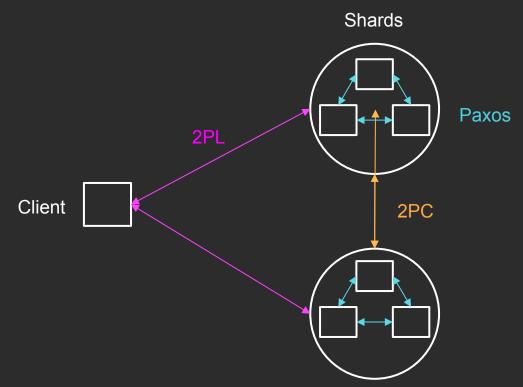
Spanner and SNOW

12/6/19


Concurrency Control Recap

- Last precept: 2-phase locking (2PL) and optimistic concurrency control (OCC)
- 2PL:
 - Rule: Do not acquire a lock once any lock has been released
 - Growing Phase: acquire shared (read) locks and exclusive (write) locks
 - Shrinking Phase: release locks

How can we achieve strict serializability, scalability?

- Shard the keyspace: servers maintain a subset of the keyspace (scalability).
- Concurrency control protocol (strict serializability):
 - 1. Use 2PL to handle concurrent transactions
 - 2. Use 2-phase commit (2PC) to achieve atomic commit of transactions
- How does 2PC handle server failures (fault tolerance)?
 - Answer: It doesn't!
 - Instead, we replicate each shard using Paxos!

Toy example:

Putting it together in a real system: Spanner

- Observation: reads are much more frequent than writes
 - Facebook's TAO sees 500 reads per 1 write.
 - Google Ads (F1) on Spanner from 1? DC saw 51.5B reads in a 24 hour period
 - Many reads are across shards
- Takeaway: Make read-only transactions very efficient
- Two goals for Spanner:
 - Lock-free read-only transactions
 - Non-blocking, but stale (not strictly serializable) read-only transactions

Spanner

- Main idea: use real-time for ordering transactions by finding a maximum clock skew
- TrueTime
 - TrueTime.now()
 - Returns a range [a,b] where a is the earliest possible time, and b is latest
 - TrueTime.after(t)
 - True if the current time is definitely after t
 - TrueTime.before(t)
 - True if the current time is definitely before t

General transactions

- General transactions are transactions that can contain reads and writes
- Similar to 2PL+2PC+Paxos scheme above, but use TrueTime to determine commit timestamps for transactions
- Each server maintains t_{safe} where all transactions with commit timestamp $s_i < t_{safe}$ are committed and can be read.

General transactions (steps)

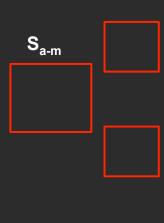
General transactions are driven by the client:

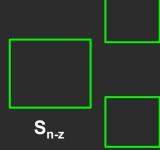
- 1. Client issues reads to the leader of each shard group
- 2. Leader acquires read locks and returns the most recent value to the client
- 3. Client locally performs the writes
- 4. Client chooses a coordinator from the shard leaders
- 5. Client initiates the commit protocol by sending a commit message to each leader with the buffered writes and the coordinator ID
- 6. Leaders execute the commit protocol
- 7. Client waits for the commit message from the coordinator

General transactions (commit protocol)

- 1. All shard leaders acquire write locks
- 2. Non-coordinators
 - a. Choose a prepare timestamp > all previous local timestamps
 - b. Log the prepare record via Paxos
 - c. Notify the coordinator of the prepare timestamp

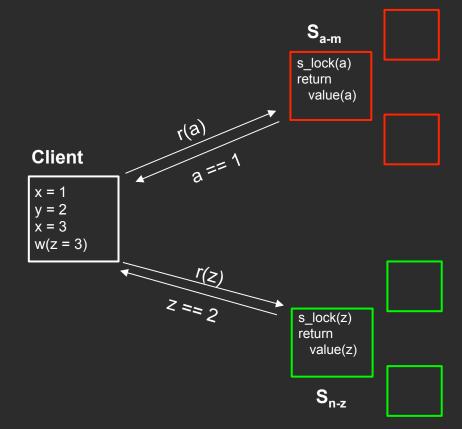
3. Coordinator

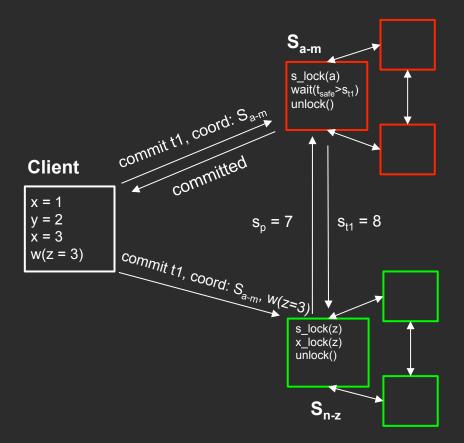

- a. Waits for all prepare timestamps
- b. Chooses a commit timestamp >= prepare timestamp and > local timestamps
- c. Logs commit record via Paxos
- d. Wait until TrueTime.after(commit timestamp)
- e. Sends commit timestamp to replicas, non-coordinators, and the client
- 4. All apply the transaction at commit timestamp and release the locks


Example

txn 1: x = r(a) y = r(z) x = x + y w(z = x)

Client



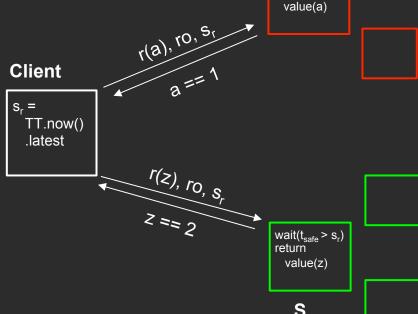

Example |

txn 1: x = r(a) y = r(z) x = x + y w(z = x)

Example

txn 1: x = r(a) y = r(z) x = x + y w(z = x)

Lock-free read-only transactions


- 1. Client chooses a commit timestamp (s_{read}) to be TrueTime.now().latest, sends this to shards along with transaction
- 2. Shards wait until $s_{read} < t_{safe}$
- 3. Shards read data as of the time s_{read}
- 4. Shards return data.

Read-Only Example

 S_{a-m}

 $wait(t_{safe} > s_r)$ return value(a)

txn 1: x = r(a)y = r(z)

 S_{n-z}

Better read-only transaction algorithm?

- Can we make it non-blocking and strictly serializable without adding extra round-trips?
- The SNOW Theorem says not

The SNOW Theorem

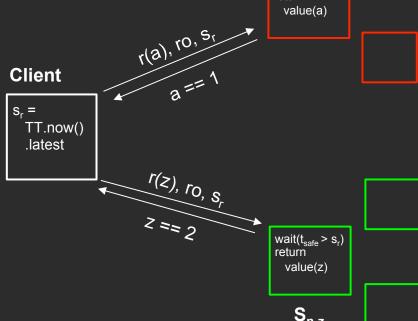
Read-only transaction algorithms cannot achieve all of the SNOW properties

- Strict Serializability
- Non-blocking: Servers return a value immediately without waiting
- One Response:
 - Read-only transactions take a single round of communication
 - Read operations return only one value (cannot send multiple versions of the data)
- Write transactions that conflict: Can handle concurrent write transactions
- Latency-optimal: N+O
- SNOW-optimal: any three of the four properties

SNOW and Spanner

- What properties does the Spanner RO-txn have?
 - o SOW: Must block waiting for TrueTime.after(s_{read})
- SNOW-optimal?
 - o Yes.
- Latency-optimal (N+O)?
 - o Nope! Can we get latency-optimal?
 - Must give up something.

Spanner snapshot read-only transactions

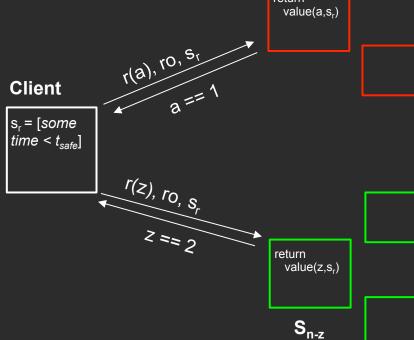

- Return a stale read result by explicitly reading at a time before t_{safe}
- Which SNOW properties?
 - o NOW

Lock-free RO-txn

 S_{a-m}

 $wait(t_{safe} > s_r)$ return value(a)

txn 1: x = r(a)y = r(z)


 S_{n-z}

Block-free RO-txn

 S_{a-m}

return

txn 1: x = r(a)y = r(z)

Summary

Spanner

- Sharded datastore where shards are Paxos groups
- Transactions use Client-driven 2PL
- Commit Wait
 - 2PC with waiting for the commit time to have passed and be safe to read

SNOW

- Read-only transaction algorithms cannot achieve strict serializability, non-blocking, one response, and write transactions that conflict, at the same time
- Spanner RO txns are one of:
 - SOW (best consistency)
 - NOW (best latency)

Thank you for a great semester!