
Providing High Availability Using Lazy
Replication

RIVKA LADIN

Digital Equipment Corp.

and

BARBARA LISKOV
LIUBA SHRIRA

and

SANJAY GHEMAWAT

MIT Laboratory for Computer Science

To provide high availability for services such as mail or bulletin boards, data must be replicated.

One way to guarantee consistency of replicated data is to force service operations to occur in the

same order at all sites, but this approach is expenswe. For some apphcations a weaker causal

operation order can preserve consistency while providing better performance. This paper de-

scribes a new way of implementing causal operations. Our technique also supports two other

kinds of operations: operations that are totally ordered with respect to one another and

operations that are totally ordered with respect to all other operations. The method performs

well in terms of response time, operation-processing capacity, amount of stored state, and

number and size of messages: it does better than replication methods based on reliable multicast

techniques.

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]: Dis-
tributed Systems—dzstnbu tecl appl~cat~ons, distributed databases; C.4 [Computer Systems
Organization]: Performance of Systems—re[labdity, availability, and seruiceabdity; D,4,5 [Op-
erating Systems]: Reliability—fa ult-tolerance; D.4. 7 [Operating Systems]: Organization and
Design—dzstrzbuted systems; H,2,2 [Database Management]: Physical Design—recouery and

restart; H.2.4 [Database Management]: Systems—con curren cy, distributed systems

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Client\ server architecture, fault tolerance, group communi-

cation, high availability, operation ordermg, replication, scalability, semantics of application

A preliminary version of this paper appeared in the Proceedings of the Nznth ACM Symposmm

on Principles of D~strl buted Computz ng, August 1990. This research was supported m part by the

National Science Foundation under grant CCR-8822158 and in part by the Advanced Research

Projects Agency of the U.S. Department of Defense, momtored by the OffIce of Naval Research

under contract NOO014-89-J-1988.

Authors’ addresses: R. Ladin, Digital Equipment Corp. One Kendall Square, Cambridge, MA

02139; B. Liskov, L. Shru-a, and S. Ghemawat, MIT Laboratory for Computer Smence, 545

Technology Square, Cambridge. MA 02139.

Permission to copy without fee all or part of this material 1s granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, reqmres a fee and\or

specific permission.
@ 1992 ACM 0734-2071 \92\l100–0360 $01.50

ACM Transactmns on Computer Systems, Vol 10, No. 4, November 1992, Pages 360–391

Prowding High Availability Using Lazy Replication . 361

1. INTRODUCTION

Many computer:based services must be highly available: they should be

accessible with high probability despite site crashes and network failures. To

achieve availability, the server’s state must be replicated. Consistency of

replicated state can be guaranteed by forcing service operations to occur in

the same order at all sites. However, some applications can preserve consis-

tency with a weaker, causal ordering [18], leading to better performance. This

paper describes a new technique that supports causal order. An operation call

is executed at just one replica; updating of other replicas happens by lazy

exchange of “gossip” messages—hence the name “lazy replication.” The

replicated service continues to provide service in spite of node failures and

network partitions.

We have applied the method to a number of applications, including dis-

tributed garbage collection [17], deadlock detection [8], orphan detection [22],

locating movable objects in a distributed system [14], and deletion of unused

versions in a hybrid concurrency control scheme [34]. Another system that

can benefit from causally ordered operations is the familiar electronic mail

system. Normally, the delivery order of mail messages sent by different

clients to different recipients, or even to the same recipient, is unimportant,

as is the delivery order of messages sent by a single client to different

recipients. However suppose client c 1 sends a message to client c 2 and then

a later message to C3 that refers to information in the earlier message. If, as

a result of reading cl’s message, C3 sends an inquiry message to c2, C3 would

expect its message to be delivered to c 2 after c 1’s message. Therefore, read

and send mail operations need to be causally ordered.

Applications that use causally ordered operations may occasionally require

a stronger ordering. Our method allows this. Each operation has an ordering

type; in addition to the causal operations, there are forced and immediate

operations. Forced operations are performed in the same order (relative to

one another) at all replicas. Their ordering relative to causal operations may

differ at different replicas but is consistent with the causal order at all

replicas. They would be useful in the mail system to guarantee that if two

clients are attempting to add the same user-name on behalf of two different

users simultaneously, only one would succeed. Immediate operations are

performed at all replicas in the same order relative to all other operations.

They have the effect of being performed immediately when the operation

returns, and are ordered consistently with external events [11]. They would

be useful to remove an individual from a classified mailing-list “at once,” so

that no messages addressed to that list would be delivered to that user after

the remove operation returns.

It is easy to construct and use highly-available applications with our
method. The user of a replicated application just invokes operations and can

ignore replication and distribution, and also the ordering types of the opera-

ACM TransactIons on Computer Systems, Vol. 10, No, 4, November 1992

362 . R. Ladin et al.

tions. The application programmer supplies a nonreplicated implementation,

ignoring complications due to distribution and replication, and defines the

category of each operation (e.g., for a mail service the designer would indicate

that send_mail and read_mail are causal, add–user and delete–user are

forced, and delete_ at_once is immediate). To determine the operation cate-

gories, the programmer can use techniques developed for determining per-

missible concurrency [13, 31, 32, 35].

Our method does not delay update operations (such as send-mail), and

typically provides the response to a query (such as read_ mail) in one message

round trip. It will perform well in terms of response time, amount of stored

state, number of messages, and availability in the presence of node and

communication failures provided most update operations are causal. Forced

operations require more messages than causal operations; immediate opera-

tions require even more messages and can temporarily slow responses to

queries. However, these operations will have little impact on overall system

performance provided they are used infrequently. This is the case in the mail

system where sending and reading mail is much more frequent than adding

or removing a user.

Our system can be instantiated with only forced operations. In this case it

provides the same order for all updates at all replicas, and will perform

similarly to other replication techniques that guarantee this property (e.g.,

voting [10] or primary copy [28]). Our method generalizes these other tech-

niques because it allows queries to be performed on stale data while ensuring

that the information observed respects causality.

The idea of allowing an application to make use of operations with differing

ordering requirements appears in the work on ISIS [3] and Psync [27], and in

fact we support the same three orders as ISIS. These systems provide a

reliable multicast mechanism that allows processes within a process group

consisting of both clients and servers to communicate; a possible application

of the mechanism is a replicated service. Our technique is a replication

method. It is less general than a reliable multicast mechanism, but is better

suited to providing replicated services that are distinct from clients and as a

result provides better performance: it requires many fewer messages than the

process-group approach; the messages are smaller, and it can tolerate net-

work partitions.

Our technique is based on the gossip approach first introduced by Fischer

and Michael [9], and later enhanced by Wuu and Bernstein [36] and our own

earlier work [15, 21]. We have extended the earlier work in two important
ways: by supporting causal ordering for updates as well as queries and by

incorporating forced and immediate operations to make a more geflerally

applicable method. The implementation of causal operations is novel and so is

the method for combining the three types of operations.

The rest of the paper is organized as follows. Section 2 describes the

implementation technique. The following sections discuss system perfor-

mance, scalability, and related work. We conclude with a discussion of what

we have accomplished.

ACM TransactIons on Computer Systems, Vol 10, No. 4, November 1992

Providing High Availability Using Lazy Replication . 363

2. THE REPLICATED SERVICE

Lazy replication is intended for an environment in which individual comput-

ers, or nodes, are connected by a communication network. Both the nodes and

the network may fail, but we assume the failures are not Byzantine. The

nodes are fail-stop processors. The network can partition, and messages can

be lost, delayed, duplicated, and delivered out of order. The configuration of

the system can change; nodes can leave and join the network at any time. We

assume nodes have loosely synchronized clocks. There are practical protocols,

such as NTP [26], that with low cost synchronize clocks in geographically

distributed networks.

A replicated application is implemented by semice consisting of replicas

running at different nodes in a network. To hide replication from clients, the

system also provides front end code that runs at client nodes. To call an

operation, a client makes a local call to the front end, which sends a call

message to one of the replicas. The replica executes the requested operation

and sends a reply message back to the front end. Replicas communicate new

information (e.g., about updates) among themselves by lazily exchanging

gossip messages.

There are two kinds of operations: update operations modify but do not

observe the application state, while query operations observe the state but do

not modify it. (Operations that both update and observe the state can be

treated as an update followed by a query.) When requested to perform an

update, the front end returns to the client immediately and communicates

with the service in the background. To perform a query, the front end waits

for the response from a replica, and then returns the result to the client.

We assume there is a fixed number of replicas residing at fixed locations

and that front ends and replicas know how to find replicas; a technique for

reconfiguring services (i.e., adding or removing replicas) is described in [14].

We also assume that replicas eventually recover from crashes; Section 3.2

discusses how this happens.

In this section we describe how the front end and service replicas together

implement the three types of operations. Section 2.1 describes the implemen-

tation of causal operations; Section 2.2 extends the implementation to sup-

port the other two types of operations.

2.1 Causal Operations

In our method, the front end informs the replicas about the causal ordering of

operations. Every reply message for an update operation contains a unique

identifier, uid, that names that invocation. In addition, every (query and

update) operation o takes a set of uids as an argument; such a set is called a

label.l The label identifies the updates whose execution must precede the

execution of o. In the mail service, for example, the front end can indicate

that one send–mail must precede another by including the uid of the first

1A similar concept occurs in [3], but no practical way to implement it was described

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

364 . R, Lactin et al

send–mail in the label passed to the second. Finally, a query operation

returns a value and also a label that identifies the updates reflected in the

value; this label is a superset of the argument label, ensuring that every

update that must have preceded the query is reflected in the result. Service

replicas thus perform the following operations:

update (prev: label, op: op) returns (uid: uid)
query (prev: label, op: op) returns (newl: label, value: value)

where op describes the actual operation to be performed (i.e., gives its name

and arguments).

A specification of the service for causal operations is given in Figure 1. We

view an execution of a service as a sequence of events, one event for each

update and query operation performed by a front end on behalf of a client. At

some point between when an operation is called and when it returns, an

event for it is appended to the sequence. An event records the arguments and

results of its operation. In a query event q, q. preu is the input label, q. op

defines the query operation, q.ualz~e is the result value, and q. newl is the

result label; for update u, u. preu is the input label, u. op defines the update

operation, and u. uid is the uid assigned by the service. If e is an event in

execution sequence E, P(e) denotes the set of events preceding e in E. Also,

for a set S of events, S.label denotes the set of uids of update events in S.

The specification describes the behavior of queries, since this is all the

clients (via the front ends) can observe. The first clause states that all

updates identified by a query result label correspond to calls made by front

ends. The second clause states that the result label identifies all required

updates plus possibly some additional ones. The third clause states that the

returned label is dependency complete: if some update operation u is identi-

fied by the label, then so is every update that u depends on. An update u

depends on an update u if it is constrained to be after u:

dep(u, v) = (v.uid e u.prev)

The dependency relation dep is acyclic because front ends do not create uids.

The fourth clause defines the relationship between the value and the label

returned by a query: the result returned must be computed by applying the

query q.op to a state Val arrived at by starting with the initial state and

performing the updates identified by the label in an order consistent with the

dependency relation. If dep(u, v), v.op is performed before u.op; operations not

constrained by dep are performed in arbitrary order. Note that this clause

guarantees that if the returned label is used later as input to another query,
the result of that query will reflect the effects of all updates observed in the

earlier query.

The front end maintains a label for the service. It guarantees causality as

follows:

(1) Client calls to the seruice. The front end sends its label in every call

message and merges the uid or label in each reply message with its label

by performing a union of the two sets.

(2) Client-to-client communication. The front end intercepts all messages

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992

Providing High Availability Using Lazy Replication . 365

Let q be a query. Then

1. q.newl G P(q).label.

2. q.prev G q.newl.

3. u.uid e q.newl = for all updates v s.t. dep(u, v), v.uld e q.newl.

4. q.value = q.op (Val (q.newl)).

Fig. 1. Specification of the causal operations service.

exchanged between its client and other clients. It adds its label to each

message its client sends and merges the label in each message received

by its client with its label.

The resulting order may be stronger than needed. For example, if client Cl

communicates with C2 without exposing any information about its earlier

calls on service operations, it is not necessary to order C2’S later calls after

C 1’s earlier ones. Our method allows a sophisticated client to use uids and

labels directly to implement the causality that really occurs; we assume in

the rest of the paper, however, that all client calls go through the front end.

During normal operation a front end will always contact the same “pre-

ferred” replica. However, if the response is slow, it might send the request to

a different replica or send it to several replicas in parallel. In addition,

messages may be duplicated by the network. In spite of these duplicates,

update operations must be performed at most once at each replica. To allow

the service to recognize multiple requests for the same update, the front end

associates a unique call identifier, or cid, with each update. That cid is

included in every message sent by the front end on behalf of that update.

2.1.1 Implementation Overview. For the method to be efficient, we need a

compact representation for labels and a fast way to determine when an

operation is ready to be executed. In addition, replicas must be able to

generate uids independently. All these properties are provided by a single

mechanism, the multipart timestamp. A multipart timestamp t is a vector

t=(tl,tn)

where n is the number of replicas in the service. Each part is a nonnegative

integer counter, and the initial (zero) timestamp contains zero in each part.

Timestamps are partially ordered in the obvious way:

Two timestamps t and s are merged by taking their component-wise maxi-

mum. (Multipart timestamps were used in Locus [30] and also in [9], [12],

[151, [211, and [36].)
Both uids and labels are represented by multipart timestamps. Every

update operation is assigned a unique multipart timestamp as its uid. A label

is created by merging timestamps; a label time stamp t identifies the updates

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

366 ● R. Ladin et al,

whose timestamps are less than or equal to t.The dependency relation is

implemented as follows: if an update u is identified by u. preu then u depends

on U. Furthermore, if t and t‘ are two timestamps that represent labels,

t s t‘ implies that t identifies a subset of the updates identified by t‘.

A replica receives call messages from front ends and also gossip messages

from other replicas. When a replica receives a call message for an update it

has not seen before, it processes that update by assigning it a timestamp and

appending information about it to its log. The log also contains information

about updates that were processed at other replicas and propagated to this

replica in gossip messages. A replica maintains a local timestamp, rep–ts,

that identifies the set of records in its log and thus expresses the extent of its

knowledge about updates. It increments its part of the timestamp each time

it processes an update call message; therefore, the value of the replica’s part

of rep–ts corresponds to the number of updates it has processed. It incre-

ments other parts of rep_ts when it receives gossip from other replicas. The

value of any other part i of rep–ts counts the number of updates processed at

replica i that have propagated to this replica via gossip.

A replica executes updates in dependency order and maintains its current

state in wal. When an update is executed, its uid timestamp is merged into

the timestamp ual–ts, which is used to determine whether an update or

query is ready to execute; an operation op is ready if its label op.preu s

val–ts. The replica keeps track of the cids of updates that have been executed

in the set inval, and uses the information to avoid duplicate executions of

updates. Since the same update may be assigned more than one uid time-

stamp (because the front end sent the update to several replicas), the time-

stamps of duplicates for an update are merged into val_ts. In this way we can

honor the dependency relation no matter which of the duplicates a front end

knows about (and therefore includes its uid in future labels).

Figure 2 summarizes the state at a replica. (In the figure, { } denotes a set,

[] denotes a sequence, oneof means a tagged union with component tags and

types as indicated, and () denotes a record, with components and types as

indicated.) In addition to information about updates, the log also contains

information about acks; acks are discussed below.

The description above ignored two important implementation issues, con-

trolling the size of the log and the size of inval. An update record can be

discarded from the log as soon as it is known everywhere and has been

reflected in val. In fact, if an update is known to be known everywhere, it will

be ready to be executed and therefore will be reflected in val, for the following

reason. A replica knows some update record u is known everywhere if it has
received gossip messages containing u from all other replicas. Each gossip

message includes enough of the sender’s log to guarantee that when the

receiver receives record u from replica i, it has also received (either in this

gossip message or an earlier one) all records processed at i before u.

Therefore, if a replica has heard about u from all other replicas, it will know

about all updates that u depends on, since these must have been performed

before u (because of the constraint on front ends not to create uids). There-

fore, u will be ready to execute.

ACM Transactions on Computer Systems, Vol 10, No. 4. November 1992

Providing High Availability Using Lazy Replication . 367

node: mt % replica’s id.
log: {log-record} % replica’s log
rep_ts: mpts 70 replica’s multlpart Limestamp
val: value YO replica’s wew of serwce state
val_ts: mpts 7. timestamp associated with val
inval: (cid] % updates that panicipated in computmg val
ts_@bie: [mpts] % ts_rable(p)= latest multlpart timestamp recclved from p

where

log-record = < msg: op-type, mode int, ts: mpts >
Op-type = oneof [update < prev: mpts, op: op, cid: cid, time: time >, ack: < cid: cid, time time >]
mpts = [mt]

Fig. 2. The state of a replica.

The table ts–table is used to determine whether a log record is known

everywhere. Every gossip message contains the timestamp of its sender;

ts_table(k) contains the largest time stamp this replica has received from

replica ii. Note that the current timestamp of replica k must be at least as

large as the one stored for it in ts_table. If ts–table(k)j = t at replica i, then

replica i knows that replica k has learned of the first t update records

created by replica j. Every record r contains the identity of the replica that

created it in field r-. node. Replica i can remove update record r from its log

when it knows that r has been received by every replica, i.e., when

isknown(r) = V replicas j, ts_table(j)r ~Od, > r.tsr ~Od,

holds at i.

The second implementation issue is controlling the size of inual. It is safe

to discard a cid c from inual only if the replica will never attempt to apply c’s

update to ual in the future. Such a guarantee requires an upper bound on

when messages containing information about c’s update can arrive at the

replica. A front end will keep sending messages for an update until it receives

a reply. Since reply messages can be lost, replicas have no way of knowing

when the front end will stop sending these messages unless it informs them.

The front end does this by sending an acknowledgment message ack contain-

ing the cid of the update to one or more of the replicas. In most applications,

separate ack messages will not be needed; instead, acks can be piggybacked

on future calls. Acks are added to the log when they arrive at a replica and

are propagated to other replicas in gossip the same way updates are propa-

gated. (The case of volatile clients that crash before their acknowledgments

reach the replicas can be handled by adding client crash counts to update

messages and propagating crash information to replicas; a higher crash count

would serve as an ack for all updates from that client with lower crash

counts.)

Even though a replica has received an ack, it might still receive a message

for the ack’s update since the network can deliver messages out of order. We

deal with late messages by having each ack and update message contain the
time at which it was created. Each time the front end sends an update or ack

message, it includes in the message the current time of its node’s clock; if

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

368 . R. Ladin et al.

multiple messages are sent for an update, they will contain different times.

The time in an ack must be greater than or equal to the time in any message

for the ack’s update. An update message m is discarded because it is “late” if

rn. time + 8< the time of the replica’s clock

where 8 is greater than the anticipated network delay. Each ack a is kept at

least until

a. time + 8 < the time of the replica’s clock

After this time any messages for the ack’s update will be discarded because

they are late.

A replica can discard a cid c from inval as soon as an ack for c’s update is

in the log and all records for c’s update have been discarded from the log. The

former condition guarantees a duplicate call message for c’s update will not

be accepted; the latter guarantees a duplicate will not be accepted from

gossip (see Section 2.1.4 for a proof). A replica can discard ack a from the log

once a is known everywhere; the cid of a’s update has been discarded from

inual, and all call messages for a’s update are guaranteed to be late at the

replica. Note that we rely here on clocks being monotonic. Typically clocks are

monotonic both while nodes are up and across crashes. If they need to be

adjusted this is done by slowing them down or speeding them up. Also, clocks

are usually stable; if not the clock value can be saved to stable storage [20]

periodically and recovered after a crash.z

For the system to run efficiently, clocks of server and client nodes should be

loosely synchronized with a skew bounded by some ● . Synchronized clocks

are not needed for correctness, but without them certain suboptimal situa-

tions can arise. For example, if a client node’s clock is slow, its messages may

be discarded even though it just sent them. The delay 8 should be chosen to

accommodate both the anticipated network delay and the clock skew. The

value for this parameter can be as large as needed because the penalty of

choosing a large delay only affects how long servers remember acks. Note

that we do not require reliable delivery within 8; instead the front ends mask

delivery failures by resending messages.

It may seem that our reliance on synchronized clocks affects the availabil-

ity of the system. A problem could arise only if a node’s clock fails, the node is

unable to carry out the clock synchronization protocol because of communica-

tion problems, and yet the node is able to communicate with other nodes in

the system. Such a situation is extremely unlikely.

2.1.2 Processing at Each Replica. This section describes the processing of
each kind of message. Initially, (1) rep_ts and val–ts are zero timestamps, (2)

ts-table contains all zero timestamps, (3) val has the initial value, and (4)

the log and inval are empty. The log and invcd are implemented as hash

tables hashed on the cid.

2 Writes to stable storage can be infrequent; after a crash, a node must wait untd its clock IS
later than the time on stable storage +@, where 13is a bound on how frequently writes to stable
storage happen, before communicating with replicas.

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992

Providing High Availability Using Lazy Replication . 369

Processing an update message. Replica i discards an update message u

from a front end if it is late (i.e., if u. time + 8< the time of the replica’s

clock) or if it is a duplicate (i.e., its cid c is in inual or a record r such that

r.cid = u.cid is in the log). If the message is not discarded, the replica

performs the following actions:

(1) Advances its local timestamp rep-ts by incrementing its ith part by one
while leaving all the other parts unchanged.

(2) Computes the timestamp for the update, ts, by replacing the ith part of
the input argument u.preu with the ith part of rep–ts.

(3) Constructs the update record r associated with this execution of the
update,

r .= makeUpdateRecord(u, i, ts)

and adds it to the local log.

(4) Executes u.op if all the updates that u depends on have already been
incorporated into val. If u.prev < val–ts, then:

ual := apply(wal, u. op) VO performs the op

ual_ts := merge(val_ts, r.ts)

inval := inval u {r.cid}

(5) Returns the update’s timestamp r. ts in a reply message.

The rep_ts and the timestamp r.ts assigned to u are not necessarily

comparable. For example, u may depend on update u‘, which happened at

another replica j, and which this replica does not know about yet. In this case

r. tsj > rep_tsj. In addition, this replica may know about some other update

u“ that u does not depend cm, e.g., u“ happened at replica k, and therefore,

r. ts~< r6?&tsk.

Processing a query message. When replica i receives a query message q, it

compares the query’s input label, q.prev, with val–ts, which identifies all

updates reflected in ual. If q.prev < val_ts, it applies q. op to val and returns

the result and val_ts. Otherwise, it waits since it needs more information. It

can either wait for gossip messages from the other replicas or it might send

a request to another replica to elicit the information. ValLts and q. prev

can be compared part by part to determine which replicas have the missing

information.

Processing an ack message. A replica processes an ack as follows:

(1) Advances its local timestamp rep-ts by incrementing the ith part of the
timestamp by one while leavi~g all the other parts unchanged.

(2) Constructs the adi record r associated with this execution of the ack:

r ,= makei%ckl%ecord(a, i, rep_ts)

and adds it to the local log.

(3) Sends a reply message to the front end.

Note that ack records do not enter inval.

ACM Transactions on Computer Systems, Vol. 10, No, 4, November 1992.

370 * R Ladin et al,

Processing a gossip message. A gossip message contains m. ts, the sender’s

timestamp, and m. new, the sender’s log. The processing of the message

consists of three activities: merging the log in the message with the local log,

computing the local view of the service state based on the new information,

and discarding records from the log and from inual.

When replica i receives a gossip message m from replica j, it discards m if

m. ts < j’s timestamp in ts_table. Otherwise, it continues as follows:

(1) Adds the new information in the message to the replica’s log:

log := log U {r ~ m.neu I -(r.ts < rep-ts)}

(2) Merges the replica’s timestamp with the timestamp in the message so
that rep–ts reflects the information known at the replica:

rep_ts = merge(rep–ts, m. ts)

(3) Inserts all the update records that are ready to be added to the value into
the set comp:

comp = {r E logotype = update A r.preu < rep-ts}

(4) Computes the new value of the object:

while comp is not empty do

select r from comp s.t. 3 no r’ E comp s.t. r’. ts < r.prev

comp Z= comp – {r}

if r.cid @ inual then

ual = apply(val, r.op)

inual := inval u {r. cid}

val_ts != merge(val_ts, r.ts)

(5) Updates ts-table:

ts–table(J) = m.ts

(6) Discards update records from the log if they have been received by all

replicas:

log = log – {r G log I type(r) = update A isknown(r)}

(7) Discards records from inval if an ack for the update is in the log and
there is no update record for that update in the log:

inval = inval – {c ~ inval 13 a E log s.t. type(a) = ack A acid = c A

3 no r’ G log s.t. type(r’) = update A r’.cid = c}

(8) Discards ack records from the log if they are known everywhere and

sufficient time has passed and there is no update for that ack in inual:

log = log – {a G log Itype(a) = ack A isknown(a) A a. tzme + 8< replica

local time

A 3 no c E inual s.t. c = acid}

The new value can be computed faster by first sorting comp such that record

r is earlier than record s if r. ts < s.prev.

Since the decision to delete records from the log uses information from all

other replicas, there may be a problem during a network partition. For

ACM Transactions on Computer Systems, Vol 10, No 4, November 1992.

Providing High Availability Using Lazy Replication . 371

example, suppose a partition divided the network into sides A and B and r is

known at all replicas in A and also at all replicas in B. If no replica in A

knows that r is known in B, there is nothing we can do. However, as

suggested in [36], progress can be made if replicas include their copy of

ts –table in gossip messages and receivers merge this information with their

own ts_tables. In this way, each replica would get a more recent view of what

other nodes know.

2.1.3 Optimization. The size of gossip messages can be reduced by not

sending records the receiver already knows. Furthermore, it is not necessary

to send information that another replica is likely to send. For example a

sender might include in gossip only the records it created in response to

requests it received from the client and that the recipient does not know; a

replica could request other records if necessary, e.g., if the originating replica

is not communicating with it right now.

The number of gossip messages can be reduced substantially by arranging

the replicas in a communication structure such as a spanning tree. Each

replica would send gossip only to its neighbors. If there is a failure (crash or

partition), the structure would be reconstituted by carrying out a view change

algorithm [6, 7]. This approach causes information to propagate more slowly

than having replicas gossip with all other replicas.

Communication between the front end and the replicas can be made more

efficient by taking advantage of the fact that a front end typically communi-

cates with the same replica. Communication could be done over a streaming

connection such as TCP or Mercury [23]. In this case, the front end need not

wait to receive the uid timestamp from an update it requested before sending

the next operation (query or update) to the replica. Instead, the replica

maintains a copy of the front end’s time stamp, into which it merges uids of

updates as they complete. Furthermore, the front end’s timestamp needs to

be included in a message to the replica only if it increases because the front

end received a timestamp in a message from another client. (A similar

optimization is used in ISIS [4].) Streaming does not cause responses to

queries to be delayed. Client-to-client communication may be delayed, how-

ever; the front end cannot send on a message from its client to another client

until it knows the timestamp for the most recent update requested by its

client.

A further optimization is possible when using streaming: operations from

the front end can be batched if they are small. (Mercury streams [23] do this

automatically.) A message would be sent from the front end when the client

does a query, when the buffer is full, or when its client is sending a message

to another client. This technique will cause an additional delay only in the

latter case; the front end may need to flush the stream and wait for a reply

before sending on the client message. The reply from the replica must contain

only one timestamp — the one that would have been included in the reply to

the last request in the batch. Batching will be most effective in applications

containing a large number of updates relative to queries or when clients are
able to continue doing other work while a query is being processed (so that

queries can be batched, too).
ACM Transactions on Computer Systems, Vol. 10, No. 4. November 1992.

372 . R. Ladln et al

The saving in timestamps that is possible with streaming can also apply to

information in the log and in gossip. For example, a sequence of updates from

a single front end can be associated with the timestamp of the first update in

the sequence; the receiving replica can compute the timestamps for the other

updates by incrementing the sender’s part of the timestamp for each of them.

2.1.4 Analysis. In this section we argue informally that the implementa-

tion is correct and makes progress, and that entries are removed from the log

and inual eventually. The discussion considers the protocol described in

Section 2.1.2 and ignores the optimizations described in Section 2.1.3.

The specification in Figure 1 defines a centralized service in which each

update is performed only once and is assigned a single uid. However, the

implementation is distributed, and a single update may be processed several

times at the different replicas and may thus be assigned several different

uids. We will show that in spite of the duplicates, the implementation

satisfies the specification, i.e., as far as client can tell from the information

received from queries, each update is executed only once.

The implementation uses timestamps to represent both uids and labels. As

far as uids are concerned, we require only uniqueness, and this is provided by

the way the code assigns timestamps to updates. Several timestamps may

correspond to the same update; these correspond to duplicate requests that

arrived at different replicas and were assigned different time stamps. For

labels, timestamps provide a compact way of representing a set of uids: a

label timestamp t identifies an update u if there exists a record r for u such

that r.ts < t.

Correctness. The first clause of the specification requires that only up-

dates requested by front ends are executed by the service. It follows from the

code of the protocol, which only creates update timestamps in response to

update messages from front ends. The second clause requires that the

updates identified by the query input label q.preu also be identified by the

query output label q. newl. It follows from the timestamp implementation of

labels and from the query code, which returns only when q. prev < val–ts.

The third clause requires that the label q. newl be dependency complete. It

follows from the timestamp implementation of uids and labels and from the

update-processing code, which guarantees that if u depends on v then there

exists a record r for v such that r. ts < u.preu and therefore the set of

updates identified by a label timestamp is trivially dependency complete.

The fourth clause requires that q.ualue be the result of applying the query
q. op to the state derived by evaluating the set of updates identified by q. newl
in an order consistent with the dependency relation. We begin by establishing

several lemmas, each concerning the state variables of a single replica. We

assume in the proofs that each operation is performed atomically at a single

replica and that gossip is processed in a single atomic step.

LEMMA L After an ack record a enters the log at a replica, no duplicate of

a’s update will be accepted from. the front end or network at that replica.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992

Providing High Availablllty Using Lazy Replication . 373

PROOF. By inspection of the code we know that after an ack record a

enters a replica’s log, the following holds: a is in the log, or a left the log at a

point when a. time + 8< the time of the replica’s clock. If a message for a’s

update arrives later, it will be discarded by the update-processing code if a is

in the log, and otherwise it will be rejected because it is late, assuming the

front end guarantees that an update message contains an earlier time than

any ack message for its update; and the replica’s clock is monotonic. ❑

LEMMA 2. After an update record r enters the log at a replica, no duplicate

of the update will be accepted from the front end or network at that replica.

PROOF. By inspection of the code we know that after a record r enters the

log at a replica, the following holds: r is in the log, or r’s cid has entered

inual; or r’s cid has left inual, but at that point an ack for r was in the log.

The update-processing code and Lemma 1 ensure that these conditions are

sufficient to eliminate all future duplicates of r, whether these duplicates are

created by the network or by the front end. o

~EMMA 3. Replica i has received the first n records processed at replica k if

and only if the kth part of replica i’s timestamp is greater than or equal to n,

i.e., rep_tsk > n.

PROOF. First note that part i of replica i’s timestamp rep–ts counts the

number of front end update messages processed at i that entered i’s log. A

record in i‘s log is transmitted by gossip to other replicas until it is deleted

from the log. A record r is deleted from the log only when isknown(r) holds

at i, i.e., when i knows r has reached all other replicas. Therefore, each

replica knows a prefix of every other replica’s log. Since the gossip timestamp

is merged into the timestamp of the receiving replica, it is easy to see that

part j, i #j, of replica i’s timestamp counts the number of records processed

at j that have been brought by gossip to replica i. ❑

LEMMA 4. If isknown(r) holds at replica i, all duplicate records for r’s

update have arrived at i.

PROOF. Recall that a replica i knows that all replicas have received an

update record r when it has received a gossip message containing r from

each replica. But at this point it has also received from each replica j all the

records processed by j before receiving r. Therefore, at this point it has

received all duplicates of r that were processed at other replicas before they

received r. By Lemma 2, no duplicate will be accepted from the front end or

network at a replica after receiving r. Therefore, i must have received all

duplicates of r at this point. ❑

LEMMA 5. If isknown(r) holds at replica i, all duplicate records d for r’s

update have d. ts < rep–ts.

PROOF. By Lemma 4 we know that all duplicates of r’s update u have

arrived at this replica. Furthermore, records for all updates that u depends

on are also at this replica because front ends do not manufacture uids: u .prev

ACM TransactIons on Computer Systems, Vol. 10, No 4. November 1992

374 . R. Ladin et al

can only contain uids generated by the service, so any update whose time-

stamp was merged into u .prew must have been processed at a replica before

that replica knew about update record r, and therefore when all replicas

have sent gossip containing r to replica i, they have also sent records for all

updates that u depends on. Now, let r‘ be either r, a duplicate of r, or a

record for an update that u depends on, and let k be the replica where r‘ was

created. By Lemma 3, we know that rep_ts~ > r‘. tsh. Since this is true for all

such r‘, rep_ts > d. ts for all duplicates d. ❑

LEMMA 6. When a record r for an update u is deleted from the log, u is

refZected in the value.

PROOF. When r is deleted from the log at replica i, ishown(r) holds at i

and therefore by Lemma 5, r. ts s rep–ts. This implies that r. preu < rep_ts.

Therefore r enters the set conzp; and either u is executed, or r’s cid is in

in val; and therefore u was executed earlier. ❑

LEMMA 7. At any replica val–ts < rep–ts.

PROOF. It is easy to see that the claim holds initially. It is preserved by

the update-processing code because if an update is executed, only field i of

val_ts changes and val–tsL = rep_tsL. It is preserved by gossip processing

because for each record r in comp, r.prev < rep–ts. Since r. ts differs from

r.prev only in field j, where r was processed at j, and since r is known

locally, r. tsj s rep_tsJ by Lemma 3. D

LEMMA 8. For any update u, if there exists a record r for u s. t. r. ts < rep–ts,

u is reflected in the value.

PROOF. The proof is inductive. The basis step is trivial since there is no

record with a zero timestamp. Assume the claim holds up to some step in the

computation and consider the next time rep–ts is modified. Let r be an

update record for u s. t. r. ts < rep–ts after that step. We need to show that u

is reflected in the value. First, consider a gossip-processing step. Since

r. ts s rep–ts, we know u.prev s rep–ts. If r is in the log, it enters comp, and

either u is executed now or u’s cid is in the set inval; and therefore u is

already reflected in the value. If r is not in the log, then r. ts < rep–ts implies

(by Lemma 3) that r was deleted from the log and by Lemma 6, u is already
reflected in the value. Therefore we have shown that u is reflected in the

value after a gossip-processing step. Now consider an update-processing step.
If . . t. < rep_fs before this step, the claim holds by the induction assumption.

Otherwise, we have 1 (r. ts < rep–ts) before this step and r. ts < rep–ts after

the message was processed. In the processing of an update, replica i’s

timestamp rep–ts increases by one in part i with the other parts remaining

unchanged. Therefore, the record being created in this step must be r and

furthermore u .prev < rep-ts before this step occurred. Therefore, any u that

u depends on has already been reflected in the value by the induction

assumption, and u.prev s val–ts. Therefore z~is reflected in the value in this

step. ❑

ACM TransactIons on Computer Systems, Vol. 10, No. 4, November 1992

Prowdlng High Availabilky Using Lazy Replication . 37!5

We are now ready to prove the fourth clause of the specification. Recall that

a query returns ual and ual–ts. Lemmas 7 and 8 guarantee that for any

update record r such that r.ts < val_ts, r’s update is reflected in the value

ual. Therefore, all updates identified by a query output label are reflected in

the value. We will now show that the updates are executed only once and in

the right order.

To prove that updates are executed only once at any particular replica, we

show that after an update u is reflected in the value, it will not be executed

again. The cid c that entered the set inval when u was executed must be

deleted from inval before u can be executed again. However, when c is

deleted from inval no duplicate record for u is present in the log, and an ack

for c’s update is present in the log. By Lemma 1, the presence of the ack

guarantees that no future duplicate from the front end or the network will

reenter the log. Furthermore, when c is deleted from inval, isknown(r) holds

for some update r for c, so by Lemma 4, all duplicates d of r have arrived at

the replica. By Lemma 5, d. ts s rep_ts and therefore step 1 of the gossip-

processing code ensures that any future duplicate d arriving in a gossip

message will not reenter the replica’s log.

We now show that updates are reflected in the value in an order consistent

with the dependency relation. Consider an update record r such that r. ts <

val–ts and an update u such that r‘s update u depends on v. We need to

show that v is reflected in the value before u. From the implementation of

the dependency relation we know there exists an update record s for v such

that u.prev > s. ts. Therefore, by Lemma 7 and 8 both u and v are reflected

in val. Consider the first time u is reflected in the value. If this happens in

the processing of an update message, at that step u.prev < val_ts; by Lemma

7, u.prev s rep–ts, and therefore by Lemma 8 v has already been reflected in

val. If this happens while processing a gossip message, a record for u has

entered the set comp and so u.prev s rep_ts and therefore s. ts s rep–ts. By

Lemma 3, s has entered the log at this replica and will enter comp now

unless it has already been deleted. The code guarantees that when both s

and a record for u are in comp either v is reflected before u because

u. prev > s. ts, or v’s cid is in inval and so v was reflected earlier. If s was

deleted from the log earlier, then by Lemma 6 v has already been reflected.

Making progress. To ensure progress, we need to show that updates and

queries indeed return. It is easy to see that updates return provided replicas

eventually recover from crashes and network partitions are eventually re-

paired. These assumptions also guarantee that gossip messages will propa-

gate information between replicas. Therefore, from the gossip-processing code

and Lemma 3, replica and value time stamps will increase and queries will

eventually return.

Garbage collection. Update records will be removed from the log assuming

replica crashes and network partitions are repaired eventually. Also, acks
will be deleted from the log assuming crashes and partitions are repaired

eventually and replica clocks advance, provided cids are deleted from inval.

To show that cids are deleted from inval, we need the following lemma,

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

376 . R. Ladln et al,

which guarantees that an ack stays in the log long enough to prevent its cid

from reappearing in inual:

~EMMA 9. Isknown(a’) A type(a) = ach * d. ts < rep_ts for all duplicates

d of a’s update.

PROOF. Similar to Lemma 5. ❑

Lemmas 8 and 9 and the ack deletion code guarantee that an ack is deleted

only after its cid is deleted from inzml. By Lemma 1, no duplicates of the

update message from the front end or network arriving after this point will

be accepted assuming the time in the ack is greater than or equal to the time

in any message for the update. Furthermore, step 1 of gossip processing

ensures that duplicates of the update record arriving in gossip will not enter

the replica’s log. Therefore cids will be removed from inual assuming crashes

and partitions are repaired eventually and front ends send acks with big

enough times.

Availability. The service uses the query input label to identify the re-

quested updates so it is important that the label identify just the required

updates and no others. However, labels in fact do sometimes identify extra

updates. For example, consider two independent updates u and u with

u.prev = v.prev and assume that u is processed at replica i before u. This

means that r. ts > s. ts, where r and s are the update records created by i for

u and v, respectively. When r. ts is merged into a label L, L also identifies u

as a required update. Nevertheless, a replica never needs to delay a query

waiting for such an “extra” update to arrive because the gossip propagation

scheme ensures that whenever the “required” update record r arrives at

some replica, all update records with timestamps smaller than r‘s will be

there. Note that the timestamp of an “extra” update record is always less

than the timestamp of some “required” update record identified by a label.

2.2 Other Operation Types

The section shows how the implementation can be extended to support forced

and immediate updates. These two stronger orders are provided only for

updates; queries continue to be ordered as specified by their input labels. As

mentioned, each update operation has a declared ordering type that is

defined when the replicated application is created. Recall that forced updates

are performed in the same order (relative to one another) at all replicas;

immediate updates are performed at all replicas in the same order relative to

all other updates.

Like causal updates, forced updates are ordered via labels and uids, but

their uids are totally ordered with respect to one another. Labels now identify

both the causal and forced updates, and the input label for an update or

query identifies the causal and forced updates that must precede it. Uids are

irrelevant for immediate updates, however, because the replicas constrain

their ordering relative to other operations.

ACM Transactions on Computer Systems, Vol. 10, No 4, November 1992.

Providing High Availability Using Lazy Replication . 377

Let q be a query. Then

1. q.newl c P(q).label.

2. q.prev u G(q).label c q.newl,

3. u.uld e q.newl ~ for all updates v s.t. dep(u, v), v.uld E q.ncwl.

4. q.value = q.op (VaI (q,newl)).

Fig. 3. Specification of the service.

The specification of the complete service is given in Figure 3. As before we

model the execution of a service as a sequence of events, one for each update

and query operation performed by a front end on behalf of client. If e is an

event in execution sequence E, G(e) denotes the set containing all events up

to and including the most recent immediate update that precedes e in E. The

second clause of the specification now requires that queries reflect the most

recent immediate update in the execution as well as what the input label

requires. The other clauses are unchanged except that the dependency rela-

tion for clause 4 is extended as follows.

dep(u, v) = if immediate (u) then v E P(u)

else if immediate (v) then u @ P(v)
else if forced (u) & forced (v) then v.uid < u.uid
else v.uid E u.prev

2.2.1 Implementation of Forced Updates. We must provide a total order

for forced updates and a way to relate them to causal updates and queries.

This is accomplished as follows. As before, we represent uids and labels by

multipart timestamps, but the timestamps have one additional field. Concep-

tually this field corresponds to an additional replica R that runs all forced

updates; the order of the forced updates is the order assigned to them by this

replica, and is reflected in R’s part of the timestamp. Therefore it is trivial to

determine the order of forced updates: if u and v are forced updates, u.uid <
v.uid if u.uid~ < v.uidR.

Of course, if only one replica could run forced updates, there would be an

availability problem if that replica were inaccessible. To solve this problem,

we allow different replicas to act as R over time. We do this by using a

variant of the primary copy method [1, 28, 29] with view changes [6, 7] to
mask failures. An active view always consists of a majority of replicas; one of

the replicas in the view is the designated primary, and the others are

backups. The current primary is in charge of Rs part of the timestamp as

well as its own, and all forced updates are handled by it. Since we assume

forced updates are relatively rare, it is unlikely that the primary will be a

bottleneck.
To execute a forced update u, the primary carries out a two-phase protocol.

In phase 1 it assigns a uid to the update by advancing Rs part of the

timestamp and merging it with u.prev. Then it creates a log record for u and

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992,

378 . R. Ladln et al.

sends this record to the backups in a message that contains in addition the

log records for any earlier forced updates that have not yet committed. The

update can commit as soon as a submajority of the backups acknowledge

receipt of this message. (A submajority is one less than a majority of all the

replicas in the service; once a submajority of backups know about the update,

a majority knows (since the primary does too), and it is safe to commit the

update since its effects will persist into subsequent views.) When the opera-

tion commits, the primary adds the record to its log, applies the update to the

value if it is ready, and replies to the front end. The backups are informed

about the commit in subsequent gossip messages.

A view change is accomplished by a two-phase protocol conducted by a

coordinator who notices a failure or recovery of a replica. The other replicas

act as participants; the coordinator can go ahead with the view change if a

submajority of the replicas agree to act as participants. The view change

must ensure that all committed forced updates persist into the next view. In

phase one of the view change, each participant informs the coordinator about

the most recent forced update it knows. Note that any update that may have

committed in the old view will be known to at least one member of the new

view. When a submajority of replicas have responded, the coordinator sets Rs

part of the timestamp for the new view to the largest value it knows for any

forced update. The primary of the new view will carry out the two-phase

protocol for any uncommitted forced updates.

Forced updates do not interfere with the execution of causal updates or

queries; all replicas proceed with these as before, including replicas that are

disconnected from the current active view. Furthermore, a view change has

no effect on what causal updates are known in the new view; instead, these

continue to be propagated by gossip just as before.

If an application was configured to have only forced updates, our method

would provide a standard primary copy implementation, with one exception:

queries could be ordered relative to updates using timestamps, which allows

them to be processed at backups, thus spreading system load. Queries would

see the effects of updates that causally preceded them, but might not observe

the effect of the most recent update. Such behavior is perfectly acceptable in

many applications in which stale data is permitted; in fact our system

provides a good way of’ controlling how stale the information is permitted to

be. In addition, queries could be guaranteed to see recent updates by running

them at the primary.

2.2.2 Implementation of Immediate Updates. To implement an immediate

update ZLwe need to carry out a global communication among all the replicas

during which the system determines what updates precede u and computes

the label u.preu, which identifies all such updates. At the end of this step u

can actually be performed.

The primary of the active view will carry out immediate updates, but only

if the view contains all replicas of the service. Timestamps for immediate

updates are assigned in the same way as for forced updates, by using the R

part of the timestamp. We use a three-phase algorithm [33] to perform an

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

Providing High Availability Using Lazy Replication . 379

immediate update. Phase 1 is a “pre-prepare” phase in which the primary

asks every backup to send its log and timestamp. Once a backup replies to

this message, it stops responding to queries; it can continue to process causal

updates, but it cannot reflect them in its ual. (We discuss why these con-

straints are necessary below.) When the primary receives information from

all the backups, it enters phase 2, the “prepare” phase; at this point it

becomes unable to process queries and to reflect causal updates into its ual.

The primary processes the reply messages as gossip, assigns u a timestamp

by advancing the R part of its timestamp, creates a log record for u, and

sends the record to the backups. When a submajority of backups acknowl-

edges receipt of this record, the primary commits the operation: it enters the

record in its log, performs the update (it will be ready because the primary

heard about all updates in u.prev in the responses in phase 1), and sends the

reply to the front end. The other replicas find out about the commit in gossip;

since they are unable to process queries until they know about the commit,

the gossip is sent immediately.

If a view change occurs, the participants tell the coordinator everything

they know about immediate updates. Any operation known to be prepared

will survive into the new view, and the primary of the new view will carry out

phase 2 again; such an operation must survive, since the old primary may

have already committed it. An operation not known to be prepared will be

aborted; such an operation cannot have committed in the old view, since a

commit happens only after a submajority of backups enter the prepare phase,

so at least one participant in the new view will know about the prepare.

Now we discuss why backups cannot respond to queries once they enter the

preprepare phase and why the primary cannot respond to queries once it

enters the pre-prepare phase. (Causal updates cannot be reflected in wal

during these phases for the same reason.) Recall that once an immediate

update happens, any query must reflect the effects of that operation. How-

ever, once a backup is in the pre-prepare phase, or the primary is in the

prepare phase, it does not know the outcome of the operation. (The primary

does not know because a view change may have occurred.) Returning a value

that does not reflect the update is wrong if the operation has already

committed; returning a value that reflects the update is wrong if the opera-

tion aborts. Therefore, the only option is to delay execution of the query.
Immediate updates slow down queries. In addition, if a replica becomes

disconnected from the others while in phase 1 or phase 2, it will be unable to

process queries until it rejoins a new active view. This is analogous to what

happens in other systems that support atomic operations: reading is not

allowed in a minority partition, since if it were inconsistent data could be

observed [6].

We chose a three-phase protocol for immediate updates because if a failure

prevents the primary from communicating with the other replicas, a new

majority view will be able to decide whether to commit or abort the immedi-

ate update without waiting for the old primary to recover and meanwhile

preventing the processing of other client requests. This is important because

while an immediate update is running, queries are blocked. A two-phase

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

380 . R. Lad[n et al

protocol would require fewer messages, but an inopportune failure would

prevent the entire system from processing queries.

3. PERFORMANCE

3.1 Normal Case Operation

System performance during normal operations (i.e., in the absence of failures)

depends on the size and number of messages, delay as perceived by clients,

and the load at the replicas. Message size is not a problem if services are

small. We expect services to contain only a few replicas (e.g., seven); this

issue is discussed further in Section 4.

Figure 4 shows the number of messages required for carrying out different

kinds of operations (the figure ignores batching at the front end). Here N is

the number of replicas, K is the number of update\ack pairs in a gossip

message, and M is the smallest integer greater than N/2. We are assuming a

gossip scheme in which each replica gossips with all the others, but only

about the updates that it processed and that the recipient may not know. We

are also assuming that acks are piggybacked on subsequent messages so that

separate ack messages are not needed; piggybacking acks may delay them,

but this is not a problem because it only affects how long cids are kept in

in ual. The second term for the causal operations expresses the cost of gossip.

The second term for forced operations expresses the cost of phase 2 of the

protocol, which is done by gossip; the third term for the immediate operations

is similar. It is clear from the figure that queries and causal updates require

few messages, forced updates require about the same number of messages as

in primary copy schemes, and immediate updates are expensive.

Updates cause no delay to clients since they are asynchronous. A client

cannot receive the answer to a query until one message round trip after

making the call (although it may be able to do useful work in the interim if

some form of nonblocking call is provided for it). In addition, the reply to a

query may be delayed because:

(1) Information about some updates it depends on has not yet arrived at the

replica that processed it. This is unlikely in the absence of failures

because the front end always communicates with the same replica and

because gossip is frequent.

(2) It follows a forced or immediate update whose execution is not complete.

(3) An immediate update is in progress.

Delays for the latter two reasons will be rare if forced and immediate

operations are rare.

Each replica must receive and process client requests, send and receive

gossip, and execute every update. Since the sending and receiving of mes-

sages is expensive, the use of gossip to reduce the number of messages that

servers handle decreases the load. For example, our scheme places less load

on servers than schemes such as the ISIS multicast [4] in which every update

causes a message to be received at every server.

ACM Transactims on Computer Systems, Vol. 10, No. 4, November 1992

Providing High Availability Using Lazy Replicahon . 381

operation number of messages

query 2
causal 2+(N-1)/K
forced 2M + (N-1)/K
immediate 2N + 2(M-1) + (N-1)/K

Fig. 4. Number of messages for different kinds of operations.

To get a sense of how well lazy replication would perform in practice, we

implemented a prototype causal operation service and compared its perfor-

mance with an unreplicated prototype. We considered only causal operations

because lazy replication is intended for applications where most operations

are causal, and therefore forced and immediate operations have little impact

on overall system performance. Our measurements indicate that gossip is an

effective technique; it enables a replica to handle more operations per second

than it could if it needed to receive a separate message for each update.

The prototypes implement a simple location service with insertion and

lookup operations. They are implemented in Argus [24] and run on a network

of VAXStation 3200’s connected by a 10 megabit-per-second ethernet. An

Argus program is composed of modules called guardians that may reside on

different nodes of a network. Each guardian contains local state information

and provides operations called handlers that can be called by other guardians

to observe or modify its state; it carries out each call in a separate thread and

in addition can run some background threads. A computation in Argus runs

as an atomic transaction; transactions are not needed in our system and add

to the cost of using the service, but the additional cost is incurred equally in

both the replicated and unreplicated prototypes.

The replicated service is implemented as a number of guardians, one for

each replica. Each guardian provides handlers that can be called to do

Iookups, inserts, and acks; acks can also be piggybacked on lookup and insert

calls (as an additional argument). Each replica has a background thread that

sends and receives gossip messages. The gossip thread first processes all

waiting gossip messages; then, if G milliseconds have passed since it last sent

gossip, it sends a gossip message to each of the other replicas. Each gossip

message is constructed and sent separately; we do not use a broadcast or

multicast mechanism. A replica gossips only about records it created that the

recipient may not know.

The unreplicated service is implemented as a single guardian that is

similar to the one that implements a replica. This guardian needs to handle

dropped, reordered, and duplicated messages from front ends, so it provides

an ack handler and allows acks to be piggybacked on inserts and lookups. An

update is processed when it arrives (unless it is a duplicate), and its uid
entered in inval; update records are not kept in the log, which contains only

ack records. When an ack arrives, its cid is removed from inual, and an ack

record enters the log where it remains until sufficient time has elapsed.

ACM Transactions on Computer Systems, Vol. 10, NCJ. 4, November 1992.

382 . R, Ladin et al.

The replicas simulated the front end calls in the experiments. This allowed

us to control the rate at which calls arrived at the server and the operation

mix, i.e., the proportion of inserts and lookups in the experiment. We used a

uniform arrival rate distribution and generated an arrival sequence that

approximated the required mix in each prefix. Operation calls are simulated

by an Arg-us thread. Each call consists of two parts, the computation part and

the communication part. The computation part includes the actual work of

doing the operation, e.g., checking for a duplicate, adding a record to the log,

etc. The communication part is a busy loop that simulates the communication

overhead at the server node, namely the receipt of the operation message and

delivery to the Argus guardian, decoding of the message to obtain the

arguments, construction of the reply message, and moving the message from

the guardian onto the network. The duration of the communication overhead

was determined by measuring the cost of null calls; such calls incur a cost of

5.6 ms. at the server node (and another 5.4 ms. at the client).

The experiments used a gossip rate G of 100 ms. Acks were piggybacked on

inserts and loolmps. Also, operations were always ready to run when they

arrived. This assumption holds during normal operation (which is what is of

interest here) because front ends communicate with their preferred replicas

in this case and because gossip is frequent.

Figure 5 shows the behavior of a single replica in a three-replica system in

which all three replicas are processing the same mix of operations arriving at

the same rate. Curves are given for different operation mixes (all queries, l%

updates, 10% updates, 50% updates, 100% updates). The horizontal axis

shows the request arrival rate in operations per second; the vertical axis

shows the mean response time for operations at that arrival rate and

operation mix. The response time measures only the time spent at the

replica’s node which in addition to the call-processing time includes the time

spent in the replica queue waiting to be processed; the response time as seen

by the client (for queries) is 5.4 milliseconds larger, since it includes the

overhead at the client node. Note that the actual capacity of the service is

three times what is shown in the figure, since each of the replicas is

processing the load that is shown.

Figure 6 shows the results for the unreplicated system with the same

operation mixes and arrival rates. By comparing the behavior of a replica

with that of the unreplicated server, we can get a sense of the saving due to

gossip. For example, in the operation mix of half updates and half queries, a

replica saturates at approximately 90 operations per second, while the un-
replicated system saturates at about 145 operations per second. However, a

replica is actually processing 180 operations per second. (It is handling 45

queries, 45 updates from the client, and 90 updates that it receives in gossip

from the other replicas.) The difference in the two cases is that the unrepli-

cated server must process 290 messages per second, while the replica must

process approximately 220 messages per second (180 messages for communi-

cating with front ends, plus it sends 20 gossip messages and receives 20

gossip messages).

ACM Transactions on Computer Systems, Vol 10, No. 4, November 1992

Providing High Availability Using Lazy Replication . 383

20

10

1 ::
Update Percentage I ., , ;.,

I .- : :
0% —

,:,. ;. .
1%

10%7...--... I .: ~ ;,:. .
50% / ;

100’% ----
r :. : :
f . . ;

.:.
f .i : ::

/ .,
.. ~ ;

I ~ :
/ .“ ; . ;

. . ,. ,.:.., ; ,

-+)
.“ : ;

. ..”” .’
/ . ; :

/ ..” .
.“

-e ... ” /“” ;
#--.......*#d... $-=....+, .? -’. ---, //”

,.. . -. . ..-
. -:----------------

0 50 100 150

Arrival Rate (operations per second)

Fig. 5. Capacity of a single replica. This figure shows the average response time as a function of

operation arrival rate for selected operation mixes.

Update Percentage

o% —
1%

10% --------
50%-

100% ---- I
1:
1:
f:

1:
1:

l::

l:!

50 100 150

k-ma] Rate (opera[Ions per second)

Fig. 6. Capacity of the unreplicated system.

The performance of the system is likely to be sensitive to the relative

priorities of gossip and operations. The measurements above correspond to a
system in which gossip has higher priority than operation processing: when

there is a gossip message to send or receive, the gossip process will run. If

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

384 . R. Ladln et al

operations have higher priority than gossip, this will probably lead to better

response time, although gossip cannot be allowed to lag too far behind

because it is important to propagate information about updates reasonably

rapidly. We have not experimented with changes in relative priorities, but it

will be important to do this in a real implementation.

3.2 Reliability and Availability

The traditional way of achieving high reliability is to record information on a

sufficient number of nonvolatile devices. For example, recording information

on stable storage [20] insures that it will survive failure of its node and also a

single media failure. However, this solution is wasteful, since we already

provide a different kind of redundancy, namely recording updates at many

replicas. Also it provides poor availability. If the one replica that records an

update crashes or is partitioned from the other replicas before any of them

know about the update, queries based on that update will be delayed.

A better approach to reliability takes advantage of replication. With this

approach, an update is “stable” if it is recorded reliably at a sufficient number

of replicas. For example, if information must survive a single failure, an

update will be stable as soon as it is recorded at two replicas. A majority of

replicas is not needed; instead the number of replicas is chosen based simply

on the reliability requirements (e. g., we might use two replicas in a service

containing seven of them). Recording the update on volatile storage will be

adequate if these replicas are geographically distributed; if the replicas are

close, the update can be recorded on volatile storage provided replicas have

uninterruptible power supplies that allow them to copy volatile information

to disk if there is a power failure. (This technique has been used to good effect

in the Harp system [25].) A replica that loses its state in a crash recovers it

by reading the state of enough other replicas so that it can determine the last

update it processed.

Queries should not be permitted to observe the effects of an update until it

is stable, or else the following anomaly can arise: A query q observes update u

which is not stable, and then u is lost (e.g., because the node that processed u

and q failed before sending information about u to some other replica). A loss

of causality like this should happen only in a catastrophe in which more

failures occur simultaneously than the system is configured to handle.

Replicas can delay sending replies for updates to front ends until the

updates are stable; if streaming is used between the front end and the

replica, the replica also will not process a query that follows an update until
the update is stable. Alternatively, the front end could send the update

request to the appropriate number of replicas, and delay a query that follows

the update until all have replied. In either case, the cost for causal updates

increases. For example, in a system that survives one failure, a causal update

now requires 4 + (N — 2)/K messages, assuming that if the replica enforces

the requirement, it notifies one other replica immediately (to reduce the delay

until the update is stable), and if the front end does the enforcement, the

gossip scheme avoids unnecessary propagation of information about the

update. The scheme where the replica does the enforcement probably delays

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992,

Providing High Availability Using Lazy Replication . 385

subsequent queries a little less assuming the front end is streaming queries

to the replica.

Achieving reliability through replication has an impact on availability.

Availability is an issue primarily for queries (since updates are asyn-

chronous). If a query depends on updates that happened in the past, it is

highly likely that it can be performed as long as one replica is up and

accessible because gossip is frequent. However, a query that depends on a

recent causal update might be a problem; since the query cannot be executed

until the update is stable; its availability is similar to that of the update.

Forced and immediate updates are likely to be stable as soon as they are

completed, since the number of replicas required for stability is probably less

than a majority of replicas in the service. A query that follows a forced update

probably requires a majority of replicas to be up and accessible, since this is

needed to carry out the forced update. Immediate updates have an even

larger effect on availability of queries, since queries are blocked while they

are running. If a failure occurs while an immediate update is running, this

has no effect on replicas that can join a new majority view; we chose a

three-phase protocol for this reason. However, if a replica becomes discon-

nected from the others while running an immediate update, it cannot process

any queries until the partition is repaired. These facts indicate that immedi-

ate updates must be rare if the system as a whole is to perform well. Note

that if they are rare, the probability of a replica becoming disconnected while

one is in progress is very small.

4. SCALABILITY

In our scheme the number of replicas is independent of the number of clients.

Since typically there will be large numbers of clients, and since as the size of

a system increases, the number of servers can grow much more slowly than

the number of clients, this is an important consideration. Having few replicas

reduces the size of the time stamps, the storage requirements (since each

replica needs to store the service state), and message traffic (since replicas

need to communicate, even if gossip is done infrequently). Thus we expect the

technique to work well in large systems. Below we discuss ways of controlling

cost in large replicated services and what happens when there are many

replicated services within a single system.

4.1 Large Services

Some applications may need a large number of replicas, either to provide

adequate processing power, or to ensure that every client is “close” to a

replica. When most calls to a service are queries, having lots of replicas can

improve performance. However, having many replicas increases the cost of

updates because more gossip messages must be sent and also because each

update must be performed at every replica.
If many replicas are required, most of them can probably be read-only.

Read-only replicas act as caches located at convenient locations in the net-

work, e.g., one in each local area net. Such replicas only process queries;

ACM Transactions on Computer Systems, Vol. 10, No, 4, November 1992.

386 . R, Ladin et al.

updates must still be sent to the regular read-write replicas. Having such

replicas is effective provided a substantial portion of the system load is

queries, or if fast processing of queries is the main performance issue.

Timestamps need not contain entries for read-only replicas, so they will still

be small. Read-only replicas must receive gossip to bring them up to date, but

need not send gossip messages.

Sometimes the amount of gossip can be reduced by partitioning the service

state. Partitioning can be used in any application in which different parts of

the state are independent, i.e., each operation can be performed using the
information in just one part of the state. For example, in a mail system there

might be two partitions, the first storing mail for users with names in the

first part of the alphabet, and the second storing the rest. A partitioned

service still appears to be a single entity to clients. The replicas are divided

into disjoint groups, each of which is responsible for a disjoint part of the

state. All queries and updates concerning a particular part of the state are

handled by the replicas in the group that manages that part, and gossip is

exchanged only among group members. The front end would maintain infor-

mation about partitioning so that a client request could be sent to a replica in

the request’s group. The timestamps would contain components for all repli-

cas; this is necessary to preserve causal order across the partitions. However,

the timestamp components for replicas in other groups can be ignored when

processing a query or update: an operation is ready to execute if the time-

stamp components for its group indicate that it is ready. Therefore, the extra

components do not delay operation execution.

Sometimes clients of a service expose information about the service state

only through calls on service operations. When this is true, front ends need

not insert timestamps in client messages, since they are not needed to

preserve causality, thus reducing the size of client messages. In addition, it is

possible to use a hierarchical structure for the service. The idea is to partition

the clients among a number of different replica groups, each consisting of a

small number of replicas, and each having its own timestamps. Clients

communicate only with replicas in their own group; they use only that

group’s timestamps and never exchange timestamps with one another. The

replica groups communicate with one another via a lower-level replica group,

i.e., they are clients of the lower-level group; in fact, the scheme can be

extended to an arbitrary number of levels. This scheme has been proposed for

the garbage collection service [17]; in this application, a client’s query is

ordered only with respect to its own updates, although the speed with which
inaccessible objects are discarded depends on how quickly global information

propagates from one replica group to another (via the lower-level replica

group). Another application that could profit from this approach is deadlock
detection [8].

4.2 Mult[ple Services

We now consider a system containing many services. Causality can be

preserved across a number of services by using joint front ends (one per client

node) that manage all of them. The front ends would maintain labels for each

ACM TransactIons on Computer Systems, Vol 10, No. 4, November 1992

Prowding High Availability Using Lazy Replication . 387

replicated service. (The multipart timestarnps for the different services can be

distinguished by having each one identify its service.) All the labels would be

sent in client messages and merged into a front end’s labels when a client

message is received. Also, a front end would send all the labels in each

message to a replica. Replicas would use only their own timestamps to

determine when operations are ready, but they would keep copies of all the

labels, merge in the foreign ones, and send all the labels back in replies, at

which point the front end would merge again. In this way we can preserve

causality, both intraservice and interservice, without clients having to be

concerned with the details.

This automatic technique would be a problem if there were many services

that were causally related, since in this case messages would contain lots of

label timestamps. In our experience, however, most services that can be

implemented with lazy replication are not causally related, so there is no

problem in practice. Most replicated services are used by encapsulating code

that hides their existence from the rest of the system. For example, the

garbage collection service is used only by the heap managers at the client

nodes, while the version deletion service is used only by the concurrency

control subsystem; neither of these is related to one another, nor are they

related to the mail system. Each such service can be provided with its own

front ends (one per client node), distinct from those for other services, that

manage just the timestamps for that service and intercept only the client

messages sent by the encapsulating code.

5. COMPARISON WITH OTHER WORK

Our work builds on numerous previous results, including general replication

techniques such as voting [2, 10, 13] and primary copy [1, 28, 29], but is most

closely related to approaches that provide high availability for applications

where operations need not be ordered identically at all replicas. This section

discusses this closely related work.

The idea of exploiting system semantics to enhance availability appears

first in [9] and [36]. In these systems, servers are coresident with clients and

propagate information about updates by means of gossip. Causality is easily

preserved for a single client, since it always communicates with the server at

its node; preservation of interclient causality is not discussed. Having a

server at every client wastes space (since the server state must be stored at

every client node) and also wastes network bandwidth (since every client

node must be notified about every update).

In the Grapevine system [5] and its successor [19] service nodes are distinct

from client nodes. Every client operation is performed at a single server, and

updates propagate in the background to other replicas. Thus Grapevine

solves the problems of wasted space and network bandwidth, but it sacrifices

causality. For example, a single client’s request may go to different replicas

(e.g., if the first replica used by that client fails); a later query by a client may
fail to observe an earlier update made by that client. Also, different clients

typically use different replicas, and a client may not observe the effects of an

update it learned about in a message from another client.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

388 . R. Ladin et al

Our earlier work [15, 21] separates servers from clients and supports a

limited form of causality. Client requests are executed at just one server, and

information about updates is propagated in gossip. Timestamps are used to

force queries to observe specified updates but there is no way to order

updates; instead updates must be commutative, so that they can be ordered

in different ways at different replicas without affecting what clients observe

via queries.

The idea of allowing the designer of an application to choose from a set of

primitives of differing strengths appears first in the work on ISIS [3] and

later in Psync [27]. Both systems provide multicast communication mecha-

nisms that can be used to provide a replicated service. The Psync approach is

limited to two kinds of operations, commutative and totally ordered, and only

one operation can be of the more efficient commutative type. For example, in

a mail system the read_mail operation could be commutative, but then

send–mail and all other updates would need to be totally ordered.

ISIS provides three multicast primitives, CBCAST, ABCAST, and GB-

CAST, that support orderings roughly equivalent to those of the causal,

forced, and immediate operation types. Its implementation is based on the

notion of process groups that contain both clients and servers; intragroup

communication uses reliable multicast primitives. Every client request is

sent to all group members, resulting in substantial message traffic unless the

entire system is located on a single local area net that supports broadcast. To

ensure eventual delivery of requests, messages contain information about

past history. In the earlier version of ISIS [3], messages contained descrip-

tions of earlier requests; this resulted in very large messages and a garbage

collection problem (recognizing when old requests could be discarded’).

ISIS now uses a multipart timestamp scheme [4] similar to ours. Time-

stamps are used to order client operations, but they have fields for clients as,

well as servers. Each operation (both queries and updates) is assigned a

timestamp by the client node (by advancing the client part of the timestamp),

and a server must know about all operations with smaller timestamps before

it can process a new request. The client either multicasts the requests to all
replicas, or sends it to a single replica, which multicasts to the others; in

either case many more messages are sent than in our system, and further-

more queries as well as updates need to be multicast. In addition, messages

contain large amounts of timestamp information. If a group contains all

clients and servers, timestamps are large. If there is a separate group per

client (containing that client and all the servers), timestamps are smaller,
and there are fewer messages since requests from one client need not be sent

to other clients; but messages are bigger since timestamps for all such groups

must be sent in all messages to preserve causality.

Thus, our system sends fewer messages than ISIS, and requires less space

for timestamp information in messages. In addition it performs better in the

presence of failures and recoveries than ISIS. Both systems do view changes

in such situations (although we need not do view changes for a service in

which all operations are causal). However, the ISIS view change prevents

processing of new requests while it is in progress and involves flushing the

ACM TransactIons on Computer Systems, Vol 10, No 4, November 1992

Providing High Availability Using Lazy Replication . 389

service state to all replicas in the new view. By contrast, our replicas can

continue to process causal updates and queries during a view change, and

little information needs to be flushed (just ordering information about out-

standing forced and immediate updates). Furthermore, our system can toler-

ate network partitions, while ISIS cannot.

6. CONCLUSION

This paper has described a new replication method. The method supports

three kinds of ordering for updates: causal, forced, and immediate operations.

It can be used in many applications, including location services, distributed

garbage collection, and mail systems. It performs better than alternative

techniques such as reliable group multicast.

The method is generic and can be easily instantiated to provide a particular

service. The instantiator provides a nonreplicated implementation of the

application’s operations and defines the ordering types of the updates. The

user of the application just calls the operations, All details of replication and

distribution are taken care of automatically.

The method is intended for applications in which most update operations

are causal. In this case, it provides excellent performance. Client requests

encounter low delay, and the system has low overhead in terms of number

and size of messages and overhead at the replicas. Our performance expecta-

tions are backed up by the experiments discussed in Section 3. A real

implementation of a generic service that can be instantiated to provide

replicated services is underway [16].

The forced and immediate operations are important because they increase

the applicability of the approach, allowing it to be used for applications in

which some updates require a stronger ordering than causality. Forced

updates are also interesting in their own right. They can be used in an

application that requires identical update orderings at all replicas with a cost

comparable to techniques such as voting and primary copy. The method

generalizes these approaches, however, because it gives queries access to

stale data while ensuring that causality is preserved.

When confronted with the need for a highly available service, a designer

has a limited number of choices if preservation of consistency is a goal. One

possibility is to use standard atomic methods, in which all operations run in

the same order at all replicas. However, some applications can tolerate

having updates that run in parallel be executed in different orders at

different replicas. In this case our method can be used. It reduces delay and

number of messages in exchange for time stamp information in messages. Our
method will be worthwhile provided this information remains reasonably

small.

ACKNOWLEDGMENTS

We wish to thank Boaz Ben-Zvi, Phil Bernstein, Andrew Black, Dorothy

Curtis, Joel Emer, Bob Gruber, Maurice Herlihy, Paul Johnson, Elliot Kolod-
ner, Murray Mazer, Bill Weihl, and the referees for their suggestions on how

to improve the paper.

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992.

390 . R, Ladin et al

REFERENCES

1. ALSBERG, P., AND DAY, J. A principle for reslhent sharing of distributed resources. In

Proceedings of the 2nd International Conference on Software EngLrLeerlng ((let. 1976), pp.

627-644.

2 BERNSTEIN, P. A., AND GOODMAN, N. An algorithm for concurrency control and recoveryin

replicated dmtributed databases. ACM Trans. Database Syst. 9, 4 (Dec. 1984), 596–615.

3. BIRIJAN, K P., AND JOSEPH, T.A. Reliable communication inthepresence of failures. ACM

Trans. Comput. Syst.5, l(Feb. 1987),47-76

4. BIRMAN, K., SCHIPER, A., AND STEPHENSON, P. Llghtwelght causal and atomic group multl-

cast. ACM Trans. Cornput. Syst. 9, 3 (Aug. 1991).

5. BIRRELL, A., LEVIN, R, NEEDHAM, R., AND SCHROEDER, M Grapevine An exercise in dis-

tributed computing. Commun. ACM 25, 4 (Apr. 1982), 260-274

6. EL-ABBADI, A., AND TOUEG, S. Maintaining availability m partitioned replicated databases.

In Proceedings of the Fifth Symposl urn on Principles of Database S.vstenLs. ACM, New York,

1986> pp. 240-251.

7. EL-ABBADI, A., SK~EN, D., AND CRISTIAN, F. An eftlclent fault-tolerant protocol for replicated

data management. In Proceedings of the Fourth SymposLunL on Prmclples of Database

Systems. ACM, New York, 1985, pp. 215-229.

8. FARRELL, A. K. A deadlock detection scheme for Argus. S. B. thesis, Dept. of Electrical

Engineering and Computer Science, MIT, Cambridge, Mass., July 1988.

9. FISCHER, M. J., AND MICHAEL, A. Sacrificing serializability to attain high availablhty of data

in an unreliable network. In Proceedings of the SynLposz urn cm Pi-z nczples of Database

Systems. ACM, New York, 1982, pp. 70-75.

10. GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the Seuentlz Sympos-

ium on Operating Systems Prmczples (Pacific Grove, Calif., Dec. 1979). ACM SIGOPS, New

York, pp. 150-162.

11. GIFFORD. D. K. Information storage in a decentralized computer system. Tech. Rep. CSL-81-

8, Xerox Corp., Mar 1983.

12. HEDDAYA, A., HSLT, M., ANII WEIHL, W. Two phase gossip: Managing distributed event

histories. Irq! Sci.: Int. J. 49, 1-2 (Ott /Nov. 1989).

13. HERLIHY, M. A quorum-consensus replication method for abstract data types. ACM Trans.

Comput. Syst. 4, 1 (Feb. 1986), 32-53.

14. HWANG, D. J. Constructing a highly-avadable location service for a distributed environ-

ment. Tech. Rep. MIT/LCS/TR-410, MIT Lab. for Computer Science, Cambridge, Mass.,

Nov. 1987. Master’s thesis.

15. LADIN, R., LISIiOV, B., AND SHRIRA, L. A technique for constructing highly-available services.

Atgorzth?nzca 3 (1988), 393-420.

16. LADIN, R., MAZER, M. S., AND WOLMAN, A. A general tool for rephcating distributed services

In Pmceedzngs of the FLrst International Conference on Parallel and Dmtnbuted In formatmn

Systems (Dec. 1991).

17. LADIN, R. A method for constructing highly available services and a technique for dm-

trlbuted garbage collection. Ph.D. dissertation, MIT Dept. of Electrical Engineering and

Computer Science, Cambridge, Mass., May 1989.

18. LAMPORT, L. Time, clocks, and the ordering of events m a distributed system. Comm zm.

ACM 21, 7 (July 1978), 558-565.

19. LAMPSON, B, W. Designing a global name service. In Proceedings of the 5th Symposum on

Principles of DLstrLbuted Computmg (Aug. 1986). ACM New York, pp. 1-10.

20. LAMPSON, B. W., AND STURWS, H. E. Crash recovery in a distributed data storage system.

Xerox Research Center, Palo Alto, Calif., 1979.

21. LH~OV, B., AND L~DIN, R. Highly-available distributed services and fault-tolerant dis-

tributed garbage collection. In Proceedings of the 5th ACM Svmposzum on PrzncLples of

Distributed Computing (Aug. 1986), ACM, New York.

22 LIS~OV, B., SCHEIFLER, R., WALKER, E., AND WEIHL, W. Orphan detection (extended abstract).

In Proceedings of t/Le 17th International SymposLum on Fault-Tolerant Computmg (Pitts-

burgh, Pa., July 1987). IEEE, New York, pp. 2-7

ACM Transactions on Computer Systems, Vol. 10, No. 4, November 1992

Providing High Availability Using Lazy Replication . 391

23. LISIXN’, B., BLOOM, T., GIFFORD, D., SCHEIFLER, R., AND WI?IHL, W. Communication in the

Mercury system. In proceedings of the 21st Annual Hawaii Conference on System sciences

(Jan. 19S8). IEEE, New York pp. 178-187.

24. LISKOV, B. Distributed programming in Argus. Commun. ACM 31, 3 (Mar. 1988), 300-312.

25. LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON, P., SHRIRA, L., AND WILLMMS, M. Replica-

tion in the Harp file system. In Proceedings of the Thirteenth ACM Symposium on Operating

Systems Principles (Oct. 1991). ACM, New York.

26. MILLS, D. L. Network time protocol (version 1) specification and implementation. DARPA-

Internet Rep. RFC 1059. July 1988.

27. MISHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D. Implementing fault-tolerant objects

using Psync. In Proceeding of the Eighth Symposium on Reltable Distributed Systems (Oct.

1989).

28. OKI, B. M., AND LISKOV, B. Viewstamped replication: A new primary copy method to support

highly-available distributed systems. In Proceedings of the 7th ACM S.ynLposium on Prmcz-

ples of Distributed CompzLting (Aug. 1988). ACM, New York.

29. OKI, B. M. Viewstamped replication for highly available distributed systems. Tech. Rep.

MIT/LCS/TR-423, MIT Lab. for Computer Science, Cambridge, Mass., 1988.

30. PARKER, D. S,, POPEK, G. J., RUDISIN, G., STOU~HTON, A., WALW,R, B., WALTON, E., CHOW, J.,

EDWAKDS, D., KISER, S., AND KLINE, C. Detection of mutual inconsistency in distributed

systems. IEEE Trans. Softw. Eng. SE-9, 3 (May 1983), 240–247.

31. SCHMUCK, F. B. The use of efficient broadcast protocols in asynchronous distributed sys-

tems. Tech. Rep. TR 88-926, Dept. of Computer Science, Cornell Univ., Ithaca, N. Y., 1988.

32. SCHWARZ, P., AND SPECTOR, A. Synchronizing shared abstract types. ACM Trans. Comput.

Syst. 2, 3 (Aug. 1984).

33. SKEEN, D. Non-blocking Commit Protocols. In Proceedings of the 3rd ACM SIGACT-

SIGMOD Symposzum on Principles of Database Systems (April 1984). ACM, New York.

34. WEIHL, W. E. Distributed version management for read-only actions. IEEE Trans. Softw.

Eng. SE-13, 1 (Jan. 1987), 55-64.

35. WEIHI., W., AND LISKOV, B. Implementation of resilient, atomic data types. ACM Trans.

Program. Lang. Syst. 7, 2 (Apr. 1985), 244-269.

36. WUU, G. T. J., AND BERNSTEIN, A. J. Efficient solutions to the replicated log and dictionary

problems. In Proceedings of the Third Annual Symposium on Principles of Distributed

Computing (Aug. 1984). ACM, New York, pp. 233-242.

Received July 1990; revised January 1992; accepted July 1992

ACM Transactions on Computer Systems, Vol. 10, No 4, November 1992.

