
SVE: Distributed Video Processing at Facebook Scale

Qi Huang1, Petchean Ang1, Peter Knowles1, Tomasz Nykiel1,
Iaroslav Tverdokhlib1, Amit Yajurvedi1, Paul Dapolito IV1, Xifan Yan1,
Maxim Bykov1, Chuen Liang1, Mohit Talwar1, Abhishek Mathur1,

Sachin Kulkarni1, Matthew Burke1,2,3, and Wyatt Lloyd1,2,4

1Facebook, Inc., 2University of Southern California, 3Cornell University, 4Princeton University
qhuang@fb.com,wlloyd@princeton.edu

ABSTRACT
Videos are an increasingly utilized part of the experience
of the billions of people that use Facebook. These videos
must be uploaded and processed before they can be shared
and downloaded. Uploading and processing videos at our
scale, and across our many applications, brings three key
requirements: low latency to support interactive applications;
a �exible programming model for application developers
that is simple to program, enables e�cient processing, and
improves reliability; and robustness to faults and overload.
This paper describes the evolution from our initial monolithic
encoding script (MES) system to our current Streaming Video
Engine (SVE) that overcomes each of the challenges. SVE
has been in production since the fall of 2015, provides lower
latency than MES, supports many diverse video applications,
and has proven to be reliable despite faults and overload.

1 INTRODUCTION
Video is a growing part of the experience of the billions of
people who use the Internet. At Facebook, we envision a
video-�rst world with video being used in many of our apps
and services. On an average day, videos are viewedmore than
8 billion times on Facebook [28]. Each of these videos needs
to be uploaded, processed, shared, and then downloaded. This
paper focuses on the requirements that our scale presents,
and how we handle them for the uploading and processing
stages of that pipeline.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5085-3/17/10.
https://doi.org/10.1145/3132747.3132775

Processing uploaded videos is a necessary step before
they are made available for sharing. Processing includes val-
idating the uploaded �le follows a video format and then
re-encoding the video into a variety of bitrates and formats.
Multiple bitrates enable clients to be able to continuously
stream videos at the highest sustainable quality under vary-
ing network conditions. Multiple formats enable support for
diverse devices with varied client releases.

There are three major requirements for our video upload-
ing and processing pipeline: provide low latency, be �exible
enough to support many applications, and be robust to faults
and overload. Uploading and processing are on the path be-
tween when a person uploads a video and when it is shared.
Lower latency means users can share their content more
quickly. Many apps and services include application-speci�c
video operations, such as computer vision extraction and
speech recognition. Flexibility allows us to address the ever
increasing quantity and complexity of such operations. Fail-
ure is the norm at scale and overload is inevitable due to our
highly variable workloads that include large peaks of activity
that, by their viral nature, are unpredictable. We therefore
want our systems to be reliable.

Our initial solution for uploading and processing videos
centered around a monolithic encoding script (MES). The
MES worked when videos were nascent but did not handle
the requirements of low latency, �exibility, or robustness well
as we scaled. To handle those requirements we developed the
Streaming Video Engine (SVE), which has been in production
since the fall of 2015.
SVE provides low latency by harnessing parallelism in

three ways that MES did not. First, SVE overlaps the upload-
ing and processing of videos. Second, SVE parallelizes the
processing of videos by chunking videos into (essentially)
smaller videos and processing each chunk separately in a
large cluster of machines. Third, SVE parallelizes the storing
of uploaded videos (with replication for fault tolerance) with
processing it. Taken together, these improvements enable
SVE to reduce the time between when an upload completes
and a video can be shared by 2.3⇥–9.3⇥ over MES.

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

SVE provides �exibilitywith a directed acyclic graph (DAG)
programming model where application programmers write
tasks that operate on a stream-of-tracks abstraction. The
stream-of-tracks abstraction breaks a video down into tracks
of video, audio, and metadata that simplify application pro-
gramming. The DAG execution model easily allows program-
mers to chain tasks sequentially, while also enabling them
to parallelize tasks, when it matters for latency.
Faults are inevitable in SVE due to the scale of the sys-

tem, our incomplete control over the pipeline, and the di-
versity of uploads we receive. SVE handles component fail-
ure through a variety of replication techniques. SVE masks
non-deterministic and machine-speci�c processing failures
through retries. Processing failures that cannot be masked
are simple to pinpoint in SVE due to automatic, �ne-grained
monitoring. SVE provides robustness to overload through a
progressing set of reactions to increasing load. These reac-
tions escalate from delaying non-latency-sensitive tasks, to
rerouting tasks across datacenters, to time-shifting load by
storing some uploaded videos on disk for later processing.
The primary contribution of this paper is the design of

SVE, a parallel processing framework that specializes data
ingestion (§4.1,§4.3), parallel processing (§4.2), the program-
ming interface (§5), fault tolerance (§6), and overload control
(§7) for videos at massive scale. In addition, the paper’s contri-
butions also include articulating the requirements for video
uploading and processing at scale, describing the evolution
from MES (§2.3) to SVE (§3), evaluating SVE in production
(§4,§6.4,§7.3), and sharing experience from operating SVE in
production for years (§8).

2 BACKGROUND
This section provides background on the full video pipeline,
some production video applications, our initial monolithic
encoding script solution, and why we built a new framework.

2.1 Full Video Pipeline
The full video pipeline takes videos from when they are cap-
tured by a person to when they are viewed by another. There
are six steps: record, upload, process, store, share, stream. We
describe the steps linearly here for clarity, but later discuss
how and when they are overlapped.
Videos are uploaded after they are recorded. Either the

original video or a smaller re-encoded version is uploaded,
depending on a variety of factors discussed in Section 4.1.
Video data is transferred from the user’s device to front-end
servers [27] within Facebook datacenters. There is high vari-
ance in upload times and some times are quite long. While
the video is being uploaded, the front-end forwards it to the
processing system (MES or SVE).

The processing system then validates and re-encodes the
video. Validation includes verifying the video and repairing
malformed videos. Veri�cation ensures that an uploaded
�le is indeed a video as well as blocking malicious �les, for
example those that try to trigger a denial of service attack
during encoding. Repairing malformed videos �xes metadata
such as an incorrect frame count or a mis-alignment between
the time-to-frame mappings in the video and audio tracks.
After the processing system validates a video it then re-

encodes the video in a variety of bitrates. Re-encoding into
di�erent bitrates allows us to stream videos to user devices,
with di�erent network conditions, at the highest bitrates they
can sustain. It also allows us to continuously adapt bitrates
as the network conditions of individual users vary over time.
Re-encoding is the most computationally intensive step.
Once the video is processed, we reliably store it in our

binary large object (BLOB) storage system [6, 19] so that
it remains available for future retrieval. Sharing a video is
application speci�c, which we discuss below. Once a video
is shared it can be streamed to the user’s device.
This streaming is done by a video player on the user’s

device that downloads, bu�ers, and plays small chunks of
the video from our CDN [13, 29]. The player can download
each chunk in any bitrate with which we re-encoded the
video. The player monitors network conditions and selects
the highest bitrate that it can play back smoothly. Higher
bitrates and less user-visible bu�ering are desirable, and
encoding a video into multiple bitrates is necessary for this.
The focus of this paper is the pre-sharing pipeline, which

is the part of the pipeline between when a video is recorded
and when it can be shared. This includes the uploading,
processing, and storing steps. Our goals for these steps are
high reliability and low latency.

2.2 Production Video Applications
There are more than 15 applications registered with SVE
that integrate video. The applications ingest over tens of mil-
lions of uploads per day and generate billions of tasks within
SVE. Four well known examples are video posts, Messenger
videos, Instagram stories, and Facebook 360. Video posts are
created through Facebook’s main interfaces and appear on
a user’s Timeline and in their friend’s News Feeds along
with a user post, thumbnails, and noti�cations to the target
audience. This application has a complicated set of DAGs
averaging 153 video processing tasks per upload. Messenger
videos are sent to a speci�c friend or a group for almost
real-time interaction. Due to a tight latency requirement,
it has the simplest DAGs that average a little over 18 tasks
per upload. Instagram stories are created by recording on
Instagram and applying special �lters through a stand-alone
�lter app interface. Its pipeline is slightly more complicated

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

Client

Front-end Encoder

Storage

1
2

3

4

Figure 1: The initial video processing architecture.
Videos were �rst uploaded by clients to storage via
the front-end tier as opaque blobs (1–2). Then a mono-
lithic encoder sequentially reencoded the video for
storage (3–4) and ultimately sharing.

than the Messenger case, generating over 22 tasks per upload.
360 videos are recorded on 360 cameras and processed to be
consumed by VR headsets or 360 players, whose pipeline gen-
erates thousands of tasks per upload due to high parallelism.
Each application strives for low latency and high reliability
for the best user experiences. Each application also has a
diverse set of processing requirements, so creating reusable
infrastructure at scale that makes it easy for developers to
create and monitor video processing is helpful.

2.3 Monolithic Encoding Script
Our initial processing system was a Monolithic Encoding
Script (MES). Figure 1 shows the architecture of the pre-
sharing pipeline with MES. Under this design videos are
treated as a single opaque �le. A client uploads the video
into storage via a front-end server. Once storage of the full
video completes, the video is processed by an encoder within
MES. The processing logic is all written in one large mono-
lithic encoding script. The script runs through each of its
processing tasks sequentially on a single server. There were
many encoding servers, but only one handled a given video.

MES worked and was simple. But, it had three major draw-
backs. First, it incurred high latency because of its sequential
nature. Second, it was di�cult to add new applications with
appropriate monitoring into a single script. Third, it was
prone to failure and fragile under overload. SVE addresses
each of these drawbacks.

2.4 Why a New Framework?
Before designing SVE we examined existing parallel pro-
cessing frameworks including batch processing systems and
stream processing systems. Batch processing systems like
MapReduce [10], Dryad [14], and Spark [35] all assume the
data to be processed already exists and is accessible. This
requires the data to be sequentially uploaded and then pro-
cessed, which we show in Section 4.1 incurs high latency.

Streaming processing systems like Storm [5], Spark Stream-
ing [36], and StreamScope [16] overlap uploading and pro-
cessing, but are designed for processing continuous queries
instead of discrete events. As a result, they do not support our
video-deferring overload control (§7), generating a special-
ized DAG for each video (§5), or the specialized scheduling
policies we are exploring. This made both batch processing
and stream processing systems a mismatch for the low-level
model of computation we were targeting.

A bigger mismatch, however, was the generality of these
systems. The interfaces, fault tolerance, overload control, and
scheduling for each general system is necessarily generic. In
contrast, we wanted a system with a video-speci�c interface
that would make it easier to program. We also wanted a
systemwith specialized fault tolerance, overload control, and
scheduling that takes advantage of the unique characteristics
of videos and our video workload.We found that almost none
of our design choices—e.g., per-task priority scheduling (§3),
a dynamically generated DAG per video (§5.2)—were provide
by exisiting systems. The next four sections describe our
video-speci�c design choices.

3 STREAMING VIDEO ENGINE
This section provides an overview of the architecture of
SVE with the next four sections providing details. Section 4
explains how SVE provides low latency. Section 5 explains
how SVE makes it simple to setup new processing pipelines.
Sections 6 and 7 explain how SVE is robust to failure and
overload, respectively.
Figure 2 shows a high-level overview of the SVE archi-

tecture. The servers involved in processing an individual
video are shown. Each server type is replicated many times,
though without failure only one front-end, preprocessor, and
scheduler will handle a particular video.
There are four fundamental changes in the SVE architec-

ture compared to the MES architecture. The �rst change is
that the client breaks the video up into segments consisting
of a group of pictures (GOP), when possible, before uploading
the segments to the front-end. Each GOP in a video is sepa-
rately encoded, so each can be decoded without referencing
earlier GOPs. Segments split based on GOP alignment are,
in essence, smaller stand alone videos. They can be played
or processed independently of one another. This segmenting
reduces latency by enabling processing to start earlier. The
second change is that the front-end forwards video chunks
to a preprocessor instead of directly into storage. The third
change is replacing the MES with the preprocessor, sched-
uler, and workers of SVE. Disaggregating the encoding in
these three components enables low latency through par-
allelization, higher reliability through fault isolation, and
better reaction to overload through more options to shift

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

Worker
Worker

Front-end Preprocessor

Storage Worker

Scheduler

1

2 3

3′ 4

5

Client

Figure 2: SVE architecture. Clients stream GOP split
segments of the video that can be reencoded indepen-
dently (1–2). The preprocessor does lightweight vali-
dation of video segments, further splits segments if
needed, caches the segments in memory, and noti�es
the scheduler (3). In parallel, the preprocessor also
stores the original upload to disk for fault tolerance
(30). The scheduler then schedules processing tasks on
the workers that pull data from the preprocessor tier
(4) and then store processed data to disk (5).

load. And the fourth change is that SVE exposes pipeline
construction in a DAG interface that allows application devel-
opers to quickly iterate on the pipeline logic while providing
advanced options for performance tunings.

Preprocessor. The preprocessor does lightweight prepro-
cessing, initiates the heavyweight processing, and is a write-
through cache for segments headed to storage. The prepro-
cessing includes the validation done in MES that veri�es the
upload is a video and �xes malformed videos. Some older
clients cannot split videos into GOP segments before upload-
ing. The preprocessor does the GOP splitting for videos from
those clients. GOP splitting is lightweight enough to be done
on path on a single machine. It requires only a single pass
over the timestamp for each frame within the video data,
�nding the nearest GOP boundaries to the desired segment
duration to divide the video apart.
Encoding, unlike preprocessing, is heavyweight. It re-

quires a pixel-level examination of each frame within a video
track and operates both spatial image compression as well as
temporal motion compression across a series of frames. Thus,
video encoding is performed on many worker machines, or-
chestrated by a scheduler. The processing tasks that are run
on workers are determined by a DAG of processing tasks
generated by the preprocessor. The DAG that is generated
depends on the uploading application (e.g., Facebook or In-
stagram) and its metadata, (e.g., normal or 360 video). We
discuss how programmers specify the DAG in Section 5.
The preprocessor caches video segments after it prepro-

cesses them. Concurrently with preprocessing, the prepro-
cessor forwards the original uploaded segments to storage.
Storing the segments ensures upload reliability despite the

failures that are inevitable at scale. Caching the segments in
the preprocessor moves the storage system, and its use of
disks, o� the critical path.

Scheduler. The scheduler receives the job to execute the
DAG from the preprocessor as well as noti�cations of when
di�erent segments of the video have been preprocessed. The
scheduler di�erentiates between low and high priority tasks,
which are annotated by programmers when they specify the
DAGs. Each cluster of workers has a high-priority and low-
priority queue that workers pull tasks from after they �nish
an earlier task. The scheduler greedily places tasks from the
DAG into the appropriate queue as soon as all of its depen-
dencies are satis�ed. Workers will pull from both queues
when cluster utilization is low. When utilization is high they
will only pull tasks from the high-priority queue. SVE shards
the workload by video ids among many schedulers. At any
time a DAG job is handled by a single scheduler.

Worker. Many worker machines process tasks in the DAG
in parallel. Worker machines receive their tasks from the
scheduler. They then pull the input data for that task either
from cache in the preprocessor tier, or from the intermediate
storage tier. Once they complete their task they push the data
to intermediate storage if there are remaining tasks or to the
storage tier if the DAG execution job has been completed.

Intermediate Storage. Di�erent storage systems are used
for storing the variety of data ingested and generated during
the video encoding process. The choice of storage system
depends on factors such as the read/write pattern, the data
format, or access frequency for a given type of data. Meta-
data that is generated for use in the application is written
to a multi-tier storage system that durably stores the data
and makes it available in an in-memory cache [7] because
the metadata is read much more frequently than it is written.
The internal processing context for SVE is written to a stor-
age system that provides durability without an in-memory
cache. That context is typically written many times and read
once, so caching would not be bene�cial. The video and au-
dio data is written to a specially con�gured version of our
BLOB storage system. That storage system, and the one for
internal processing context, automatically free this data after
a few days because it is only needed while the video is being
processed.We have found that letting this data expire instead
of manually freeing it is both simpler and less error-prone: in
case a DAG execution job gets stuck, which happens when
a user halts an upload without an explicit signal, or when a
DAG execution job state is lost due to system failure or bugs,
letting the storage system manage freeing the data upper
bounds the excess capacity without requiring explicit tracing
or job recovery.

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

Store

Upload

Process

Store

Upload

Process

MES

VEE

Pre-Sharing Latency

D

A

C

B

A B

C

D

E

E

Figure 3: Logical diagrams of the pre-sharing latency
of MES and SVE. Letters mark points in the diagram
that are measured and reported in later �gures.

4 LOW LATENCY PROCESSING
Low latency processing of videos makes applications more
interactive. The earlier videos are processed, the sooner they
can be shared over News Feed or sent over Messenger. This
section describes how SVE provides low latency by overlap-
ping uploading and processing (§4.1), processing the video
in parallel (§4.2), and by overlapping fault tolerant storage
and processing (§4.3). Figure 3 shows the logical pre-sharing
latency for the MES and SVE designs to provide intuition for
why these choices lead to lower latency. This section also
quanti�es the latency improvement that the SVE provides
over MES (§4.4). All data is for News Feed uploads in a 6-day
period in June 2017 unless otherwise speci�ed.

4.1 Overlap Uploading and Encoding
The time required for a client to upload all segments of a
video is a signi�cant part of the pre-sharing latency. Figure 4a
shows CDFs of upload times. Even for the smallest size class
(1MB) approximately 10% of uploads take more than 10
seconds. For the 3–10MB size class, the percentage of videos
taking more than 10 seconds jumps to 50%. For the large size
classes of 30–100MB, 100–300MB, 300MB–1GB, and � 1GB,
more than half of the uploads take 1 minute, 3 minutes, 9
minutes, and 28 minutes, respectively. This demonstrates
that upload time is a signi�cant part of pre-sharing latency.

Uploads are typically bottlenecked by the bandwidth avail-
able to the client, which we cannot improve. This leaves us
with two options for decreasing the e�ect of upload latency
on pre-sharing latency: 1) upload less data, and 2) overlap
uploading and encoding. One major challenge we overcome
in SVE is enabling these options while still supporting the

large and diverse set of clients devices that upload videos.
Our insight is to opportunistically use client-side processing
to enable faster sharing when it is possible and helpful, but
to use cloud-side processing as a backup to cover all cases.

We decrease the latency for uploads through client-side re-
encoding of the video to a smaller size when three conditions
are met: the raw video is large, the network is bandwidth
constrained, and the appropriate hardware and software
support exists on the client device. We avoid re-encoding
when a video is already appropriately sized orwhen the client
has a high bandwidth connection because these uploads will
already complete quickly. Thus, we prefer to avoid using
client device resources (e.g., battery) since they will provide
little bene�t. Requiring all three conditions ensures we only
do client-side re-encoding when it meaningfully decreases
pre-sharing latency.

We decrease overall latency by overlapping uploading and
server-side encoding so they can proceed mostly in parallel.
This overlap is enabled by splitting videos into GOP-aligned
segments. When there is client-side support for splitting,
which is common, we do splitting there because it is a light-
weight computation. When there is not client-side support,
the preprocessor splits the video to enable parallelizing up-
loading and processing for all videos. As a result, the com-
bined upload and processing latency can be as low as the
upload latency plus the last segment processing latency.

4.2 Parallel Processing
The time required to process a video (D–E) is a signi�cant
part of the pre-sharing latency. Figure 4b shows CDFs of stan-
dard de�nition (SD) encoding time for di�erent size classes
of videos under MES. Unsurprisingly, there is a strong cor-
relation between video size and encoding time. For the size
classes smaller than 10MB, most videos can be encoded in
fewer than 10 seconds. Yet, for even the smallest size class,
more than 2% of videos take 10 or more seconds to encode.
For large videos the encoding time is even more signi�cant:
53% of videos in the 100–300MB size class take more than
1 minute, 13% of videos in the 300MB–1GB size class take
more than 5 minutes, and 23% of videos larger than 1GB take
over 10 minutes. This demonstrates that processing time is
a signi�cant part of pre-sharing latency.
Fortunately, segmenting a video along GOP boundaries

makes processing of the video parallelizable. Each segment
can be processed separately from, and in parallel with, each
other segment. The challenges here are in selecting a seg-
ment size, enabling per-segment encoding, and ensuring the
resulting video is still well formed.
Segment size controls a tradeo� between the compres-

sion within each segment and parallelism across segments.
Larger segments result in better compression because there

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

0
10
20
30
40
50
60
70
80
90
100

10-1 100 101 102 103 104

Pe
rc
en
til
e

Upload time (sec)

[min, 1M) [1, 3M) [3, 10M)

(a) Upload times (A–B).

0
10
20
30
40
50
60
70
80
90
100

100 101 102 103 104

Pe
rc
en
til
e

Encode time (sec)

[10, 30M) [30, 100M) [100, 300M)

(b) MES encoding time (D–E).

0
10
20
30
40
50
60
70
80
90
100

10-2 10-1 100 101 102 103

Pe
rc
en
til
e

Load time (sec)

[300M, 1G) [1G, max)

(c) MES load time (C–D).

Figure 4: Latency CDFs for the steps in the logical �ow of MES broken down for ranges from < 1MB to > 1GB.
The upload time (A–B) is the same for MES and SVE. Storage sync time (B–C) is described in §4.3. There is a single
legend across the three �gures.

0
10
20
30
40
50
60
70
80
90
100

10-1 100 101 102 103 104

Pe
rc
en
til
e

Encode delay (sec)

[min, 1M) [1, 3M) [3, 10M)

(a) SVE encoding start delay (A–D).

0
10
20
30
40
50
60
70
80
90
100

100 101 102 103 104

Pe
rc
en
til
e

Encode time (sec)

[10, 30M) [30, 100M) [100, 300M)

(b) SVE encoding time (D–E).

0

20

40

60

80

100

10-2 10-1 100 101 102 103
Pe
rc
en
til
e

Load time (sec)

[300M, 1G) [1G, max)

(c) SVE per-video max fetch time.

Figure 5: Latency CDFs for the steps in the logical �ow of SVE broken down for ranges from < 1MB to > 1GB. The
upload time (A–B) is shown in Figure 4a. The storage time (B–C) is described in §4.3. Figure 5c shows the per-video
max latency across all fetches by workers from the preprocessor caches (similar to C–D in MES). There is a single
legend spread across the three �gures.

is a larger window over which the compression algorithm
can exploit temporal locality, but less parallelism because
there are fewer segments. We use a segment size of 10 sec-
onds for applications that prefer lower latency over the best
compression ratio—e.g., messaging and the subset of encod-
ings that drive News Feed noti�cations. We use a segment
size of 2 minutes for high quality encodings of large video
posts where a single digit percentage improvement on com-
pression is prioritized, as long as the latency does not exceed
a product-speci�ed limit.

Per-segment encoding requires converting processing that
executes over the entire video to execute on smaller video
segments. SVE achieves this by segmenting each video, with
each segment appearing to be a complete video. For videos
with constant frame rates and evenly distributed GOP bound-
aries, there is no need for additional coordination during

encoding. But, for variable frame rate videos, SVE needs to
adjust the encoding parameters for each segment based on
the context of all earlier segments—e.g., their frame count
and duration. Stitching the separately processed segments
back together requires a sequential pass over the video, but
fortunately this is lightweight and can be combined with a
pass that ensures the resulting video is well formed.

The high degree of parallelism in SVE can sometimes lead
to malformed videos when the original video has artifacts.
For instance, some editing tools set the audio starting time to
a negative value as a way to cut audio out, but our encoder
behaves di�erently when processing the audio track alone
than in the more typical case when it processes it together
with the video track. Another example is missing frame in-
formation that causes our segmentation process to fail to
generate the correct segment. Ensuring SVE can handle such

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

cases requires repair at the preprocessing and track joining
stages that �xes misaligned timestamps between video and
audio tracks and/or re�lls missing or incorrect video meta-
data such as frame information. We observe that 3% of video
uploads need to be repaired, mainly at the preprocessing
stage. 68% of these repairs are to �x framerates that are too
low or variable, 30% of them are to �x incomplete or missing
metadata, and the remaining 2% are due to segmentation
issues. Repairing videos at the preprocessing stage prevents
overlapping upload and processing for this fraction of videos.
We are investigating parallelizing the repair process with the
upload to reduce end-to-end latency for such uploads.

4.3 Rethinking the Video Sync
The time required to durably store an uploaded video is some-
times a signi�cant part of the overall latency. This syncing
time (B–C) includes ensuring the video has been synced to
multiple disks. This time is independent of the size of the
video. It has a median of 200ms, a 90th percentile of 650ms,
and a 99th percentile of 900ms. This demonstrates that the
syncing time is signi�cant for some videos.

To reduce the e�ect of the latency that comes from durably
storing the video, we overlap it with processing the video.
This is essentially rethinking the sync [23, 24] for storage
from the MES design. The MES design stored the uploaded
video before processing to ensure it would not be lost once
uploaded. The SVE design stores the uploaded video in par-
allel with processing it and waits for both steps to complete
before notifying the user. This decreases the pre-sharing
latency with the same fault tolerance guarantees.

After syncing the video to storage the MES encoder loads
the video from the storage system (C–D). Figure 4c shows
CDFs of the time required to load videos. The 90th percentile
of loading times for all size classes of videos is over 1.3 sec-
onds. For most videos that are 100MB or larger, the loading
time is over 6 seconds. This demonstrates that the loading
time is signi�cant for some videos. To reduce the latency
required to fetch video segments, SVE caches them in mem-
ory in the preprocessor. This enables workers to fetch the
segments without involving the storage system or disks.

4.4 SVE Latency Improvements
Figure 5 roughly parallels Figure 4 to show the improvement
in the corresponding part of the logical �ow from MES to
SVE. Figure 5a shows the delay from when a video upload
starts until when SVE can start processing it (A–D). This sig-
ni�cantly reduces latency compared to MES where a video
needed to be fully uploaded (A–B), synced to storage (B–
C), and then fetched from storage (C–D) before processing
could begin. Figure 5c shows the per-video maximum latency

0
1
2
3
4
5
6
7
8
9
10

[min,1M)

[1,3M)
[3,10M)

[10,30M)

[30,100M)

[100,300M)

[300M,1G)

[1G,max]

A
vg
sp
ee
du
p

Size buckets

Figure 6: Speedup of SVE over MES in post-upload la-
tency (B–E) broken down by video size.

for workers fetching segments from the preprocessor. Com-
paring this maximum fetch-from-cache time in SVE to the
fetch-from-storage time in MES (C–D) shows SVE eliminates
the tail of high latency for all videos. Figure 5b shows the
encoding latency for SVE (D–E) targeting the same videos
as MES encodes in Figure 4b with the same SD quality and
10 second segment size. Compared to the encoding times
for MES, SVE delivers lower latency processing for all size
classes, and especially for large videos.1
To get a better picture of SVE’s improvement in latency

over MES we tracked the post-upload latency (B–E) dur-
ing our replacement of MES with SVE. Figure 6 shows the
speedup that SVE provides over MES. The speedup ranges
from 2⇥ for 3MB video to 9⇥ for � 1GB videos. This
demonstrates SVE provides much lower latency than MES.

5 DAG EXECUTION SYSTEM
There are an increasing number of applications at Facebook
that process videos. Our primary goal for the abstraction
that SVE presents is thus to make it as simple as possible
to add video processing that harnesses parallelism (§5.1). In
addition, we want an abstraction that enables experimen-
tation with new processing (§5.2), allows programmers to
provide hints to improve performance and reliability (§5.3),
and that makes �ne-grained monitoring automatic (§5.4).
The stream-of-tracks abstraction achieves all of these goals.

5.1 DAGs on Streams-of-Tracks
The DAG on a stream-of-tracks abstraction helps program-
mers balance the competing goals of simplicity and paral-
lelism. Programmers write processing tasks that execute
sequentially over their inputs and then connect tasks into
a DAG. The vertices of the DAG are the sequential pro-
cessing tasks. The edges of the DAG are the data�ow. The
1MES appears to have lower tail latency for the largest size classes because
it times out and aborts processing after 30 minutes. If it were to fully process
those videos it would have much larger tail latencies than SVE.

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

SD
Encoding

Combine
Tracks

Notification

SD
Encoding

HD
Encoding

Analysis

Audio

Metadata

Video
Thumbnail
Generation

TasksTracks

Count
Segments

Video
Classification

Task Group
Original

Count
Segments

Figure 7: Simpli�ed DAG for processing videos.
Grayed tasks run for each segment of the video track.

granularity of both tasks and their inputs controls the com-
plexity/parallelism tradeo� and is speci�ed as a subset of a
stream-of-tracks.

The stream-of-tracks abstraction provides two dimensions
of granularity that re�ect the structure of videos. The �rst
dimension is the tracks within a video, e.g., the video track
and the audio track. Tasks can operate on either one track in-
dividually or all tracks together. Specifying a task to operate
on an individual track enables SVE to extract some paral-
lelism and is simple for programmers. For example, speech
recognition only requires the audio track while thumbnail
extraction and facial recognition only require the video track.
Specifying these tasks to operate on only their required track
allows SVE to parallelize their execution without increasing
the burden on the programmer because the processing tasks
do not need to be rewritten.

The second dimension of granularity is the stream of data
within a track, e.g., GOP-based segments within a video track.
This dimension exposes more parallelism, but increases com-
plexity because it requires tasks that can operate at the gran-
ularity of individual segments. For instance, enabling re-
encoding tasks to operate on segments required us to modify
the �mpeg commands we used and required us to add a
new task that stitches together the segmented video into a
single video. Computer vision based video classi�cation is
an example of a task that it would be di�cult to convert to
operate at the segment level. Our classi�er operates on the
full video and does things like track objects across frames.
Reengineering this classi�er to operate across segments and
then combine the di�erent results would be complex.
Figure 7 shows a simpli�ed version of the DAG for pro-

cessing videos to be shared on Facebook. The initial video is
split into tracks for video, audio, and metadata. The video
and audio tracks are then copied n times, one for each of the
n encoding bitrates (n = 2 for video, 1 for audio) in the �g-
ure. At this point, the re-encoding tasks, which are the most

pipeline = create_pipeline(video)

video_track = pipeline.create_video_track()

if video.should_encode_hd

hd_video = video_track.add(hd_encoding)

.add(count_segments)

sd_video = video_track.add(

{sd_encoding, thumbnail_generation},

).add(count_segments)

audio_track = pipeline.create_audio_track()

sd_audio = audio_track.add(sd_encoding)

meta_track =

pipeline.create_metadata_track()

.add(analysis)

pipeline.sync_point(

{hd_video, sd_video, sd_audio},

combine_tracks,

).add(notify, �latency_sensitive�)

.add(video_classification)

Figure 8: Pseudo-code for generating the simpli�ed
DAG. Dependencies in the DAG are encoded by chain-
ing tasks. Branches of the DAG can be merged with
sync points. Tasks can also be annotated easily, e.g.,
specifying the notify task to be latency sensitive.

computationally intensive, are operating at the maximum
parallelism: segments of individual tracks. Thumbnail gener-
ation, which is also moderately time consuming, is grouped
inside the SD encoding task group to be executed at segment
level, without incurring an additional video track copy. The
output segments of each track are checked after they �nish
encoding in parallel, by the “count segments” tasks as a syn-
chronization point. Then all the tracks are joined for storage,
before the user is noti�ed their video is ready to be shared.
Some processing on the full video typically happens after
the noti�cation, such as video classi�cation.
The DAG in Figure 7 follows the typical pattern of our

DAGs: split into tracks, segment, split into encodings, collect
segments, join segments, and then join tracks. This structure
enables the most parallelism for the most computationally
intensive tasks, which are re-encodings. It also provides a
simple way for programmers to add most tasks. Most tasks
operate over the fully joined tracks, which is even simpler
to reason about than one big script. This provides SVE with
most of the best of both worlds of parallelism and simplic-
ity: parallelism is enabled for the few tasks that dominate
processing time, which gives us most of the bene�ts of par-
allelism without requiring programmers to reason about
parallelism for more than a few tasks.

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

5.2 Dynamic DAG Generation
The DAG for processing an individual video is dynamically
generated at the beginning of that video’s upload by the
preprocessor. The preprocessor runs code associated with
the uploading application to generate the DAG. For example,
Figure 8 shows pseudo-code for generating the DAG shown
in Figure 7.

Dynamic generation of the DAG enables us to tailor a DAG
to each video and provides a �exible way to tune performance
and roll out new features. The DAG is tailored to each video
based on speci�c video characteristics forwarded from the
client or probed by the preprocessor. For instance, the DAG
for a video uploaded at a low bitrate would not include tasks
for re-encoding that video at a higher bitrate. As another
example, the width of parallelism for tasks operating on
segments of video depends on the length of the video and the
speci�ed segment size. For instance, a 120-second video with
a segment size of 10 seconds would be split into 12 segments.
Dynamic generation makes it simple to tune performance
through testing di�erent encoding parameters, e.g., encode
a small fraction of uploads in a di�erent way to see if they
result in smaller segments on average. It also makes it simple
to roll out new features, e.g., enable a new feature only if the
uploading user is an employee.

5.3 DAG Execution and Annotations
Once a DAG is generated, the preprocessor forwards it to
the scheduler, which tracks the dependencies, dispatches
tasks to workers, and monitors progress updates from the
workers. The preprocessor regularly updates the scheduler
with the readiness of each segment and each track for a
given stream/DAG to enable the scheduler to dispatch tasks
as soon as a segment becomes available.

All workers are equipped with HHVM [12], a virtual ma-
chine supporting just-in-time compilation for all SVE tasks,
which in turn are Hack [31] functions deployed continu-
ously from our code repository. During execution, each task
is wrapped within framework logic that communicates with
SVE components to prepare input, propagate output, and
report task results.

Our DAG speci�cation language has three types of annota-
tions that programmers can add to tasks to control execution.
The �rst annotation is a task group, which is a group of tasks
that will be scheduled and run together on a single worker.
By default, each task is an independent task group. Combin-
ing multiple task into a group amortizes scheduling overhead
and eliminates cross-machine data�ow among these tasks.
This provides the same performance as running all these
tasks within a single task. But, it also allows for �ner-grained
monitoring, fault identi�cation, and fault recovery.

Component Strategy
Client device Anticipate intermittent uploads
Front-end Replicate state externally
Preprocessor Replicate state externally
Scheduler Synchronously replicate state externally
Worker Replicate in time
Task Many retries
Storage Replicate on multiple disks

Figure 9: Fault tolerance strategies for SVE.

The second annotation is whether or not a task is latency-
sensitive, i.e., a user is waiting for the task to �nish. Tasks
that are on path to alerting user that their video is ready to
share are typically marked latency-sensitive. Tasks that are
not are typically marked not latency-sensitive. Task groups
with at least one latency-sensitive task are treated as latency-
sensitive. The ancestors of a latency-sensitive task are also
treated as latency-sensitive. Thus, in Figure 8 only the noti-
�cation event needs to be marked latency-sensitive. These
annotations are used by the scheduler for overload control.

5.4 Monitoring and Fault Identi�cation
Separating processing out into tasks also improves moni-
toring and fault identi�cation. On receiving a task group
from scheduler, a worker executes its framework runtime to
understand the incoming task composition, trigger tasks in
order, and automatically add monitoring to every task. Mon-
itoring helps us make sure that DAG jobs are succeeding or,
if not, it helps us quickly identify the task that is failing.
Monitoring is also useful for analysis across many jobs.

For instance, which tasks take the longest time to complete?
Or, which tasks fail the most?We have found that monitoring
tasks, identifying failing tasks, and doing this type of analysis
is far easier with the SVE design than it was with MES.

6 FAULT TOLERANCE
Our scale, our incomplete control over the system, and the
diversity of our inputs conspire to make faults inevitable.
This section describes how SVE tolerates these failures.

6.1 Faults From Scale
SVE is a large scale system and, as with any system at scale,
faults are not only inevitable but common. Figure 9 summa-
rizes the fault tolerance strategies for components in SVE.
We provide details on our strategy for handling task failure
because we found it to be the most surprising.
A worker detects task failure either through an excep-

tion or a non-zero exit value. SVE allows programmers to
con�gure the framework’s response to failure according to

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

exception type. For non-recoverable exceptions such as the
video being deleted due to user cancellation or site integrity
revocation during an upload, SVE terminates the DAG exe-
cution job and marks it as canceled. Cancellation accounts
for less than 0.1% of failed DAG execution jobs. (Most failed
DAG execution jobs are due to corrupted uploads, e.g., those
that do not contain a video stream.) In recoverable or unsure
cases the worker retries the tasks up to 2 more times locally.
If the task continues to fail, the worker will report failure to
the scheduler. The scheduler will then reschedule the task
on another worker, up to 6 more times. Thus, a single task
can be executed as many as 21 times. If the last worker also
fails to complete the task, then the task and its enclosing
task group are marked as failed in the graph. If the task was
necessary, this fails the entire DAG execution job.
We have found that this schedule of retries for failure

helps mask and detect non-deterministic bugs. It masks non-
deterministic bugs because multiple reexecutions at increas-
ing granularities make it less and less likely we will trigger
the bug. At the same time, our logs capture that reexecu-
tion was necessary and we can mine logs to �nd tasks with
non-negligible retry rates due to non-deterministic bugs.

We have found that such a large number of retries does in-
crease end-to-end reliability. Examining all video-processing
tasks from a recent 1-day period shows that the success rate
excluding non-recoverable exceptions on the �rst worker
increases from 99.788% to 99.795% after 2 retries; and on dif-
ferent workers increases to 99.901% after 1 retry and 99.995%
ultimately after 6 retries. Local retries have been particularly
useful for masking failures when writing metadata and inter-
mediate data, as the �rst local retry reduces such failures by
over 50% (though second retry only further reduces failures
by 0.2%). Retries on new workers have been e�ective for
overcoming failures localized to a worker, such as �lesystem
failures, out-of-memory failures, and task speci�c processing
timeouts triggered by CPU contention.

6.2 Faults from Incomplete Control
Wedo not have complete control over the pre-sharing pipeline
because we do not control the client’s device and its connec-
tivity. The loss of a connection to a client for even a prolonged
period of time (i.e., days) does not indicate an irrecoverable
fault. As discussed in Section 4.1, some uploads take over
a week to complete with many client-initiated retries after
network interruptions.

A very slowly uploaded video takes a di�erent path than
a normal video and is protected with a grace period that
is many days long. Segments from the slowly uploading
videos will fall out of the preprocessor cache after a few
hours. To protect against this we store the original segments
from videos that have not been fully uploaded for the grace

period. The scheduler will also purge the DAG execution
job associated with the upload after a few days. To protect
against this, if and when the upload does �nish, SVE detects
this special case and schedules the job for execution again. If,
on the other hand, after the grace period the upload has not
succeeded, then the preprocessed and processed segments
are deleted.

6.3 Faults from Diverse Inputs
There are many di�erent client devices that record and up-
load videos, and many di�erent types of segments. On an
average day, SVE processes videos from thousands of types
of mobile devices, which cover hundreds of combinations of
video and audio codecs. This diversity, combined with our
scale, results in an extreme number of di�erent code paths
being executed. This in turn leads to bugs from corner cases
that were not anticipated in our testing. Fortunately, our
monitoring identi�es these bugs so we can �x them later.

6.4 Fault Tolerance in Action
SVE tolerates small scale failures on a daily basis. To demon-
strate resilience to large scale failures we show two failures
scenarios with regional scope. In SVE, a region is a logical
grouping of one or more data centers within a geographic
region of the world. For the �rst scenario we inject failure for
20% of the preprocessors in a region. For the second scenario,
which happened naturally in production, 5% of the workers
in a region are gradually killed.

The �rst scenario is shown in Figure 10. We kill 20% of the
preprocessors in a region at 17:00 and then bring them back
at 18:40. Figure 10a shows the error rate at front-ends and
workers in this region. There is a spike in the error rate at
front-ends when we kill the preprocessors because the front-
end-to-preprocessor connections fail. The impact of these
failures is that those front-ends must reconnect the uploads
that were going to the failed preprocessors to new preproces-
sors. Further, the clients may need to retransmit segments
for which they will not get end-to-end acknowledgments.

There is a small spike in error rate at the workers when the
preprocessors are killed and when they recover. When the
preprocessors are killed, ongoing segment fetches from them
fail. Workers will then retry through a di�erent preprocessor
that will fetch the original segment from storage and re-
preprocess it, if necessary. When the preprocessors recover,
the shard mapping is updated and errors are thrown when a
worker tries to fetch segments from a now stale preprocessor.
Workers will then update their shard mapping and retry the
fetch from the currently assigned preprocessor.
Figure 10b shows the rate that DAG execution jobs are

started and �nished in this region. The �uctuations in those
rates are typical variations. The close relationship between

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

�
���
���
���
���
���
���
���

����� �����

���� ��� ��������

���������

��
��
��
��
��
��
�

����

���������
������

(a) Error rate.

����
����
����
����
����
����
��

����� �����

���� ��� ��������

���������

�
�
�
�
��
��
��
�

����

��� �������
��� �������

(b) Throughput and success rate.

���

���

���

���

����� �����

���� ��� ��������

���������

�
�
�
��
��
��
�
��
��
��

����

��� ��� ������
��� ��� ������

(c) End-to-end latency.

Figure 10: The e�ects of injecting a failure of 20% of the preprocessors in a region.

�
���
���
���
���
���
���
���
���

����� �����

���� �� �������

���������

��
��
��
��
��
��
�

����

���������

(a) Scheduling error.

����

����

����

����

����

����� �����

���� �� �������

���������

�
�
�
�
��
��
��
�

����

��� �������
��� �������

(b) DAG throughput.

���

���

���

���

����� �����

���� �� �������

���������

�
�
�
��
��
��
�
��
��
��

����

��� ��� ������
��� ��� ������

(c) DAG completion time.

Figure 11: The e�ects of a natural failure of 5% of workers within a 1k+ worker pool in a region.

the start and �nish rate demonstrates that the success rate
and the throughput of SVE are una�ected by the failures.
Figure 10c shows the median (P50) and 95th percentile (P95)
end-to-end latency (A–E) in this region at this time. This
demonstrates that latency in SVE is una�ected by large-scale
preprocessor failures.

The second scenario is shown in Figure 11. In this scenario,
5% of workers in a 1000+ machine pool within a region
gradually fail. The failures begin at 9:40 with a second spike
of failures at 10:30. All workers recovered by 11:45. Figure 11a
shows the error rate at schedulers in this region. Schedulers
throw errors when they timeout waiting for a worker to
report completing an assigned task. The error rate closely
tracks the failure of workers with a lag proportional to the
max timeout for each job. These timeouts are set per task
based on the expected processing time. This explains the
gradual decrease in error rate: They are distributed around
a mean of a few minutes with a decreasing proportion at
longer times.
Figure 11b shows the rate that DAG execution jobs are

started and �nished in this region. The decrease in start rate
is a natural �uctuation not associated with these failures.
The close tracking of �nish rate to start rate demonstrates
the success rate and throughput of SVE are una�ected by
this failure of 5% of workers. Figure 11c shows the median
(P50) and 95th percentile (P95) end-to-end latency (A–E) in

this region at this time. The resilience of SVE to large-scale
worker failures is demonstrated by end-to-end latency being
una�ected.

7 OVERLOAD CONTROL
SVE is considered overloaded when there is higher demand
for processing than the provisioned throughput of the system.
Reacting to overload and taming it allows us to continue
to reliably process and share videos quickly. This section
describes the three sources of overload, explains how we
mitigate it with escalating reactions, and reviews production
examples of overload control.

7.1 Sources of Overload
There are three primary sources of overload for SVE: organic,
load-testing, and bugs. Organic tra�c for sharing videos
follows a diurnal pattern that is characterized by daily and
weekly peaks of activity. Figure 12b shows load from 5/4–
5/11. A daily peak is seen each day and the weekly peak is
seen on 5/8. SVE is provisioned to handle the weekly peak.

Organic overload occurs when social events result in many
people uploading videos at the same time at a rate much
higher than the usual weekly peak. For instance, the ice
bucket challenge resulted in organic overload. Some organic
overload events are predictable, for instance, New Years Eve

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

0
0.5
1
1.5
2
2.5
3

12/30 1/1 1/3 1/5 1/7

R
el
at
iv
e
tr
af
fc

Date

DC-1
DC-2
DC-3

DC-4
DC-5

(a) Organic overload in all DCs.

0
0.5
1
1.5
2
2.5
3

5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11

DC-2 drained

R
el
at
iv
e
tr
af
fc

Date

DC-2
DC-3

(b) Load test overload in DC-3.

0
5
10
15
20
25
30
35
40

7/20 7/22 7/24 7/26 7/28

Preproc overload kicked
in until fx

Ev
ic
tio
n
ag
e
(x
10
0
se
c)

Date

(c) Bug-induced overload.

Figure 12: The e�ects of organic, load-test, bug-induced overload events.

2015 saw a 3⇥ increase in uploads over the daily peak. Other
organic overload events are not, for instance, the coup at-
tempt in Turkey on July 15, 2016, saw a 1.2⇥ increase in up-
loads to the European data center as many people in Turkey
uploaded videos or went live.

Load-testing overload occurs when our load-testing frame-
work Kraken [32] tests the entire Facebook stack including
SVE. The load-testing framework regularly runs a disaster
tolerance test that emulates a datacenter going o�ine, which
results in tra�c redirection to our other datacenters. This
can result in some datacenters (typically the one nearest
the drained datacenter) having demand higher than weekly
peak load. Our load testing framework helps us know that
our overload controls work by testing them regularly. We
monitor throughput and latency under this load so we can
back it o� anytime it negatively a�ects users.

Bug-induced overload occurs when a bug in SVE results in
an overload scenario. One example is when a memory leak
in the preprocessor tier caused the memory utilization to
max out. This in turn resulted in evictions from the segment
cache, which is howwe detected the bug. Another example is
when an �mpeg version change suddenly resulted in workers
becoming much slower in processing videos due to a change
in�mpeg’s default behavior. In this scenario, we sawmultiple
types of overload control kick in until we were able to roll
back the bad push.

7.2 Mitigating Overload
We measure load in each component of SVE and then trigger
reactions to help mitigate it when a component becomes
overloaded. We monitor load in the CPU-bound workers and
memory-bound preprocessors. The front-end and storage
tiers, which are used across many applications, separately
manage and react to overload. While video processing is
computation and memory intense, the DAG complexity is
relatively small. Given that our design keeps the scheduler
separate from application data, it is unlikely to be overloaded
before the workers and preprocessors.

The reactions to overload generally occur in the follow-
ing order. First, SVE delays latency-insensitive tasks. Each
scheduler monitors the CPU load on the workers in its re-
gion. When it schedules a task in its queue it checks the
current load against the “moderate” threshold. If the current
load is over the threshold and the task is marked as latency-
insensitive, then the scheduler moves the task to the end of
the queue again instead of scheduling it.
If delaying latency-insensitive tasks does not alleviate

the overload in a single region, then SVE will redirect a
portion of new uploads to other regions. The precise trigger
for this behavior is more complex than the logical trigger
of worker CPU utilization being high. First, some latency
sensitive tasks will be pushed back by the scheduler to avoid
thrashing workers. This in turn �res a regional overload
alert to the on-call engineer. The on-call engineer then will
typically manually redirect a fraction of uploads by updating
a map of video tra�c to datacenters. In addition, there is an
automatic mechanism that will kick in and redirect tra�c
at a more extreme rate of delaying latency sensitive tasks.
Redirecting uploads to other regions allows the overload to
be handled by less loaded workers in those other regions.
We redirect new uploads, instead of scheduling the tasks in
other regions, to co-locate the workers for those videos with
the preprocessors that will cache their segments. This co-
location reduces latency for those uploads by avoiding cross-
region fetching of segments by workers. The co-location also
keeps the memory utilization on the preprocessor tier in the
overloaded region from maxing out and triggering our �nal
reaction to overload.

Our �nal reaction to overload is to delay processing newly
uploaded videos entirely. If all regions are building queues
of latency-sensitive videos then the memory in the prepro-
cessor tier will �ll up as it caches segments for videos at a
rate greater than they can be processed and evicted from the
cache. Videos are spread across preprocessors and each pre-
processor detects and reacts to this form of overload. When a
preprocessor nears its limit for memory it will start delaying

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

DAG execution jobs. These jobs are not preprocessed or sent
to the scheduler. Instead they are forwarded to storage where
they will be kept until the preprocessor is less loaded.
Delaying newly uploaded videos is not ideal because we

want our users to be able to share their videos quickly. How-
ever, given complete overload of the system it is inevitable
that some uploads will be delayed. Delaying whole uploads
allows the system to operate at its maximum throughput on
the videos it does process. Not delaying whole videos, in con-
trast, would result in thrashing behavior in the preprocessor
cache. This thrashing would decrease the throughput of the
system and increase the latency of all videos.
While the reactions to overload are generally triggered

in top-to-bottom order, this is not always the case. The trig-
ger condition for each reaction is separately monitored and
enforced. For instance, the memory leak bug triggered load
shedding through delaying some newly uploaded videos
without a�ecting scheduling.

7.3 Overload Control in Action
Figure 12 shows overload control in action for three di�er-
ent overload scenarios. Figure 12a shows a large spike in
organic tra�c during New Years Eve 2015. The number of
completed DAG execution jobs is shown relative to daily
peak (1⇥). There are three spikes in the graph that corre-
spond roughly to midnight in Australia and Eastern Asia, Eu-
rope, and the Americas. The �rst reaction, delaying latency-
insensitive tasks, was triggered for datacenters hitting their
max throughput. We anticipated this spike in tra�c and so
the uploads were already con�gured to be spread across more
datacenters than is typical. This prevented the redirection
overload reaction from kicking in by, in essence, anticipating
we would need it and proactively executing it. With the load
spread across all datacenters and latency insensitive tasks
delayed, DAG execution jobs were processed fast enough
that the memory on preprocessors did not hit the last thresh-
old and we did not need to delay any newly uploaded videos.
The e�ect of overload control is seen in the �gure through
the mix of tra�c spikes in di�erent datacenters. This demon-
strates SVE is capable of handling large organic load spikes
that exceed the provisioned capacity of the global system.

Figure 12b shows overload from load testing. Speci�cally,
a disaster readiness test drained all tra�c from datacenter
2. This caused the upload tra�c for that datacenter to be
redirected to other datacenters, with most of the tra�c going
to datacenter 3, which is the nearest. This demonstrates
that SVE is capable of handling load spikes that exceed the
provisioned capacity of a given datacenter. In addition, it
demonstrates that SVE is resilient to a datacenter failure.

Figure 12c shows overload caused by a memory leak on
preprocessors. Once the memory usage exceeded the thresh-
old, preprocessors shed new uploads to storage, and the
cache eviction age on the preprocessors dropped from its
typically 30+ minutes to a few minutes. The job completion
rate (not shown) is una�ected. This demonstrates that SVE
is capable of handling large bug-induced load spikes.

8 PRODUCTION LESSONS
This section shares lesson learned from our experience of
operating SVE in production for over a year. We share these
in the hope they will be helpful to the community in giving
more context about design trade-o�s and scaling challenges
for practical video processing systems at massive scale.

8.1 Mismatch for Livestreaming
Livestreaming is streaming a video from one to many users
as it is being recorded. Our livestream video application’s
requirements are a mismatch for what SVE provides.
The primary mismatch between SVE and livestreaming

stems from the overlap of recording the video with all other
stages of the full video pipeline in livestreaming. This paces
the upload and processing for the video to the rate it is
recorded—i.e., each second only 1 second of video needs to
be uploaded and only 1 second of video needs to be processed.
As a result, upload throughput is not a bottleneck as long as
the client’s upstream bandwidth can keep pace with the live
video. And parallel processing is unnecessary because there
is only a small segment of video to process at a given time.
Another mismatch is that the �exibility a�orded through
dynamic generation of a DAG for each video is unnecessary
for livestreaming. A third mismatch is that SVE recovers
from failures and processes all segments of video, while once
a segment is no longer “live” it is unnecessary to process
it. Each of these mechanisms in SVE that is unnecessary
for livestreaming adds some latency, which is at odds with
livestreaming’s primary requirement.

As a result, livestreaming at Facebook is handled by a sep-
arate system, whose primary design consists of a �at tier of
encoders that allocate a dedicated connection and compu-
tation slot for a given live stream. Re�ecting on this design
mismatch helped us realize the similarity between the live
encoders and SVE’s worker. We are currently exploring con-
solidating these two components to enable shared capacity
management. An important challenge that remains is balanc-
ing the load between the two types of workloads: streamed
dedicated live encoding and batched full video processing.

8.2 Failures from Global Inconsistency
When an upload begins it is routed from the client to a
particular region and then a particular front-end and from

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

there to a particular preprocessor. To improve locality, this
preprocessor will typically handle all uploaded segments of
a video. In all cases, once a video is bound to a preprocessor
it will be processed entirely in the preprocessor’s region. The
binding of a video to a preprocessor/region was originally
stored in an eventually-consistent geo-replicated data store.
For the vast majority of uploads where all segments are
routed to the same region this did not cause a problem.When
the global load balancing system, however, routed some parts
of the upload to a di�erent region the eventually-consistent
storage did cause a problem.

If the binding from video to preprocessor/region had not
yet replicated to this di�erent region, then the front-end
that received a part of the upload did not know where to
send it. Once we determined the root cause we coped with it
by introducing a retry loop that continues to check for the
binding and delays the upload until the binding is replicated.
This short-term solution is not ideal, however, because

it leaves the system vulnerable to spikes in replication lag.
Many parts of our system—e.g., timeouts on processing re-
quests on front-end machines—are tuned to handle requests
in a timely manner. When replication lag spikes, it can delay
an upload an arbitrarily long time, which then breaks the
expectations in our tuning and can still fail the upload. Thus
while our short-term �x handles the problem in the normal
case, we have latent failures that will be exposed by slow
replication. We are exploring a long-term solution that will
avoid this problem by using strongly-consistent storage.

8.3 Failures from Regional Inconsistency
We also used a regional cache-only option of the same repli-
cated store as the part of our intermediate storage (discussed
in §3) that is used to pass metadata between di�erent tasks.
We picked the cache-only option to avoid needing backing
storage, which we thought was a good choice given the meta-
data is only needed while a DAG job is being executed. Both
the consistency of the data store and the cache-only choice
have caused us signi�cant maintenance problems.

The data store provides read-after-write consistencywithin
a cluster, which is a subset of a region. Once our pool of work-
ers grew larger than a cluster, we started seeing exceptions as
intermediate metadata would either not exist or be stale that
would fail the upload. We initially coped with this problem
using retries, but this is fragile for reasons similar to those
discussed above and did not solve the cache-only problem.
The cache-only option can, and occasionally does, lose

data. When this happened it would also cause an upload
to fail. We initially coped with this problem by rerunning
earlier tasks to regenerate the missing metadata. This was
not ideal, however, because rerunning those tasks could take
seconds to minutes that would increase end-to-end latency

and was a waste of worker resources. We have solved both
problems by moving to a persistent database for the inter-
mediate metadata storage. While this increases latency on
the order of tens of milliseconds per operation, this small
increase in latency is worth it to make our video uploads
more robust.

8.4 Continuous Sandboxing
For security we sandbox the execution of tasks within SVE
using Linux namespaces. Initially we would create a new
sandbox for each task. When we moved our messaging use
case onto SVE we saw a considerable spike in latency due to
setting up unique network namespaces for each execution.
The videos for the messaging use case tend to be smaller and
as a result there are typically more of them being concur-
rently processed on each worker. We found that setting up
many sandboxes concurrently caused the spike in latency.
We solved this problem by modifying our system to reuse
pre-created namespace for sandboxing across tasks, which
we call continuous sandboxing. We are now investigating
more potential e�ciency improvements from making more
of our system continuous.

9 RELATEDWORK
This section reviews three categories of related work: video
processing at scale, batch processing systems, and stream
processing systems. SVE occupies a unique point in the in-
tersection of these areas because it is a production system
that specializes data ingestion, parallel processing, its pro-
gramming abstraction, fault tolerance, and overload control
for videos at massive scale.

Video Processing at Scale. ExCamera [11] is a system for
parallel video encoding that achieves very low latency through
massively parallel processing of tiny segments of video that
can still achieve high compression through state-passing.
SVE is a much broader system than ExCamera—e.g., it deals
with data ingestion, many di�erent video codecs, program-
ming many video processing applications. SVE could po-
tentially lower its latency further, especially for the highest
quality and largest videos, by adopting an approach similar
to ExCamera.
A few companies have given high-level descriptions of

their video processing systems. Net�ix has a series of blog
posts [1, 33] that describes their video processing system.
Their workload is an interesting counterpoint to ours: they
have far fewer videos, with much less stringent latency re-
quirements, and very predictable load. YouTube describes
a method to reduce artifacts from stitching together sepa-
rately processed video segments, which includes a high level

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

description of their parallel processing [17]. This paper pro-
vides a far more detailed description of a production video
processing system that this prior work.

Other recent work focus on e�ciently using limited com-
putational resources to improve video streaming or query-
ing. Chess-VPS [30] is a popularity prediction service tar-
geted at SVE and Facebook’s video workload. Chess-VPS
aims to guide the re-encoding of videos that will become
popular to enable higher quality streaming for more users.
VideoStorm [37] targets a di�erent setting where it makes in-
telligent decisions on how to process queries over live videos
in real time.

Batch Processing Systems. There has been a tremendous
boom in batch processing systems and related research in the
last �fteen years. MapReduce [10] is a parallel programming
model, system design, and implementation that helped kick-
start this resurgence. MapReduce’s insights were to build
the hard parts of distributed computation—fault tolerance,
moving data, scheduling—into the framework so applica-
tion programmers do not need to worry about them and to
have the programmer explicitly specify parallelism through
their map and reduce tasks. SVE, and many other distributed
processing systems, exploit these same insights.

Dryad [14, 34] generalized the map-reduce programming
model to DAGs and introduced optimizations such as shared-
memory channels between vertices to guarantee they would
be scheduled on the same worker. SVE also has a DAG pro-
gramming model and SVE’s task group annotation is equiva-
lent to connecting that set of vertices with shared-memory
channels in Dryad. Piccolo [25] is a batch processing sys-
tem that keeps data in memory to provide lower latency for
computations. SVE’s caching of segments in preprocessor
memory is similar and helps provide low latency.
CIEL [21] is a batch processing system that can execute

iterative and recursive computations expressed in the Sky-
writing scripting language. Spark [35] is a batch processing
system that uses resilient distributed datasets to keep data
in memory and share it across computations, which results
in much lower latency for iterative and interactive process-
ing. Naiad [20] is a batch and stream processing system that
introduced the timely data�ow model that allows iterative
computations through cycles in its processing DAG. Compu-
tations in SVE are neither iterative, recursive, nor interactive.

Stream Processing Systems. There is a signi�cant body of
work on stream processing systems that start with early sys-
tems like TelegraphCQ [8], STREAM [18], Aurora [3], and
Borealis [2]. These systems, in contrast to batch processing
systems, consider data ingestion latency implicitly in their
model of computation. Their goal is to compute query re-
sults across streams of input as quickly as possible. It is thus
natural for these systems to consider data ingestion latency.

More recent work [4, 9, 15, 16, 22, 26, 36] extends stream
processing in new directions. Spark Streaming [36] focuses
on faster failure recovery and straggler mitigation by moving
from the continuous query model to modeling stream pro-
cessing as (typically very small) batch jobs. JetStream [26]
looks at wide-area stream processing and exploits aggrega-
tion and degradation to reduce scarce wide-area bandwidth.
StreamScope [16] is a streaming system at Microsoft with
some extra similarities to SVE as compared to typical stream
processing systems. StreamScope is designed to make devel-
opment and debugging of applications easy, as is SVE. Its
evaluation of a click-fraud detection DAG evaluates end-to-
end latency. This is a rare instance in the stream processing
literature where the implicit consideration of data ingestion
is made explicit. We suspect these additional similarities
arose because both StreamScope and SVE are in production.

10 CONCLUSION
SVE is a parallel processing framework that specializes data
ingestion, parallel processing, the programming interface,
fault tolerance, and overload control for videos at massive
scale. It provides better latency, �exibility, and robustness
than the MES it replaced. SVE has been in production since
the fall of 2015. While it has demonstrated its resilience to
faults and overloads, our experience operating it provides
lessons for building even more resilient systems.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers of the SOSP
program committee, our shepherd Geo� Voelker, Zahaib
Akhtar, Daniel Suo, Haoyu Zhang, Avery Ching, and Kaushik
Veeraraghavan whose extensive comments substantially im-
proved this work. We are also grateful to Eran Ambar, Gux
Luxton, Linpeng Tang, Pradeep Sharma, and other colleagues
at Facebook who made contributions to the project at di�er-
ent stages.

REFERENCES
[1] Anne Aaron and David Ronca. 2015. High Quality Video

Encoding at Scale. http://techblog.net�ix.com/2015/12/
high-quality-video-encoding-at-scale.html. (2015).

[2] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, et al. 2005. The Design of the Bo-
realis Stream Processing Engine. In Proceedings of the 2005 Conference
on Innovative Data Systems Research.

[3] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stan Zdonik. 2003. Aurora: a new model and architecture for data
stream management. The VLDB Journal–The International Journal on
Very Large Data Bases 12, 2 (2003), 120–139.

[4] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. 2013. MillWheel: Fault-Tolerant Stream Processing

SOSP ’17, October 28, 2017, Shanghai, China Q. Huang et al.

at Internet Scale. Proceedings of the VLDB Endowment 6, 11 (2013),
1033–1044.

[5] Apache Storm 2017. http://storm.apache.org/. (2017).
[6] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter

Vajgel. 2010. Finding a Needle in Haystack: Facebook’s Photo Storage.
In Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation. USENIX.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Proceedings of the 2013 USENIX Annual
Technical Conference. USENIX.

[8] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J
Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R Madden, Fred Reiss, and Mehul A Shah. 2003. TelegraphCQ:
Continuous Data�ow Processing for an Uncertain World. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management
of Data. ACM.

[9] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein,
Khaled Elmeleegy, and Russell Sears. 2010. MapReduce Online. In
Proceedings of the 7th USENIX Symposium on Networked Systems De-
sign and Implementation. USENIX.

[10] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data
Processing on Large Clusters. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation. USENIX.

[11] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads.
In Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation. USENIX.

[12] HipHop Virtual Machine 2017. http://hhvm.com/. (2017).
[13] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Ku-

mar, and Harry C. Li. 2013. An Analysis of Facebook Photo Caching. In
Proceedings of the 24th ACM Symposium on Operating System Principles.
ACM.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks. In Proceedings of the 2nd ACM SIGOPS European Con-
ference on Computer Systems. ACM.

[15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthikeyan
Ramasamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Pro-
cessing at Scale. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM.

[16] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and
Lidong Zhou. 2016. StreamScope: Continuous Reliable Distributed
Processing of Big Data Streams. In Proceedings of the 13th USENIX Sym-
posium on Networked Systems Design and Implementation. USENIX.

[17] Yao-Chung Lin, Hugh Denman, and Anil Kokaram. 2015. Multipass En-
coding for Reducing Pulsing Artifacts in Cloud Based Video Transcod-
ing. In Proceedings of the 2015 IEEE International Conference on Image
Processing. IEEE.

[18] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shiv-
nath Babu, Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosen-
stein, and Rohit Varma. 2003. Query Processing, Resource Manage-
ment, and Approximation in a Data Stream Management System. In
Proceedings of the 2003 Conference on Innovative Data Systems Research.

[19] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill,
Ernest Lin,Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivaku-
mar, Linpeng Tang, et al. 2014. f4: Facebook’s Warm BLOB Storage

System. In Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation. USENIX.

[20] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martín Abadi. 2013. Naiad: A Timely Data�ow
System. In Proceedings of the 24th ACM Symposium on Operating System
Principles. ACM.

[21] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. 2011. CIEL: a universal
execution engine for distributed data-�ow computing. In Proceedings
of the 8th USENIX Symposium on Networked Systems Design and Imple-
mentation. USENIX.

[22] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.
2010. S4: Distributed Stream Computing Platform. In Proceedings of the
2010 IEEE International Conference on Data Mining Workshops. IEEE.

[23] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and
Jason Flinn. 2006. Rethink the Sync. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation. USENIX.

[24] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen, and
Jason Flinn. 2008. Rethink the Sync. ACM Transactions on Computer
Systems (TOCS) 26, 3 (2008), 6.

[25] Russell Power and Jinyang Li. 2010. Piccolo: Building Fast, Distributed
Programs with Partitioned Tables. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation. USENIX.

[26] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J
Freedman. 2014. Aggregation and Degradation in JetStream: Streaming
Analytics in the Wide Area. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation. USENIX.

[27] Vijay Rao and Edwin Smith. 2016. Facebook’s new front-end server
design delivers on performance without sucking up power. https:
//code.facebook.com/posts/1711485769063510. (2016).

[28] Alyson Shontell. 2015. Facebook is now generating 8 billion video
views per day from just 500 million people âĂŤ here’s how that’s
possible. https://tinyurl.com/yc3jhxuu. (2015).

[29] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.
2015. RIPQ: Advanced Photo Caching on Flash for Facebook. In Pro-
ceedings of the 13th USENIX Conference on File and Storage Technologies.
USENIX.

[30] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt
Lloyd, and Kai Li. 2017. Popularity Prediction of Facebook Videos for
Higher Quality Streaming. In Proceedings of the 2017 USENIX Annual
Technical Conference. USENIX.

[31] The Hack Programming Language 2017. http://hacklang.org/. (2017).
[32] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, So-

nia Margulis, Scott Michelson, Rajesh Nishtalaand Daniel Obenshain,
Dmitri Perelman, and Yee Jiun Song. 2016. Kraken: Leveraging Live
Tra�c Tests to Identify and Resolve Resource Utilization Bottlenecks
in Large Scale Web Services. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation. USENIX.

[33] Rick Wong, Zhan Chen, Anne Aaron, Megha Manohara, and Darrell
Denlinger. 2016. Chelsea: Encoding in the Fast Lane. http://techblog.
net�ix.com/2016/07/chelsea-encoding-in-fast-lane.html. (2016).

[34] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System
for General-Purpose Distributed Data-Parallel Computing Using a
High-Level Language. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation. USENIX.

[35] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation.
USENIX.

SVE: Distributed Video Processing at Facebook Scale SOSP ’17, October 28, 2017, Shanghai, China

[36] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-Tolerant
Streaming Computation at Scale. In Proceedings of the 24th ACM Sym-
posium on Operating System Principles. ACM.

[37] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, andMichael J. Freedman. 2017. Live Video Analyt-
ics at Scale with Approximation and Delay-Tolerance.. In Proceedings

of the 14th USENIX Symposium on Networked Systems Design and Im-
plementation. USENIX.

