
COS 429: Computer Vision

Lecture 5:
Fitting, Hough transforms, RANSAC

Slides adapted from: Szymon Rusinkiewicz, Jia Deng, Svetlana Lazebnik, David Fouhey



Last time: interest point detection and description



Fitting



Fitting

• We’ve learned how to 
detect edges, corners, 
blobs. Now what?

• We would like to form a 
higher-level, more compact 
representation of the 
features in the image by 
grouping multiple features 
according to a simple model

Slide: S. Lazebnik



Source: K. Grauman

Fitting

• Choose a parametric model to represent a set of 
features

simple model: lines simple model: circles

complicated model: car



Fitting: Issues

• Noise in the 
measured feature 
locations 

• Extraneous data: 
clutter (outliers), 
multiple lines 

• Missing data: 
occlusions

Case study: Line detection

http://vision.caltech.edu/malaa/software/research/caltech-lane-detection/

Source: S. Lazebnik



Model fitting

• Need three ingredients:

Data: what data are we trying to explain with a 
model?

Model: what’s the compressed, parametric 
form of the data?

Objective function: given a prediction, how do 
we evaluate how correct it is?

Source: David Fouhey



Example: Least-Squares

• Fitting a line to data

Data: (x1,y1), (x2,y2), …, 
(xk,yk)

Model: (m,b)    yi=mxi+b 
Or (w)               yi = wTxi 

Objective function: 
(yi - wTxi)2

Source: David Fouhey



Least Squares Setup

𝑘

∑
𝑖=1

(𝑦𝑖 − 𝒘𝑇𝒙𝒊)2
𝒀 − 𝑿𝑾

2
2

𝒀 =  
𝑦1
⋮
𝑦𝑘

𝑿 =  
𝑥1 1
⋮ 1
𝑥𝑘 1

𝑾 =  [𝑚
𝑏]

Note: I’m writing the most general form here since we’ll do it in general and you 
can make it specific if you’d like.

Source: David Fouhey



Solving Least Squares

𝜕
𝜕𝑾

𝒀 − 𝑿𝑾
2

2
= 2𝑿𝑻𝑿𝑾 − 2𝑿𝑻𝒀

𝑿𝑻𝑿𝑾 = 𝑿𝑻𝒀

𝑾 = (𝑿𝑻𝑿)−𝟏𝑿
𝑻
𝒀

𝒀 − 𝑿𝑾
2
2

Recall: derivative is 0 
at a maximum / 
minimum. Same is 
true about gradients.

𝟎 = 2𝑿𝑻𝑿𝑾 − 2𝑿𝑻𝒀

Aside: 0 is a vector of 0s

Source: David Fouhey



Derivation for the Curious

Source: David Fouhey

= 𝒀 𝑻𝒀  − 𝟐𝑾 𝑻𝑿𝑻𝒀 + (𝑿𝑾 )𝑻𝑿𝑾

= (𝒀 − 𝑿𝑾 )𝑇(𝒀 − 𝑿𝑾 )𝒀 − 𝑿𝑾
2
2

𝜕
𝜕𝑾 𝒀 − 𝑿𝑾

2
2

= 0  − 2𝑿𝑻𝒀 + 2𝑿𝑻𝑿𝑾

= 2𝑿𝑻𝑿𝑾 − 2𝑿𝑻𝒀

𝜕
𝜕𝑾 (𝑿𝑾 )𝑻(𝑿𝑾 ) !  != 2( 𝜕

𝜕𝑾
𝑿𝑾 𝑇)𝐗𝐖 = 𝟐𝐗𝐓𝐗𝐖



Two solutions to getting W

Source: David Fouhey

In One Go

𝑿𝑻 𝑿𝑾 = 𝑿𝑻𝒀

Implicit form  
(normal equations) 

𝑾 = (𝑿𝑻 𝑿)−𝟏𝑿
𝑻

𝒀

Explicit form 
(don’t do this)

𝑾𝟎 = 𝟎

𝑾𝒊+𝟏 = 𝑾𝒊 − 𝜸( 𝜕
𝜕𝑾

𝒀 − 𝑿𝑾
2

2)

Iteratively
Recall: gradient is also 
direction that makes 

function go up the most. 
What could we do?



Least squares minimization



Least squares minimization



What’s the problem?

Source: David Fouhey

• Vertical lines 
impossible!

• Not rotationally 
invariant: the line will 
change depending on 
the orientation of the 
points



Alternative formulation: total least squares

• Fitting a line to data

Source: David Fouhey

Data: (x1,y1), (x2,y2), …, 
(xk,yk)

Model: (a,b,d), a2+b2=1 
axi + byi =d

Objective function: 
(axi + byi - d)2

(a,b)



• With a bit of algebra, can show this amounts to 
minimizing
• where

E = (UN)T (UN)

Alternative formulation: total least squares

(a,b)

U =

2

64
x1 � x̄ y1 � ȳ

...
...

xn � x̄ yn � ȳ

3

75 N =


a
b

�

• Solution to minimizing E 
subject to ||N||2 = 1:
• Eigenvector of UTU 

associated with the 
smallest eigenvalue

(derivation in the slides online)



Total least squares derivation, courtesy of Prof. David Fouhey



Total Least Squares Setup

𝑘

∑
𝑖=1

(𝒏𝑻[𝑥, 𝑦] − 𝑑)
2

𝑿𝒏 − 𝟏𝑑
2
2

𝑿 =  
𝑥1 𝑦1
⋮ ⋮
𝑥𝑘 𝑦𝑘

𝒏 =  [𝑎
𝑏]𝟏 =  [

1
⋮
1 ] 𝝁 =

1
𝑘

𝟏𝑇𝑿

The mean / center of mass of the points: 
we’ll use it later

Figure out objective first, then figure out ||n||=1

Source: David Fouhey



Solving Total Least-Squares

= (𝑿𝒏)𝑻(𝑿𝒏) − 2𝑑𝟏𝑻𝑿𝒏 + 𝑑𝟐𝟏𝑻𝟏
= (𝑿𝒏 − 𝟏𝑑)𝑇(𝑿𝒏 − 𝟏𝑑)𝑿𝒏 − 𝟏𝑑

2
2

First solve for d at optimum (set to 0)
𝜕

𝜕𝑑
𝑿𝒏 − 𝟏𝑑

2

2
= 0 − 2𝟏𝑻𝑿𝒏 + 2𝑑𝑘

𝑑 =
1
𝑘

𝟏𝑻𝑿𝒏 = 𝝁𝒏

0 = −2𝟏𝑻𝑿𝒏 + 2𝑑𝑘 0 = −𝟏𝑻𝑿𝒏 + 𝑑𝑘

Source: David Fouhey



Solving Total Least-Squares

𝑿𝒏 − 𝟏𝑑
2
2

𝑑 = 𝝁𝒏= 𝑿𝒏 − 𝟏𝝁𝒏
2

2

= (𝑿  − 𝟏𝝁) 𝒏
2

2

arg min
𝒏 =1

(𝑿 − 𝟏𝝁) 𝒏
2

2

Objective is then: 

Source: David Fouhey



Homogeneous Least Squares

Note: technically homogeneous only refers to ||Av||=0 but it’s common 
shorthand in computer vision to refer to the specific problem of ||v||=1

arg min
𝒗 2

2=1
𝑨𝒗

2
2

Eigenvector corresponding to 
smallest eigenvalue of ATA 

𝒏 =  smallest_eigenvec((𝑿 − 𝟏𝝁)𝑻(𝑿 − 𝟏𝝁))

Applying it in our case:

Why do we need ||v||2 = 1 or  
some other constraint?

Source: David Fouhey



Details For ML-People

(𝑿 − 𝟏𝝁)𝑻(𝑿 − 𝟏𝝁) =
∑𝑖 (𝑥𝑖 − 𝜇𝑥)2 ∑𝑖 (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

∑𝑖 (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦) ∑𝑖 (𝑦𝑖 − 𝜇𝑦)
2

Matrix we take the eigenvector of looks like:

This is a scatter matrix or scalar multiple of the 
covariance matrix. We’re doing PCA, but taking the least 

principal component to get the normal.

Note: If you don’t know PCA, just ignore this slide; it’s to help build connections 
to people with a background in data science/ML.

Source: David Fouhey



Total Least Squares

1. Translate center of mass to origin

✴



Total Least Squares

2. Compute covariance matrix, 
find eigenvector w. largest eigenvalue



Running Least Squares

Source: D. Fouhey



Running Least Squares

Source: D. Fouhey



Running Least Squares

Source: D. Fouhey



Running Least Squares

Source: D. Fouhey



Running Least Squares

• Way to think of this #1:
•     

• 1002 >> 102, least-squares model prefers having no large errors, even 
if the model is overall useless

• Way to think of this #2:
•     
• Weights are a linear transformation of the output variable: can 

manipulate W by manipulating Y
• Way to think of this #3:

• Least squares assumes Gaussian noise
• Outliers: points with extremely low probability of occurrence 

(according to Gaussian statistics), thus can have strong influence on 
least squares

| |Y − XW | |2
2

W = (XT X )−1XTY



Robust Estimation

• Goal: develop parameter estimation methods 
insensitive to small numbers of large errors

• General approach: try to give large deviations less 
weight

• e.g., median is a robust measure, mean is not



Least Absolute Value Fitting

• Minimize  
 
instead of

• Points far away from trend get comparatively 
less influence

X

i

|yi � f(xi, a, b, . . . )|
X

i

(yi � f(xi, a, b, . . . ))
2 (mean)

(median)



Aside: why is minimizing sum of squares = mean?

min
a ∑

i

(a − xi)2

X3 X4 X1 X5 X2

1 1.5 2.1 4.2 5.20
a

d
da

n

∑
i=1

(a − xi)2 = 0

⟹ 2an − 2
n

∑
i=1

xi = 0

⟹
n

∑
i=1

2(a − xi) = 0

⟹ a =
1
n

n

∑
i=1

xi

• Goal:

• Algebraic solution:



Aside: why is min. absolute distances = median?

• Goal:

• Geometric intuition:

min
a ∑

i

|a − xi |

X3 X4 X1 X5 X2

1 1.5 2.1 4.2 5.20
a



Aside: why is min. absolute distances = median?

• Goal:

• Geometric intuition:

min
a ∑

i

|a − xi |

X3 X4 X1 X5 X2

1 1.5 2.1 4.2 5.20
a



Aside: why is min. absolute distances = median?

• Goal:

• Geometric intuition:

min
a ∑

i

|a − xi |

X3 X4 X1 X5 X2

1 1.5 2.1 4.2 5.20
a

✓



Outlier detection and rejection

• Lots of methods for fitting models in the presence 
of outliers
• Median (L1) more robust than the mean (L2), 

but harder to optimize
• Look up “iteratively reweighed least squares”

• Often not guaranteed to converge; require good 
starting point
• (least squares estimator is often a good starting 

point)



RANSAC



RANSAC

• RANdom SAmple Consensus: designed for 
bad data (in best case, up to 50% outliers)

• Take many random subsets of data
– Choose a small subset uniformly at random
– Fit a model to the data
– Find all remaining points that are “close” to the model 

and reject the rest as outliers

• At the end, select model that agreed with most 
points

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and 
Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981. 

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf


RANSAC for line fitting example

Source: R. Raguram



RANSAC for line fitting example

Least-squares fit

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Uncontaminated sample

Source: R. Raguram



RANSAC for line fitting example

1. Randomly 
select minimal 
subset of points 

2. Hypothesize a 
model 

3. Compute error 
function 

4. Select points 
consistent with 
model 

5. Repeat 
hypothesize-
and-verify loop 

Source: R. Raguram



RANSAC for line fitting

Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining 

points (i.e., points whose distance from the line is 
less than t)

• If there are d or more inliers, accept the line and 
refit using all inliers

Source: S. Lazebnik



Choosing the parameters

• Initial number of points s 
• Typically minimum number needed to fit the model

• Distance threshold t 
• Choose t so probability for inlier is p (e.g. 0.95) 
– Zero-mean Gaussian noise with std. dev. σ:    t = 1.96 σ

• Number of samples N 
• Choose N so that, with probability p, at least one random sample is 

free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d 
• Should match expected inlier ratio

Source: M. Pollefeys



RANSAC pros and cons

• Pros
• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to tune
• Doesn’t work well for low inlier ratios 

(too many iterations, or can fail 
completely)

• Can’t always get a good initialization  
of the model based on the minimum  
number of samples

Source: S. Lazebnik



Hough transform



Voting schemes

• Let each feature vote for all the models that are 
compatible with it

• Hopefully the noise features will not vote 
consistently for any single model

• Missing data doesn’t matter as long as there are 
enough features remaining to agree on a good 
model

Source: S. Lazebnik



Hough transform

• An early type of voting scheme
• General outline: 

• Discretize parameter space into bins
• For each feature point in the image, put a vote in every bin in the 

parameter space that could have generated this point
• Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 
Int. Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space

Source: S. Lazebnik



Parameter space representation

• A line in the image corresponds to a point in 
Hough space

Source: S. Seitz

Image space Hough parameter space

b0

m0



Parameter space representation

Source: S. Seitz

Image space Hough parameter space

• What does a point (x0, y0) in the image space map 
to in the Hough space?
• Answer: the solutions of b = –x0m + y0, which is a line in Hough space

(x0, y0)



Parameter space representation

• What does a point (x0, y0) in the image space map 
to in the Hough space?
• Answer: the solutions of b = –x0m + y0, which is a line in Hough space

Source: S. Seitz

Image space Hough parameter space

(x0, y0)



Parameter space representation

• Where does the line that contains both (x0, y0) and 
(x1, y1) map to?

b = –x1m + y1

Source: S. Seitz

Image space Hough parameter space

(x0, y0)

(x1, y1)



Parameter space representation

• Where does the line that contains both (x0, y0) and 
(x1, y1) map to?
• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1 

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1

Source: S. Seitz



Hough Transform for Lines

m

b



Hough Transform for Lines

m

b



Bucket Selection

• How to select bucket size?
– Too small: poor performance on noisy data
– Too large: poor accuracy, possibility of false positives

• Large buckets + verification and refinement
– Problems distinguishing nearby lines

• Be smarter at selecting buckets
– Use gradient information to select subset of buckets
– More sensitive to noise



Difficulties with Hough Transform for Lines

• Slope / intercept parameterization not ideal
– Non-uniform sampling of directions
– Can’t represent vertical lines

• Angle / distance parameterization
– Line represented as (r,θ ) where  

x cos θ + y sin θ = r

r

θ



Angle / Distance Parameterization

• Advantage: uniform parameterization  
of directions

• Disadvantage: space of all lines passing through  
a point becomes a sinusoid in (r,θ ) space

r

θ



Hough Transform Results

Forsyth & Ponce



Hough Transform with Noise

Forsyth & Ponce

Peak gets fuzzy and 
hard to locate



Random points

Source: S. Lazebnik

Uniform noise can 
lead to spurious 
peaks in the array



Simplifying Hough Transforms

• Use local gradient information to reduce the 
search space

• Another trick: use prior information
– For example, if looking for lines in a particular direction, 

can reduce the search space even further



Fitting lines: Overview

• If we know which points belong to the line, how do 
we find the “optimal” line parameters?
• Least squares 

• What if there are outliers?
• Robust fitting, RANSAC  

• What if there are many lines?
• Voting methods: RANSAC, Hough transform 

• What if we’re not even sure it’s a line?
• Model selection (not covered)

Source: S. Lazebnik



Hough transform beyond lines



Hough Transform

• What else can be detected using Hough 
transform?

• Anything, but dimensionality is key



Hough transform for circles

• How many dimensions will the parameter space 
have?

• Given an edge point, what are all possible bins 
that it can vote for?

• What about an oriented edge point?

Source: S. Lazebnik



Hough transform for circles 

),(),( yxIryx ∇+

x

y

(x,y)
x

y

r

),(),( yxIryx ∇−

image space Hough parameter space

Source: S. Lazebnik



Generalized Hough transform

• We want to find a template defined by its 
reference point (center) and several distinct types 
of landmark points in stable spatial configuration

c

Template

Source: S. Lazebnik



Generalized Hough transform

• Template representation: for each type 
of landmark point, store all possible 
displacement vectors towards the 
center

Model

Template

Source: S. Lazebnik



Generalized Hough transform

• Detecting the template:
• For each feature in a new image, look up that 

feature type in the model and vote for the 
possible center locations associated with that 
type in the model

Model

Test image

Source: S. Lazebnik



Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

training image

visual codeword with 
displacement vectors

Source: S. Lazebnik

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Application in recognition

• Index displacements by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

test image

Source: S. Lazebnik

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Hough transform: Discussion

• Pros
• Can deal with non-locality and occlusion
• Can detect multiple instances of a model
• Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin

• Cons
• Complexity of search time increases exponentially with the number 

of model parameters
• Non-target shapes can produce spurious peaks in parameter space
• It’s hard to pick a good grid size  

Source: S. Lazebnik



Next time: matching & alignment


