
11/22/19

Concurrency control

Problems caused by concurrency?
Lost update: the result of a transaction is overwritten by another transaction

Dirty read: uncommitted results are read by a transaction

Non-repeatable read: two reads in the same transaction return different results

Phantom read: later reads in the same transaction return extra rows

Serial schedule — no problems
T1: R(A), W(A), R(B), W(B), Abort

T2: R(A), W(A), Commit

time

Quiz: Which concurrency problem is this?
T1: R(A), W(A) R(B), W(B), Abort

T2: R(A), W(A), Commit

time

Lost update Dirty read Non-repeatable read Phantom read

Quiz: Which concurrency problem is this?
T1: R(A), W(A) R(B), W(B), Abort

T2: R(A), W(A), Commit

time

Dirty read

Quiz: Which concurrency problem is this?
T1: R(A) R(A), W(A), Commit

T2: R(A), W(A), Commit

time

Lost update Dirty read Non-repeatable read Phantom read

Quiz: Which concurrency problem is this?
T1: R(A) R(A), W(A), Commit

T2: R(A), W(A), Commit

time

Non-repeatable read

Quiz: Which concurrency problem is this?
T1: R(A), W(A) W(B), Commit

T2: R(A) W(A), W(B), Commit

time

Lost update Dirty read Non-repeatable read Phantom read

Quiz: Which concurrency problem is this?
T1: R(A), W(A) W(B), Commit

T2: R(A) W(A), W(B), Commit

time

Lost update

Quiz: Which concurrency problem is this?
T1: R(A), W(A) W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Lost update Dirty read Non-repeatable read Phantom read

Quiz: Which concurrency problem is this?
T1: R(A), W(A) W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Dirty read

How to ensure correctness when running
concurrent transactions?

What does correctness mean?
Transactions should have property of isolation, i.e., where all operations in a
transaction appear to happen together at the same time

Today, we’ll review serializability

Weaker isolation levels exist in the literature but we’ll ignore them in this class

Fixing concurrency problems
Strawman: Just run transactions serially — prohibitively bad performance

Observation: Problems only arise when

1.  Two transactions touch the same data
2.  At least one of these transactions involves a write to the data

Key idea: Only permit schedules whose effects are guaranteed to be equivalent to
serial schedules

Serializability of schedules
Two operations conflict if

1.  They belong to different transactions
2.  They operate on the same data
3.  One of them is a write

Two schedules are equivalent if

1.  They involve the same transactions and operations
2.  All conflicting operations are ordered the same way

A schedule is serializable if it is equivalent to a serial schedule

Testing for serializability
Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B) W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Serializable

Testing for serializability

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A) W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for serializability

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

NOT serializable

Testing for serializability
Another way to test serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between transactions, the schedule is serializable

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Another way to test serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between transactions, the schedule is serializable

Another way to test serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between transactions, the schedule is serializable

Testing for serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

No cycles,
serializable

Testing for serializability

time

Another way to test serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between transactions, the schedule is serializable

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

Cycle exists
(T1 ⇄ T2),

NOT serializable

Implementing serializability: 2PL
Two-phase locking (2PL): acquire all locks before releasing any locks

Each txn acquires shared locks (S) for reads and exclusive locks (X) for writes

●  Growing phase: transaction acquires all necessary locks
●  Shrinking phase: transaction releases all locks

Cannot acquire more locks after any locks are released

2PL
2PL guarantees serializability by disallowing cycles between transactions

There could be dependencies in the waits-for graph among transactions waiting
for locks:

 Edge from T2 to T1 means T1 acquired lock first and T2 has to wait

 Edge from T1 to T2 means T2 acquired lock first and T1 has to wait

 Cycles mean DEADLOCK, and in this case 2PL won’t proceed

time

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

2PL

Lock_X(A)

Lock_X(B) Lock_S(A)

Lock_X(B)

DEADLOCK!

Deal with deadlocks by aborting one of the two txns (e.g., detect with timeout)

2PL: Releasing locks too soon?
What if we release the lock as soon as we can?

time

T1: R(A), W(A), Abort

T2: R(B), W(B), R(A) Abort

Lock_X(A)

Lock_X(B) Lock_S(A)

Rollback of T1 requires rollback of T2, since T2 read a value written by T1

Cascading aborts: the rollback of one transaction causes the rollback of another

Unlock_X(A)

Strict 2PL
Release locks at the end of the transaction

Variant of 2PL implemented by most databases in practice

Two ways of implementing serializability: 2PL, OCC
2PL (pessimistic):

1.  Assume conflict, always lock
2.  High overhead for non-conflicting txn
3.  Must check for deadlock

Optimistic concurrency control (OCC):

1.  Assume no conflict
2.  Low overhead for low-conflict workloads (but high for high-conflict workloads)
3.  Ensure correctness by aborting transactions if conflict occurs

Optimistic concurrency control
Execute optimistically: Read committed values, write changes locally

Validate: Check if data has changed since original read

Commit (Write): Commit if no change, else abort
These should happen
together!

Atomic commit for OCC
Use two-phase commit (2PC) to achieve atomic commit (validate + commit
writes)

Recall 2PC protocol:

1.  Send prepare messages to all nodes, other nodes vote yes or no
a.  If all nodes accept, proceed
b.  If any node declines, abort

2.  Coordinator sends commit or abort messages to all nodes, and all nodes
act accordingly

Optimistic concurrency control
Execute optimistically: Read committed values, write changes locally

Validate: Check if data has changed since original read

Commit (Write): Commit if no change, else abort
Phase 1

Phase 2

●  Phase 1: send prepare to each shard: include buffered write + original
reads for that shard
○  Shards validate reads and acquire locks (exclusive for write locations,

shared for read locations)
○  If this succeeds, respond with yes; else respond with no

●  Phase 2: collect votes, send result (abort or commit) to all shards
○  If commit, shards apply buffered writes
○  All shards release locks

Lock_X(A) <granted>

Read(A) Lock_S(A)
A := A-50

Write(A)
Unlock(A) <granted>

Read(A)
Unlock(A)

Lock_S(B) <granted>

Lock_X(B)
Read(B)

<granted> Unlock(B)

Read(B)
B := B +50

Write(B)
Unlock(B)

Is this a 2PL schedule?
No

Is this a serializable schedule?
No

Lock_X(A) <granted>

Read(A) Lock_S(A)
A := A-50

Write(A)
Lock_X(B) <granted>

Unlock(A) <granted>

Read(A)
Lock_S(B)

Read(B)
B := B +50

Write(B)
Unlock(B) <granted>

Unlock(A)
Read(B)

Unlock(B)

Is this a 2PL schedule?

Yes, and it is serializable

Is this a Strict 2PL schedule?

No, cascading aborts possible

Lock_X(A) <granted>

Read(A) Lock_S(A)
A := A-50

Write(A)

Lock_X(B) <granted>

Read(B)
B := B +50

Write(B)
Unlock(A)
Unlock(B) <granted>

Read(A)
Lock_S(B) <granted>

Read(B)
Unlock(A)
Unlock(B)

Is this a 2PL schedule?

Yes, and it is serializable

Is this a Strict 2PL schedule?

Yes, cascading aborts not
possible

