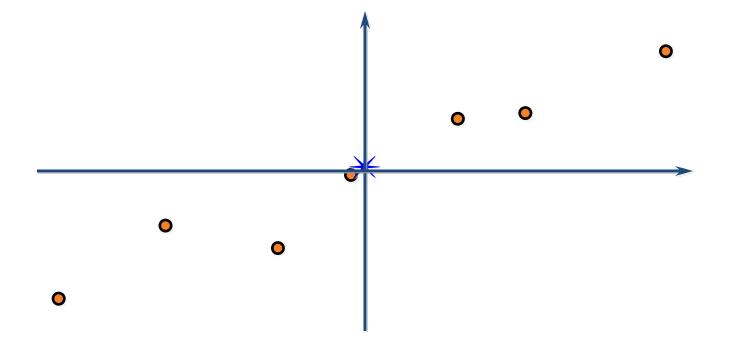
This is a scatter matrix or scalar multiple of the covariance matrix. We're doing PCA, but taking the least principal component to get the normal.

Note: If you don't know PCA, just ignore this slide; it's to help build connections to people with a background in data science/ML.

Source: David Fouhey

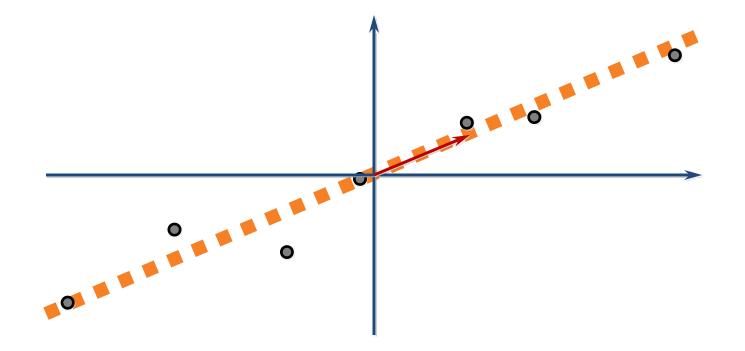
### Total Least Squares

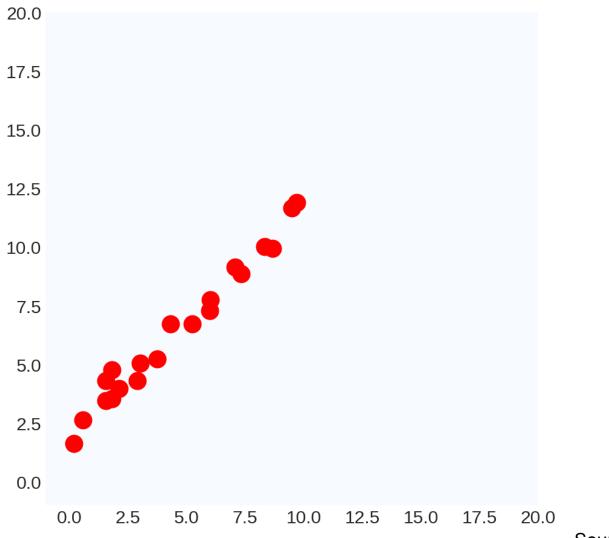
#### 1. Translate center of mass to origin



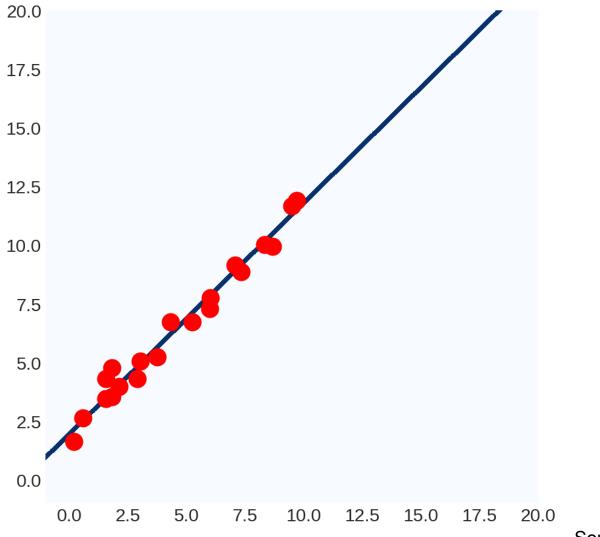
### Total Least Squares

## 2. Compute covariance matrix, find eigenvector w. largest eigenvalue

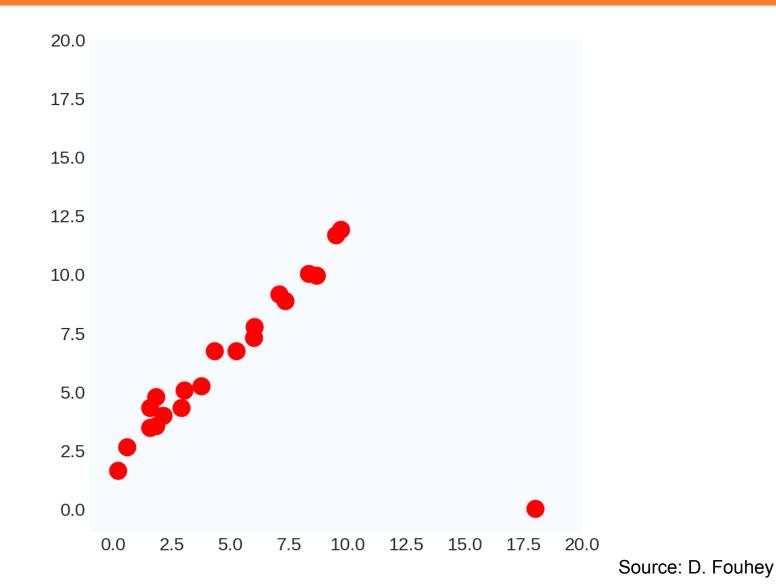


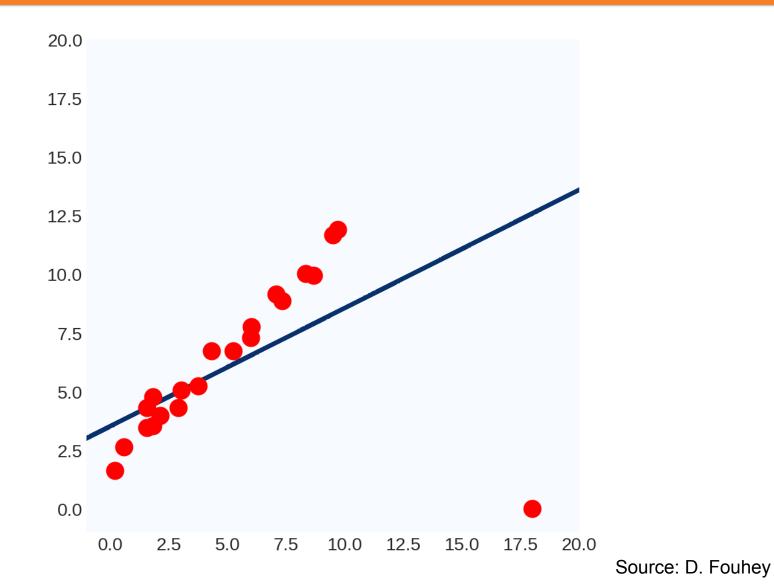


Source: D. Fouhey



Source: D. Fouhey





- Way to think of this #1:
  - $||Y XW||_{2}^{2}$
  - 100<sup>2</sup> >> 10<sup>2</sup>, least-squares model prefers having no large errors, even if the model is overall useless
- Way to think of this #2:
  - $W = (X^T X)^{-1} X^T Y$
  - Weights are a linear transformation of the output variable: can manipulate W by manipulating Y
- Way to think of this #3:
  - Least squares assumes Gaussian noise
  - Outliers: points with extremely low probability of occurrence (according to Gaussian statistics), thus can have strong influence on least squares

### **Robust Estimation**

- Goal: develop parameter estimation methods insensitive to *small* numbers of *large* errors
- General approach: try to give large deviations less weight
- e.g., median is a robust measure, mean is not

### Least Absolute Value Fitting

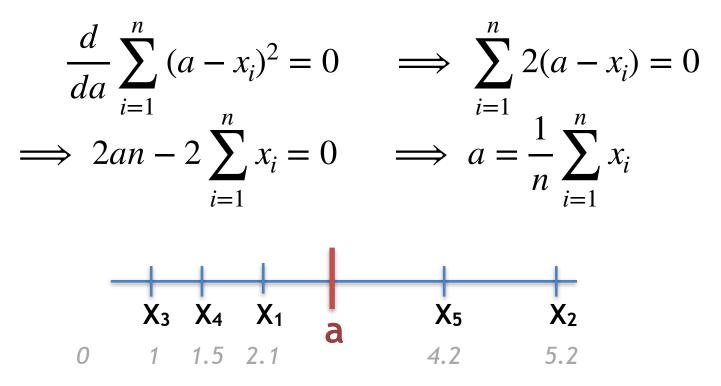
• Minimize 
$$\sum_{i} |y_i - f(x_i, a, b, ...)|$$
 (median)  
instead of  $\sum_{i} (y_i - f(x_i, a, b, ...))^2$  (mean)

 Points far away from trend get comparatively less influence

### Aside: why is minimizing sum of squares = mean?

• Goal: 
$$\min_{a} \sum_{i} (a - x_i)^2$$

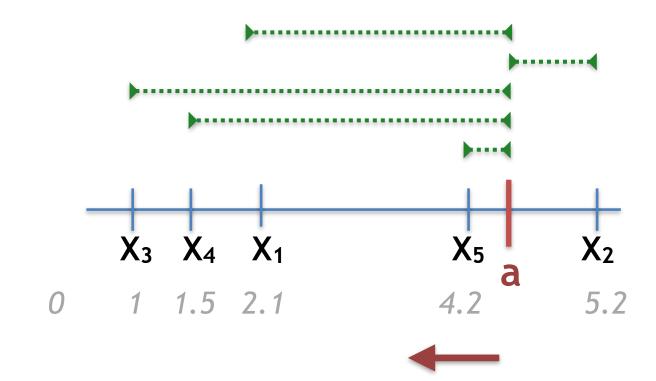
Algebraic solution:



### Aside: why is min. absolute distances = median?

• Goal: 
$$\min_{a} \sum_{i} |a - x_i|$$

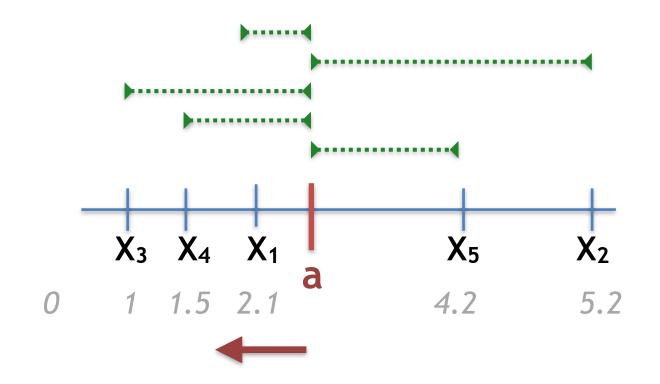
Geometric intuition:



### Aside: why is min. absolute distances = median?

• Goal: 
$$\min_{a} \sum_{i} |a - x_i|$$

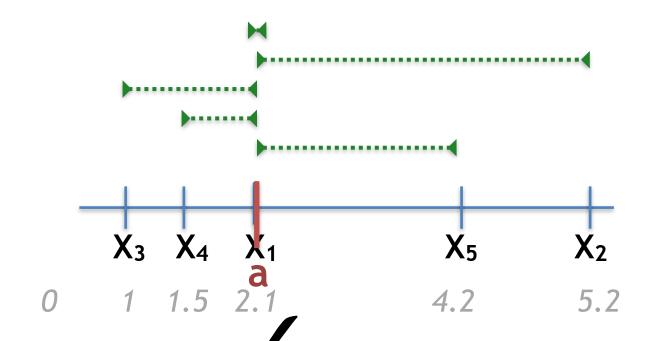
• Geometric intuition:



### Aside: why is min. absolute distances = median?

• Goal: 
$$\min_{a} \sum_{i} |a - x_i|$$

• Geometric intuition:



#### Outlier detection and rejection

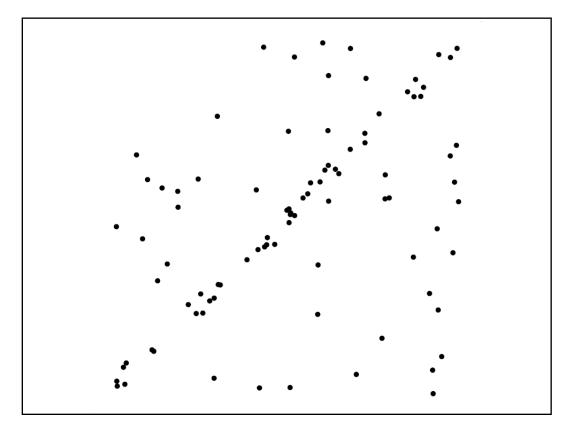
- Lots of methods for fitting models in the presence of outliers
  - Median (L1) more robust than the mean (L2), but harder to optimize
  - Look up "iteratively reweighed least squares"
- Often not guaranteed to converge; require good starting point
  - (least squares estimator is often a good starting point)



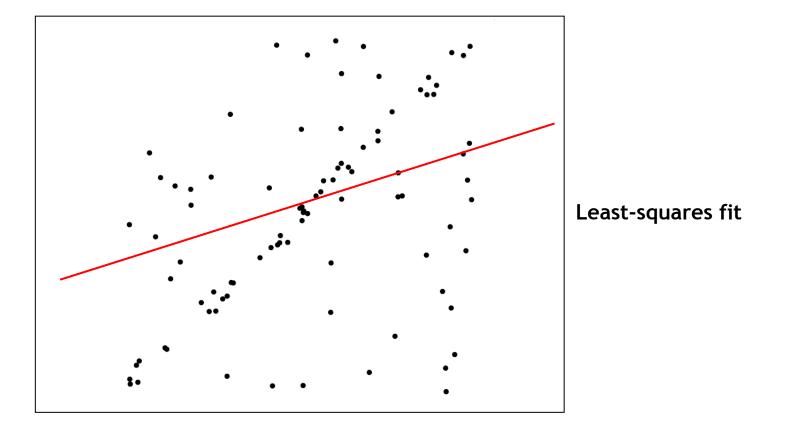


- RANdom SAmple Consensus: designed for bad data (in best case, up to 50% outliers)
- Take many random subsets of data
  - Choose a small subset uniformly at random
  - Fit a model to the data
  - Find all remaining points that are "close" to the model and reject the rest as outliers
- At the end, select model that agreed with most points

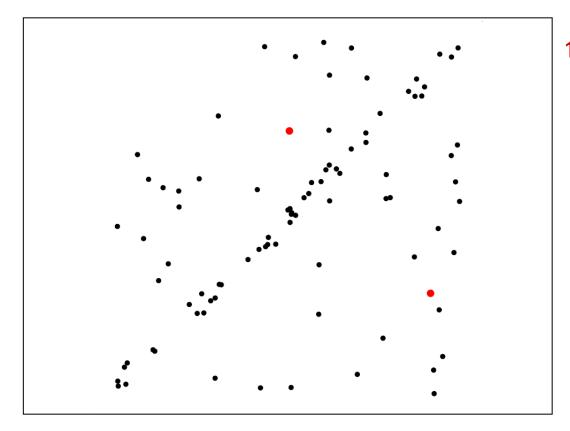
M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and</u> <u>Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.



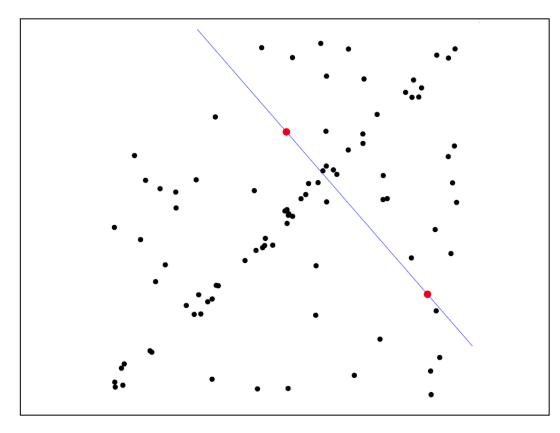
Source: R. Raguram



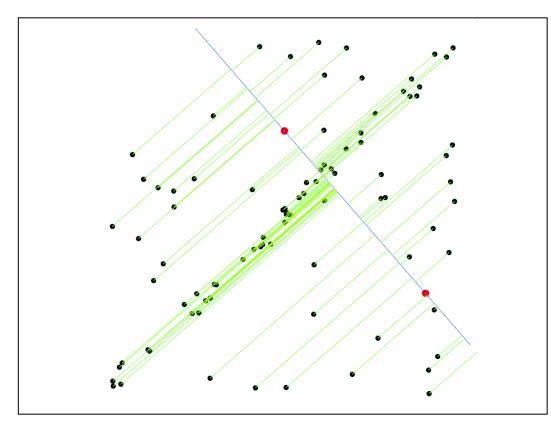
Source: R. Raguram



 Randomly select minimal subset of points

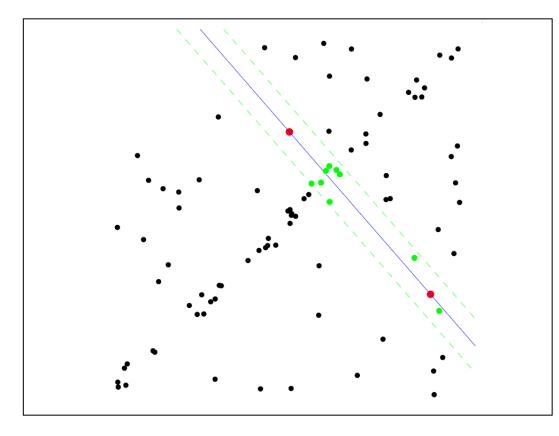


- Randomly select minimal subset of points
- 2. Hypothesize a model

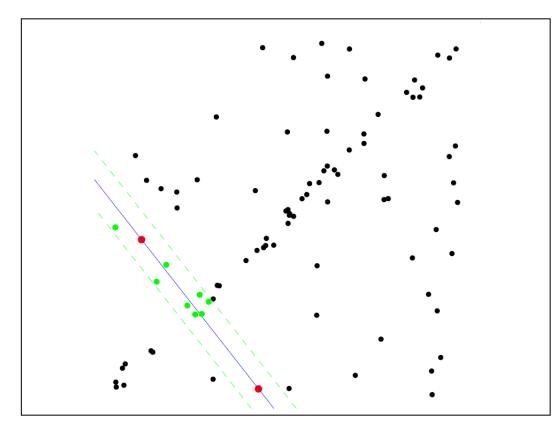


- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function

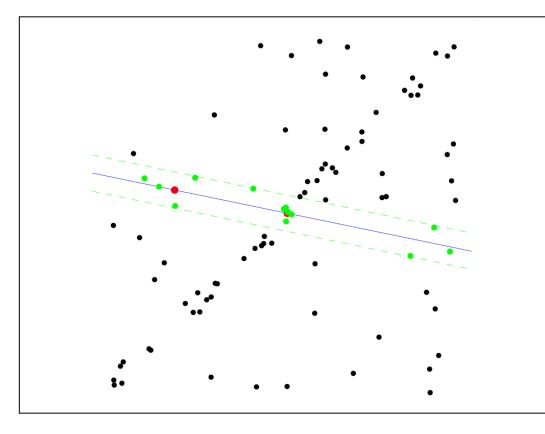
Source: R. Raguram



- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model

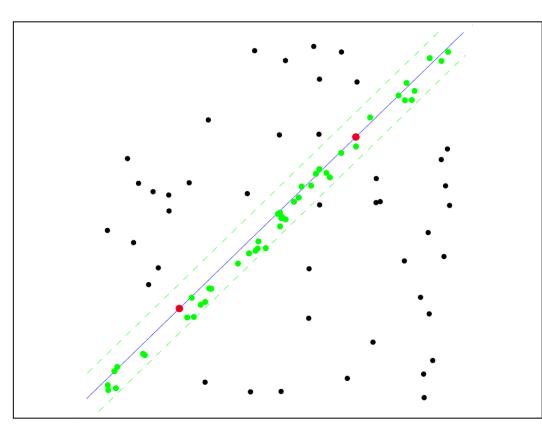


- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesizeand-verify loop

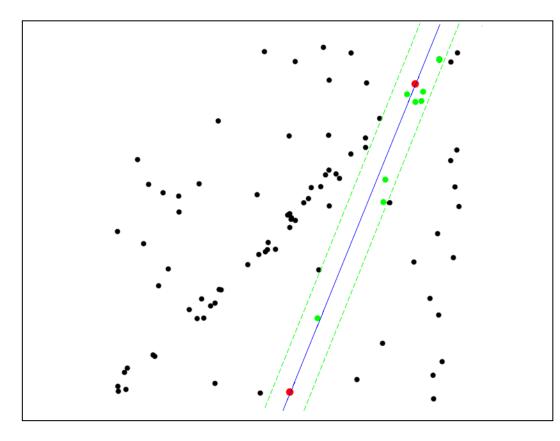


- 1. Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesizeand-verify loop

#### **Uncontaminated sample**



- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesizeand-verify loop



- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesizeand-verify loop

# RANSAC for line fitting

#### Repeat **N** times:

- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find *inliers* to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are *d* or more inliers, accept the line and refit using all inliers

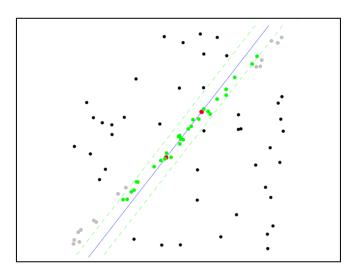
#### Choosing the parameters

- Initial number of points s
  - Typically minimum number needed to fit the model
- Distance threshold t
  - Choose *t* so probability for inlier is *p* (e.g. 0.95)
  - Zero-mean Gaussian noise with std. dev.  $\sigma$ : t = 1.96  $\sigma$
- Number of samples N
  - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size d
  - Should match expected inlier ratio

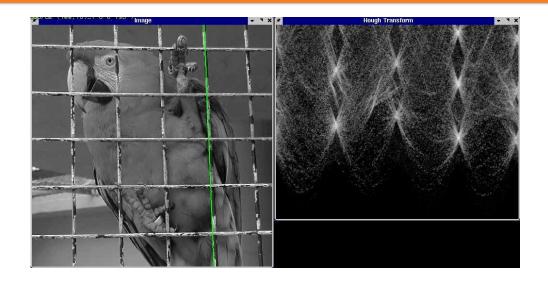
#### RANSAC pros and cons

#### Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
  - Lots of parameters to tune
  - Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
  - Can't always get a good initialization of the model based on the minimum number of samples



# Hough transform

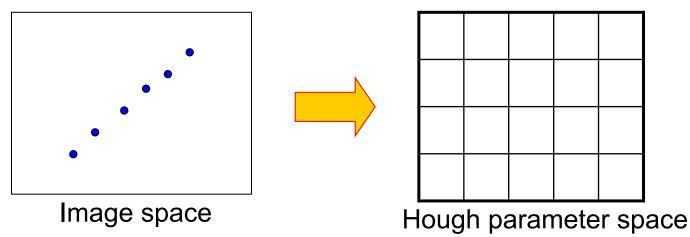


### Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

# Hough transform

- An early type of voting scheme
- General outline:
  - Discretize *parameter space* into bins
  - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
  - Find bins that have the most votes



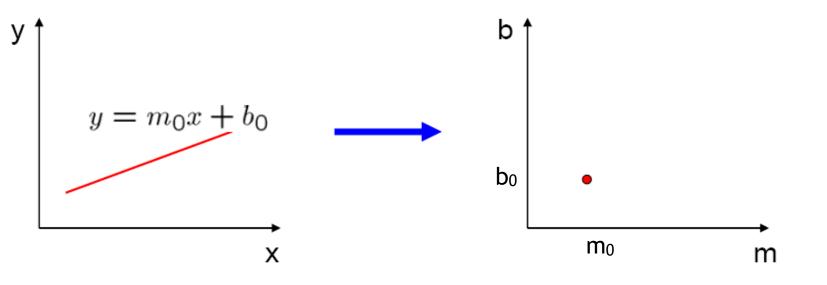
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Source: S. Lazebnik

 A line in the image corresponds to a point in Hough space

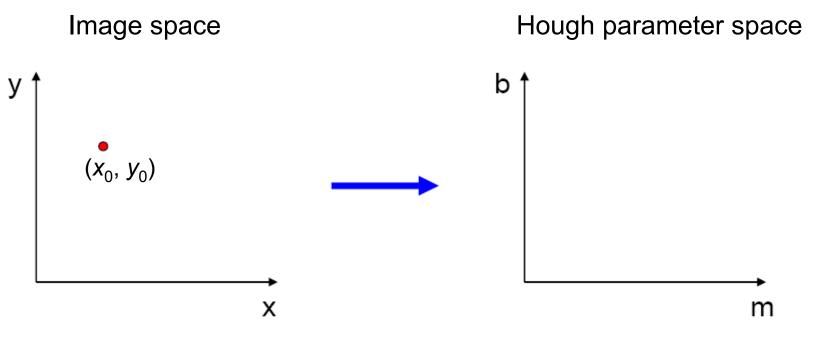
Image space

Hough parameter space

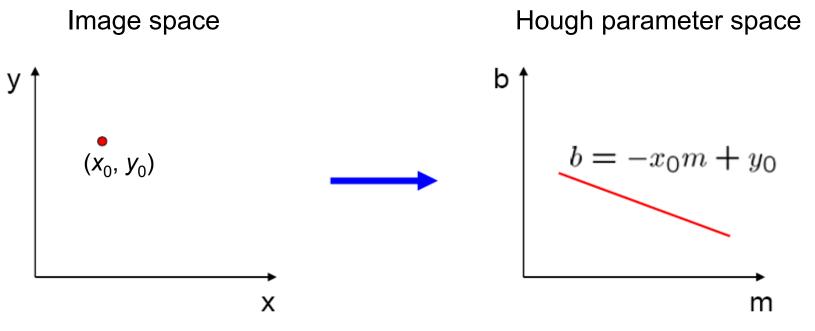


Source: S. Seitz

 What does a point (x<sub>0</sub>, y<sub>0</sub>) in the image space map to in the Hough space?

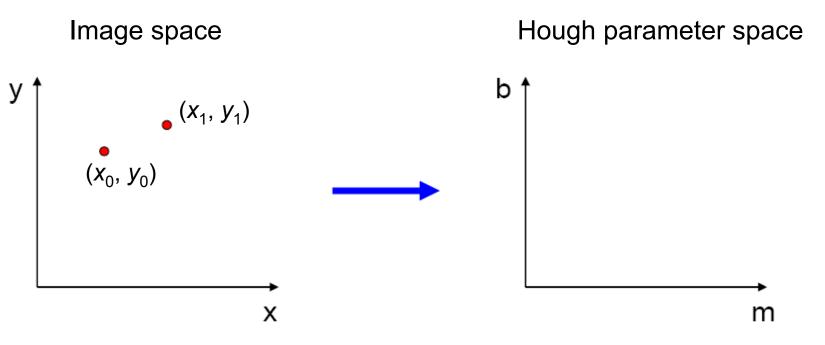


- What does a point (x<sub>0</sub>, y<sub>0</sub>) in the image space map to in the Hough space?
  - Answer: the solutions of  $b = -x_0m + y_0$ , which is a line in Hough space

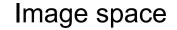


Source: S. Seitz

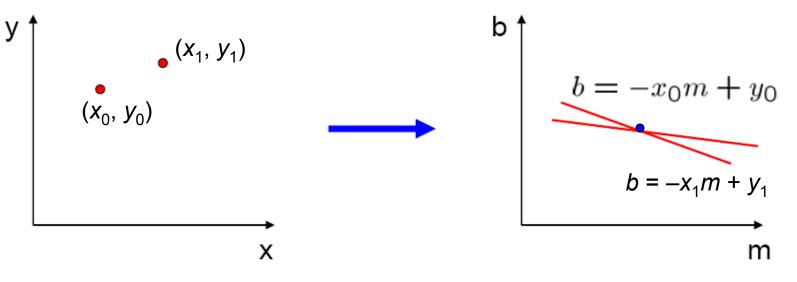
Where does the line that contains both (x<sub>0</sub>, y<sub>0</sub>) and (x<sub>1</sub>, y<sub>1</sub>) map to?



- Where does the line that contains both (x<sub>0</sub>, y<sub>0</sub>) and (x<sub>1</sub>, y<sub>1</sub>) map to?
  - It is the intersection of the lines  $b = -x_0m + y_0$  and  $b = -x_1m + y_1$

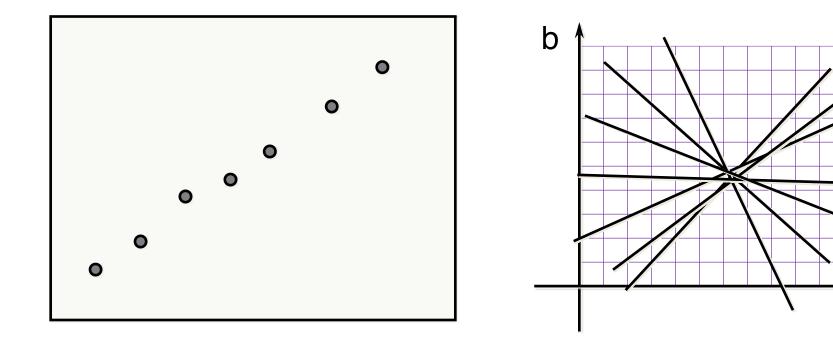


Hough parameter space



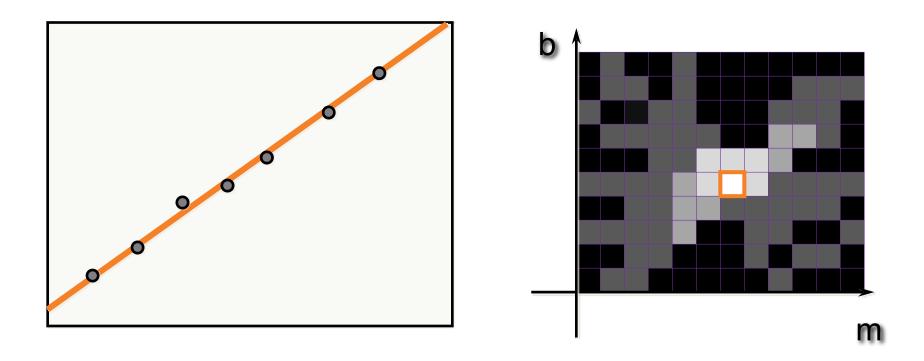
Source: S. Seitz

#### Hough Transform for Lines



m

#### Hough Transform for Lines

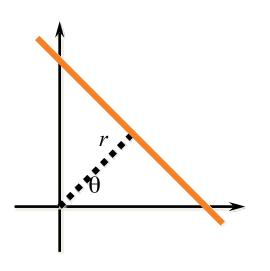


#### **Bucket Selection**

- How to select bucket size?
  - Too small: poor performance on noisy data
  - Too large: poor accuracy, possibility of false positives
- Large buckets + verification and refinement
  - Problems distinguishing nearby lines
- Be smarter at selecting buckets
  - Use gradient information to select subset of buckets
  - More sensitive to noise

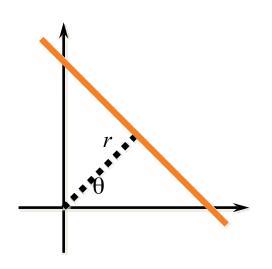
### Difficulties with Hough Transform for Lines

- Slope / intercept parameterization not ideal
  - Non-uniform sampling of directions
  - Can't represent vertical lines
- Angle / distance parameterization
  - Line represented as  $(r,\theta)$  where  $x \cos \theta + y \sin \theta = r$

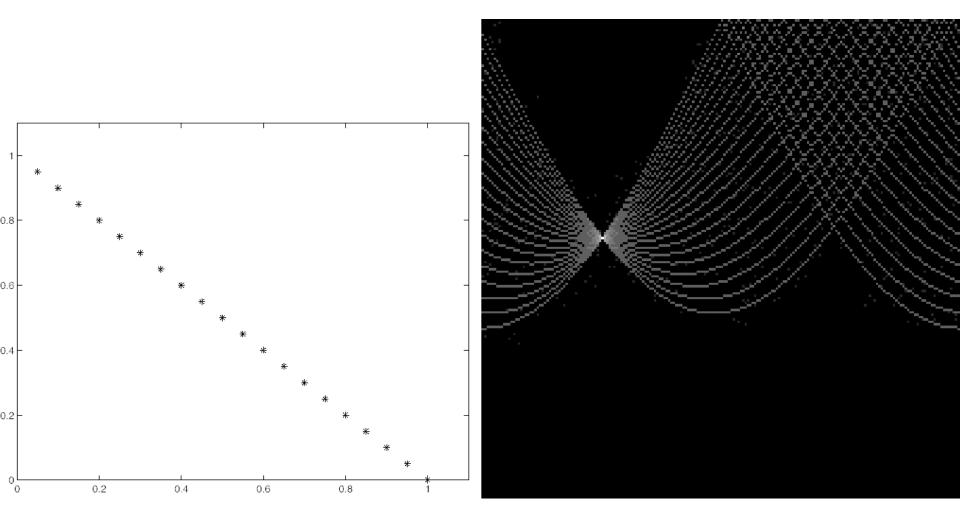


#### Angle / Distance Parameterization

- Advantage: uniform parameterization of directions
- Disadvantage: space of all lines passing through a point becomes a sinusoid in (*r*,θ) space



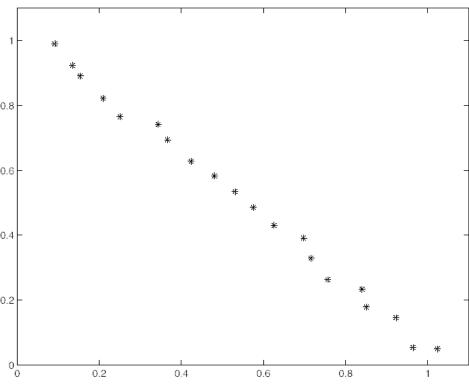
#### Hough Transform Results

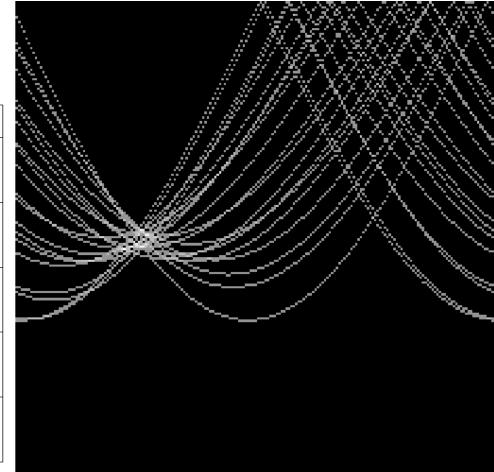


Forsyth & Ponce

### Hough Transform with Noise

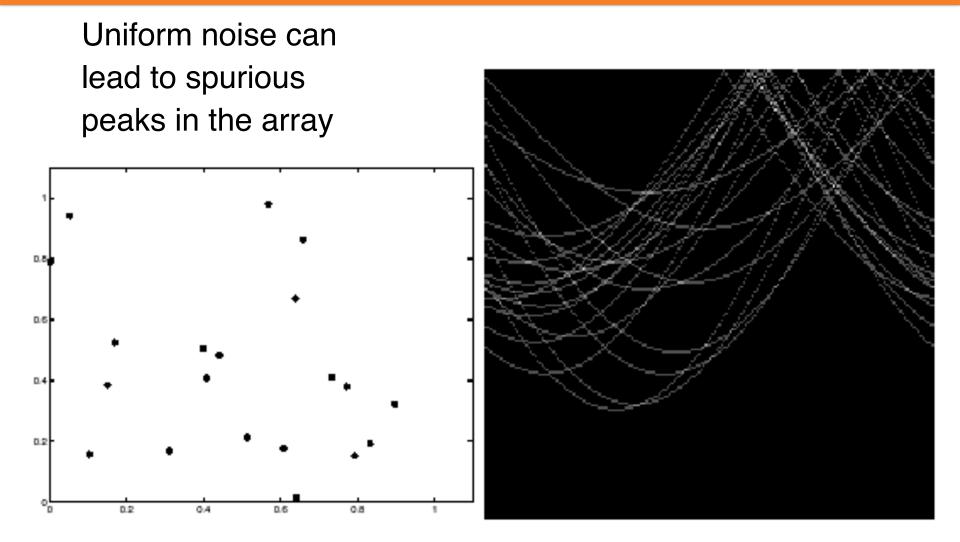
# Peak gets fuzzy and hard to locate





Forsyth & Ponce

# Random points



Source: S. Lazebnik

# Simplifying Hough Transforms

- Use local gradient information to reduce the search space
- Another trick: use prior information
  - For example, if looking for lines in a particular direction, can reduce the search space even further

# Fitting lines: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
  - Least squares
- What if there are outliers?
  - Robust fitting, RANSAC
- What if there are many lines?
  - Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
  - Model selection (not covered)

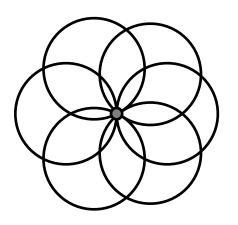
#### Hough transform beyond lines

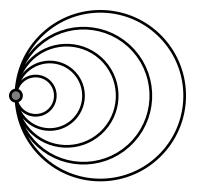
# Hough Transform

- What else can be detected using Hough transform?
- Anything, but *dimensionality* is key

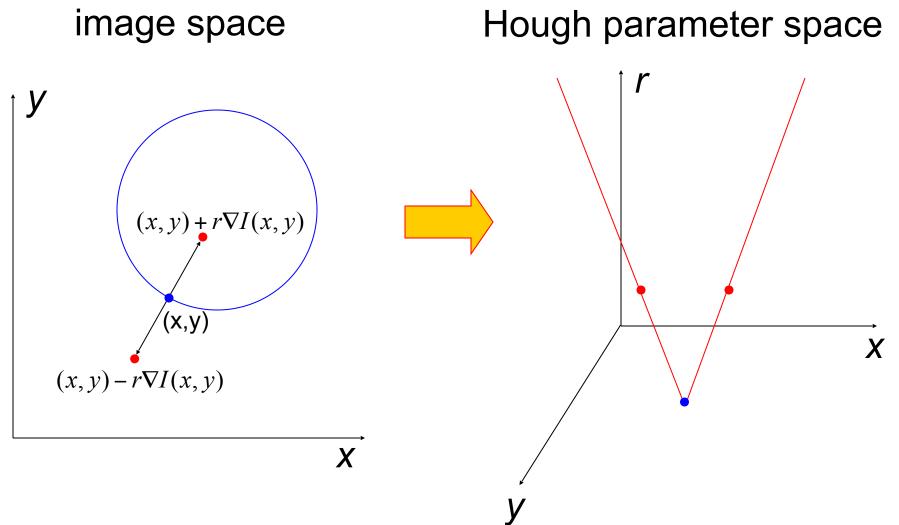
# Hough transform for circles

- How many dimensions will the parameter space have?
- Given an edge point, what are all possible bins that it can vote for?
- What about an *oriented* edge point?





#### Hough transform for circles

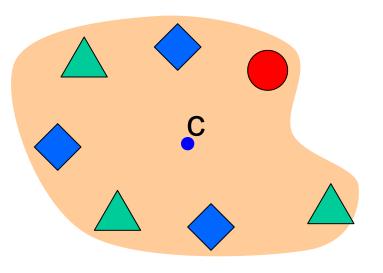


Source: S. Lazebnik

### Generalized Hough transform

 We want to find a template defined by its reference point (center) and several distinct types of landmark points in stable spatial configuration

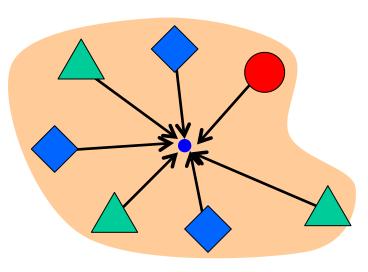
#### Template



# Generalized Hough transform

 Template representation: for each type of landmark point, store all possible displacement vectors towards the center

Template



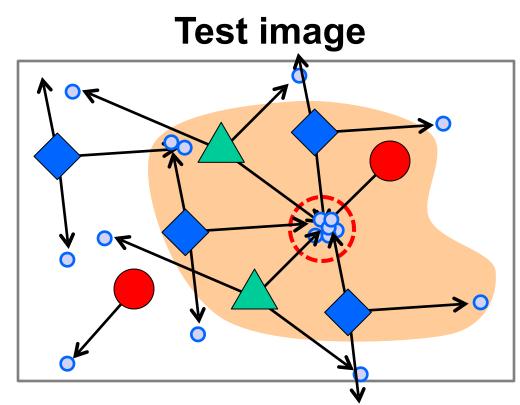
Model

Source: S. Lazebnik

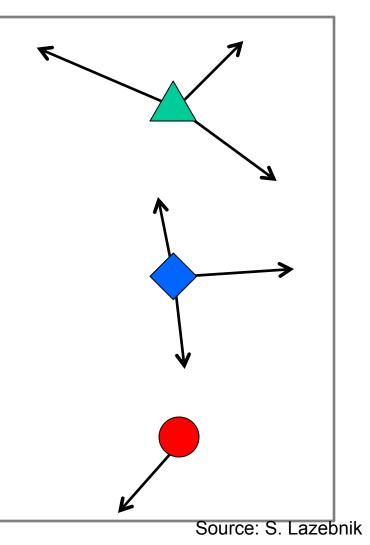
# Generalized Hough transform

#### • Detecting the template:

 For each feature in a new image, look up that feature type in the model and vote for the possible center locations associated with that type in the model

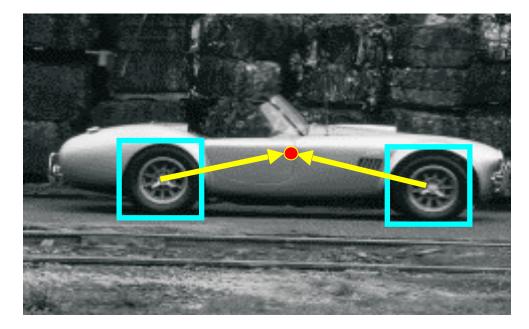


#### Model



# Application in recognition

Index displacements by "visual codeword"





visual codeword with displacement vectors

#### training image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and</u> <u>Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Source: S. Lazebnik

# Application in recognition

Index displacements by "visual codeword"



test image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and</u> <u>Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Source: S. Lazebnik

# Hough transform: Discussion

#### Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

#### Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size

#### Next time: matching & alignment

