Consistency

11/15/2019

Strict Serializability

- Transactions: Operations can span multiple objects (e.g., keys in KV store)
- Total order: There exists some legal total ordering of transactions.
 - Legal: In the total ordering, a read operation sees the latest write operation.
- Preserves real-time ordering: Any transaction A that completes before transaction B begins, occurs before B in the total order.
- Properties:
 - Writes in a completed transaction appear to all future reads
 - Once a read sees transaction and completes, all future reads must see new transaction

Pros: Easily reason about correctness of transactions

Cons: High read and write latencies

Strict Serializability Example

No	erializable?	Strictly S	Yes	Strictly Serializable?			
	$\{W(x)b, W(y)b\}$	P1:		$\{W(x)b, W(y)b\}$	P1:		
		P2: {W(x)a}		()a}	P2: {W(x)		
{R(x)a}	$\{R(y)b\}$	P3:	${R(x)b}$	$\{R(x)a\}$	P3:		
${R(y)b}$	$\{R(x)b\}$	P4:	${R(y)b}$	$\{R(x)b\}$	P4:		

Linearizability

- Total order: There exists some legal total order of operations
- Preserves real-time ordering: Any operation A that completes before operation B begins, occurs before B in the total order.
- Difference from strict serializability?
 - Single-object operations! No transactions!
- Properties
 - A completed write appears to all future reads
 - Once a read sees a new value, all future reads must return the new value (until new write)

Pros: Easy to reason about correctness

Cons: High read and write latencies

Linearizability Example

Linearizable?			No		Line	arizable?	?	Yes
P1:	W(x)a				P1:	W(x)a		
P2:		W(x)b			P2:	V	V(x)b	
P3:			R(x)b	R(x)a	P3:		R(x)a	R(x)b
P4:			R(x)b	R(x)a	P4:		R(x)a	R(x)b

Sequential Consistency

- Total order: There exists some legal total order of operations
- Preserves process ordering: Total order respects order of each process's operations.
- Difference from linearizability?
 - Order of ops across processes not determined by real-time

Pros: Can allow more orderings than linearizability → better performance

Cons: Many possible sequential executions → increased application complexity

Sequential Consistency Example

Seq	uentially Cons	sistent	? Yes	Sequ	ıentially	y Cons	istent?	No
P1:	W(x)a			P1:	W(x)a			
P2:	W(x)b			P2:		W(x)b		
P3:		R(x)b	R(x)a	P3:			R(x)b	R(x)a
P4:		R(x)b	R(x)a	P4:			R(x)a	R(x)b

Causal+ Consistency

- Partial order: Order causally related ops the same way across all processes
- +: Replicas eventually converge
- Difference from sequential consistency?
 - Only causally related ops need to be ordered: no total order
 - Concurrent ops may be ordered differently across different processes

Pros: Preserves causality while improving efficiency

Cons: Need to reason about concurrency

Causal+ Consistency Example

Causally+ Consistent? Yes

Causally+ Consistent? No

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a

P4: R(x)a

P1: W(x)a

P2: R(x)a W(x)b

P3: R(x)b R(x)a

P4: R(x)a

Eventual Consistency

- Eventual convergence: If no more writes, all replicas eventually agree
- Difference from causal consistency?
 - Does not preserve causal relationships
 - Is the "+" in causal+
- Frequently used with application conflict resolution, anti-entropy

Pros: Highly available; think Dynamo

Cons: No safety guarantees, need conflict resolution

In a nutshell...

Strict Serializability: Total order + real time guarantees over *transactions*Linearizability: Total order + real time guarantees over *operations*Sequential consistency: Total order + process order
Causal+ consistency: Causally ordered + replicas eventually converge
Eventual consistency: Eventually everyone should agree on state

Exercise 1:

P1: {W(x) 1, W(y) 2} {R(y) 4}

P2: {W(x) 1, R(y) 4}

P3: {W(x) 0, W(y) 4}

P4: {R(x) 0} {R(x) 1}

Consistency Model:

Strictly Serializable Yes

Linearizable Yes

Sequential Yes

Causal+ Yes

Eventual Yes

Exercise 2:

P1: W(x) 1 R(y) 4

P2: R(x) 1 R(y) 4

P3: R(x) 1 W(y) 4

P4: R(x) 1 R(y) 4

Consistency Model:

Linearizable Yes

Sequential Yes

Causal+ Yes

Eventual Yes

Exercise 3:

					Linearizable	No
P1: W(x	2) 3			W(y) 7	Sequential	Yes
P2:	W(x) 1				Causal+	Yes
P3:		R(x) 1	R(x) 3	R(y) 7	Eventual	Yes
P4:		R(x) 1	R(x) 3	R(y) 7		
P5:		R(x) 1	R(x) 3	R(y) 7		

Exercise 4:

							-	
							Linearizable	No
P	1: W(x) 3				W(y) 7		Sequential	No
P	2:	W(x) 1					Causal+	Yes
P;	3:		R(x) 1	R(x) 3		R(y) 7	Eventual	Yes
P	1 :		R(x) 3	R(x) 1		R(y) 7		
P!	5:		R(x) 1	R(x) 3		R(y) 7		

Exercise 5:

Consistency Model:

Linearizable No

Sequential No

Causal+ Yes

Eventual Yes

P1: W(x) 1

P2: W(x) 3

P3: W(x) 7

P4: R(x) 3 R(x) 7 R(x) 1

P5: R(x) 3 R(x) 1 R(x) 7

Exercise 6:

Consistency Model:

Linearizable No

Causal+ Yes

Eventual Yes

Sequential No

P1: W(x) 1

W(x) 3 P2:

R(x) 3 W(x) 7 P3:

R(x) 3 R(x) 7 R(x) 1 P4:

P5: R(x) 3 R(x) 1 R(x) 7

Exercise 7:

Linearizable No Sequential No Causal+ No P1: W(x) 1 Eventual Yes R(x) 1 W(x) 3 P2: P3: R(x) 3 W(x) 7 P4: R(x) 3 R(x) 7 R(x) 1 P5: R(x) 3 R(x) 1 R(x) 7