
1

Scaling Out Key-Value Storage

COS 418: Distributed Systems

Jeff Helt

[Adapted from K. Jamieson, M. Freedman, B. Karp]

Horizontal or vertical scalability?

Vertical Scaling Horizontal Scaling

2

• Probability of any failure in given period = 1−(1−p)n
– p = probability a machine fails in given period
– n = number of machines

• For 50K machines, each with 99.99966% available
– 16% of the time, data center experiences failures

• For 100K machines, failures 30% of the time!

Horizontal scaling is challenging

3

Main challenge: Coping with constant failures

1. Techniques for partitioning data
– Metrics for success

2. Case study: Amazon Dynamo key-value store

4

Today

2

• You have key-value pairs to be partitioned across nodes
based on an id

• Problem 1: Data placement
– On which node(s) to place each key-value pair?

• Maintain mapping from data object to node(s)
• Evenly distribute data/load

5

Scaling out: Placement
• Problem 2: Partition management

– Including how to recover from node failure
• e.g., bringing another node into partition group

– Changes in system size, i.e. nodes joining/leaving
– Heterogeneous nodes

• Centralized: Cluster manager
• Decentralized: Deterministic hashing and algorithms

6

Scaling out: Partition Management

• First consider problem of data partition:
– Given object id X, choose one of k servers to use

• Suppose we use modulo hashing:
– Place X on server i = hash(X) mod k

• What happens if a server fails or joins (k ß k�1)?
– or different clients have different estimate of k?

7

Modulo hashing
Problem for modulo hashing:
Changing number of servers

Server

h(x) = x + 1

i = h(x) mod 4

7 10 11 27 29 36 38 40

4

3

2

1

0
5

Add one machine: i = h(x) mod 5

Many entries get remapped to new nodes!
à Need to move objects over the network

8

3

Consistent hashing
0

4

8

12
Token

14

– Assign n tokens to random points on
mod 2k circle; hash key size = k

– Hash object to random circle position
– Put object in closest clockwise bucket

– successor (key) à bucket

• Desirable features:
– Balance: No bucket has “too many” objects;

E(bucket size)=1/ nth
– Smoothness : Addition/removal of token

minimizes object movements for other buckets
9

Bucket

• Each node owns 1/nth of the ID space in expectation
– Hot keys → some buckets have higher request rate

• If a node fails, its successor takes over bucket
– Smoothness goal �: Only localized shift, not O(n)

– But now successor owns two buckets: 2/nth of key space
• The failure has upset the load balance

Consistent hashing’s load balancing problem

10

0

4

8

Token

14

Bucket

• Idea: Each physical node implements v virtual nodes
– Each physical node maintains v > 1 token ids

• Each token id corresponds to a virtual node
• Each physical node can have a different v based on

strength of node (heterogeneity)

• Each virtual node owns an expected 1/(vn)th of ID space

• Upon a physical node’s failure, v virtual nodes fail
– Their successors take over 1/(vn)th more

• Expected to be distributed across physical nodes

Virtual nodes

11 12

Virtual nodes: Example

0

4

8

14 Same physical node

4 Physical Nodes
V=2

• Result: Better load balance with larger v

4

1. Techniques for partitioning data

2. Case study: the Amazon Dynamo key-
value store

13

Today
• Chord and DHash intended for wide-area P2P systems

– Individual nodes at Internet’s edge, file sharing

• Central challenge: low-latency key lookup with high
availability
– Trades off consistency for availability and latency

• Techniques:
– Consistent hashing to map keys to nodes
– Vector clocks for conflict resolution
– Gossip for node membership
– Replication at successors for availability under failure

14

Dynamo: The P2P context

• Tens of thousands of servers in globally-distributed
data centers

• Peak load: Tens of millions of customers

• Tiered service-oriented architecture
– Stateless web page rendering servers, atop
– Stateless aggregator servers, atop
– Stateful data stores (e.g. Dynamo)

• put(), get(): values “usually less than 1 MB”

15

Amazon’s workload (in 2007)
• Shopping cart

• Session info
– Maybe “recently visited products” etc.?

• Product list
– Mostly read-only, replication for high read throughput

16

How does Amazon use Dynamo?

Each instance contains a few hundred servers

5

• Highly available writes despite failures
– Despite disks failing, network routes flapping, “data

centers destroyed by tornadoes”
– Always respond quickly, even during failures à

replication

• Low request-response latency: focus on 99.9% SLA

• Incrementally scalable as servers grow to workload
– Adding “nodes” should be seamless

• Comprehensible conflict resolution
– High availability in above sense implies conflicts

17

Dynamo requirements
• How is data placed and replicated?

• How are requests routed and handled in a replicated
system?

• How to cope with temporary and permanent node
failures?

18

Design questions

Dynamo’s system interface
• Basic interface is a key-value store

– get(k) and put(k, v)
– Keys and values opaque to Dynamo

• get(key) à value, context
– Returns one value or multiple conflicting values
– Context describes version(s) of value(s)

• put(key, context, value) à “OK”
– Context indicates which versions this version

supersedes or merges

19

• Place replicated data on nodes with consistent hashing

• Maintain consistency of replicated data with vector clocks
– Eventual consistency for replicated data: prioritize

success and low latency of writes over reads
• And availability over consistency (unlike DBs)

• Efficiently synchronize replicas using Merkle trees

20

Dynamo’s techniques

Key trade-offs: Response time vs.
consistency vs. durability

6

Data placement

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

Key K

Coordinator node

21
Each data item is replicated at N virtual nodes (e.g., N = 3)

put(K,…), get(K)
requests go to me

• Much like in Chord: a key-value pair à key’s N
successors (preference list)
– Coordinator receives a put for some key
– Coordinator then replicates data onto nodes in the

key’s preference list

• Writes to more than just N successors in case of failure

• For robustness, the preference list skips tokens to
ensure distinct physical nodes

22

Data replication

• Gossip: Once per second, each node contacts a
randomly chosen other node
– They exchange their lists of known nodes

(including virtual node IDs)
• Assumes all nodes will come back eventually, doesn’t

repartition
• Each node learns which others handle all key ranges

– Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)
• Reduces variability in response times

23

Gossip and Lookup
• Suppose three replicas are partitioned into two and one

• If one replica fixed as master, no client in other partition can write

• Traditional distributed databases emphasize consistency
over availability when there are partitions

24

Partitions force a choice between
availability and consistency

7

• Dynamo emphasizes availability over consistency when there
are partitions

• Tell client write complete when only some replicas have stored it

• Propagate to other replicas in background

• Allows writes in both partitions…but risks:
– Returning stale data
– Write conflicts when partition heals:

25

Alternative: Eventual consistency

put(k,v0) put(k,v1)
?@%$!!

• If no failure, reap consistency benefits of single master
– Else sacrifice consistency to allow progress

• Dynamo tries to store all values put() under a key on
first N live nodes of coordinator’s preference list

• BUT to speed up get() and put():
– Coordinator returns “success” for put when W < N

replicas have completed write
– Coordinator returns “success” for get when R < N

replicas have completed read

26

Mechanism: Sloppy quorums

• Suppose coordinator doesn’t receive W replies when
replicating a put()
– Could return failure, but remember goal of high

availability for writes…

• Hinted handoff: Coordinator tries further nodes in
preference list (beyond first N) if necessary
– Indicates the intended replica node to recipient
– Recipient will periodically try to forward to the

intended replica node

27

Sloppy quorums: Hinted handoff

28

Hinted handoff: Example

Traditional replicated relational database systems focus on the
problem of guaranteeing strong consistency to replicated data.
Although strong consistency provides the application writer a
convenient programming model, these systems are limited in
scalability and availability [7]. These systems are not capable of
handling network partitions because they typically provide strong
consistency guarantees.

3.3 Discussion
Dynamo differs from the aforementioned decentralized storage
systems in terms of its target requirements. First, Dynamo is
targeted mainly at applications that need an “always writeable”
data store where no updates are rejected due to failures or
concurrent writes. This is a crucial requirement for many Amazon
applications. Second, as noted earlier, Dynamo is built for an
infrastructure within a single administrative domain where all
nodes are assumed to be trusted. Third, applications that use
Dynamo do not require support for hierarchical namespaces (a
norm in many file systems) or complex relational schema
(supported by traditional databases). Fourth, Dynamo is built for
latency sensitive applications that require at least 99.9% of read
and write operations to be performed within a few hundred
milliseconds. To meet these stringent latency requirements, it was
imperative for us to avoid routing requests through multiple nodes
(which is the typical design adopted by several distributed hash
table systems such as Chord and Pastry). This is because multi-
hop routing increases variability in response times, thereby
increasing the latency at higher percentiles. Dynamo can be
characterized as a zero-hop DHT, where each node maintains
enough routing information locally to route a request to the
appropriate node directly.

4. SYSTEM ARCHITECTURE
The architecture of a storage system that needs to operate in a
production setting is complex. In addition to the actual data
persistence component, the system needs to have scalable and
robust solutions for load balancing, membership and failure
detection, failure recovery, replica synchronization, overload
handling, state transfer, concurrency and job scheduling, request
marshalling, request routing, system monitoring and alarming,
and configuration management. Describing the details of each of
the solutions is not possible, so this paper focuses on the core
distributed systems techniques used in Dynamo: partitioning,
replication, versioning, membership, failure handling and scaling.

Table 1 presents a summary of the list of techniques Dynamo uses
and their respective advantages.

4.1 System Interface
Dynamo stores objects associated with a key through a simple
interface; it exposes two operations: get() and put(). The get(key)
operation locates the object replicas associated with the key in the
storage system and returns a single object or a list of objects with
conflicting versions along with a context. The put(key, context,
object) operation determines where the replicas of the object
should be placed based on the associated key, and writes the
replicas to disk. The context encodes system metadata about the
object that is opaque to the caller and includes information such as
the version of the object. The context information is stored along
with the object so that the system can verify the validity of the
context object supplied in the put request.

Dynamo treats both the key and the object supplied by the caller
as an opaque array of bytes. It applies a MD5 hash on the key to
generate a 128-bit identifier, which is used to determine the
storage nodes that are responsible for serving the key.

4.2 Partitioning Algorithm
One of the key design requirements for Dynamo is that it must
scale incrementally. This requires a mechanism to dynamically
partition the data over the set of nodes (i.e., storage hosts) in the
system. Dynamo’s partitioning scheme relies on consistent
hashing to distribute the load across multiple storage hosts. In
consistent hashing [10], the output range of a hash function is
treated as a fixed circular space or “ring” (i.e. the largest hash
value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space which
represents its “position” on the ring. Each data item identified by
a key is assigned to a node by hashing the data item’s key to yield
its position on the ring, and then walking the ring clockwise to
find the first node with a position larger than the item’s position.

A

B

C

D E

F

G

Key K

Nodes B, C
and D store

keys in
range (A,B)

including
K.

Figure 2: Partitioning and replication of keys in Dynamo
ring.

Table 1: Summary of techniques used in Dynamo and
their advantages.

Problem Technique Advantage

Partitioning Consistent Hashing Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during

reads

Version size is
decoupled from

update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and

durability guarantee
when some of the
replicas are not

available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchronizes
divergent replicas in

the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry

for storing
membership and

node liveness
information.

199209

Coordinator

Key K• Suppose C fails
– Node E is in preference list

• Needs to receive replica of
the data

– Hinted Handoff: replica at E
points to node C; E
periodically forwards to C

• When C comes back
– E forwards the replicated data

back to C

8

• Last ¶,�4.6: Preference lists always contain nodes
from more than one data center
– Consequence: Data likely to survive failure of

entire data center

• Blocking on writes to a remote data center would
incur unacceptably high latency
– Compromise: W < N, eventual consistency
– Better durability,latency but worse consistency

29

Wide-area replication
• Suppose coordinator doesn’t receive R replies when

processing a get()
– Penultimate ¶,�4.5: “R is the min. number of nodes

that must participate in a successful read operation.”
• Sounds like these get()s fail

• Why not return whatever data was found, though?
– As we will see, consistency not guaranteed anyway…

30

Sloppy quorums and get()s

• Common case given in paper: N = 3; R = W = 2
– With these values, do sloppy quorums guarantee

a get() sees all prior put()s?

• If no failures, yes:
– Two writers saw each put()
– Two readers responded to each get()
– Write and read quorums must overlap!

31

Sloppy quorums and freshness
• Common case given in paper: N = 3; R = W = 2

– With these values, do sloppy quorums guarantee
a get() sees all prior put()s?

• With node failures, no:
– Two nodes in preference list go down

• put() replicated outside preference list; Hinted
handoff nodes have data

– Two nodes in preference list come back up
• get() occurs before they receive prior put()

32

Sloppy quorums and freshness

9

• Suppose N = 3, W = R = 2, nodes are named A, B, C
– 1st put(k, …) completes on A and B
– 2nd put(k, …) completes on B and C
– Now get(k) arrives, completes first at A and C

• Conflicting results from A and C
– Each has seen a different put(k, …)

• Dynamo returns both results; what does client do now?

33

Conflicts
• Shopping cart:

– Could take union of two shopping carts
– What if second put() was result of user deleting item

from cart stored in first put()?
• Result: “resurrection” of deleted item

• Can we do better? Can Dynamo resolve cases when
multiple values are found?
– Sometimes. If it can’t, application must do so.

34

Conflicts vs. applications

• Version vector: List of (coordinator node, counter) pairs
– e.g., [(A, 1), (B, 3), …]

• Dynamo stores a version vector with each stored key-
value pair

• Tracks causal relationship between different versions
of data stored under the same key k

35

Version vectors (vector clocks)
• Rule: If vector clock comparison of v1 < v2, then the first is

an ancestor of the second – Dynamo can forget v1

• Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

• Each time a get() occurs, Dynamo returns the V.V. for the
value(s) returned (in the “context”)

– Then users must supply that context to put()s that
modify the same key

36

Version vectors in Dynamo

10

37

Version vectors (auto-resolving case)

v1 [(A,1)]

v2 [(A,1), (C,1)]

put handled
by node C

put handled
by node A

v2 > v1, so Dynamo nodes automatically drop v1, for v2

38

Version vectors (app-resolving case)

v1 [(A,1)]

v3 [(A,1), (C,1)]

put handled
by node C

put handled
by node A

put handled
by node B

v2 [(A,1), (B,1)]

v4 [(A,2), (B,1), (C,1)]

Client reads v2, v3; context:
[(A,1), (B,1), (C,1)]

v2 || v3, so a client must perform
semantic reconciliation

Client reconciles v2 and v3; node A handles the put

• Many nodes may process a series of put()s to same key
– Version vectors may get long – do they grow forever?
– In practice, unlikely: unless failures, upper limit of N

• Dynamo also uses a clock truncation scheme
– Stores time of modification with each V.V. entry

– When V.V. > 10 nodes long, V.V. drops the timestamp of
the node that least recently processed that key

39

Trimming version vectors

40

Impact of deleting a VV entry?

v1 [(A,1)]

v2 [(A,1), (C,1)]

put handled
by node C

put handled
by node A

v2 || v1, so looks like application resolution is required

11

• What if two clients concurrently write w/o failure?
– e.g. add different items to same cart at same time
– Each does get-modify-put
– They both see the same initial version

• And they both send put() to same coordinator

• Will coordinator create two versions with conflicting VVs?
– We want that outcome, otherwise one was thrown away
– Paper doesn't say, but coordinator could detect problem

via put() context

41

Concurrent writes
• Hinted handoff node crashes before it can replicate

data to node in preference list
– Need another way to ensure that each key-value

pair is replicated N times

• Mechanism: replica synchronization
– Nodes nearby on ring periodically gossip

• Compare the (k, v) pairs they hold
• Copy any missing keys the other has

42

Removing threats to durability

How to compare and copy replica
state quickly and efficiently?

• Merkle trees hierarchically summarize the key-value
pairs a node holds

• One Merkle tree for each virtual node key range
– Leaf node = hash of one key’s value
– Internal node = hash of concatenation of children

• Compare roots; if match, values match
– If they don’t match, compare children

• Iterate this process down the tree

43

Efficient synchronization with Merkle trees
• B is missing orange key; A is missing green one

• Exchange and compare hash nodes from root
downwards, pruning when hashes match

44

Merkle tree reconciliation

B’s values:A’s values:
[0, 2128)

[0, 2127) [2127, 2128)
[0, 2128)

[0, 2127) [2127, 2128)

Finds differing keys quickly and with
minimum information exchange

12

How useful is it to vary N, R, W?

N R W Behavior
3 2 2 Parameters from paper:

Good durability, good R/W latency
3 3 1 Slow reads, weak durability, fast writes
3 1 3 Slow writes, strong durability, fast reads
3 3 3 More likely that reads see all prior writes?
3 1 1 Read quorum doesn’t overlap write quorum

45

• Consistent hashing broadly useful for replication—not only
in P2P systems

• Extreme emphasis on availability and low latency,
unusually, at the cost of some inconsistency

• Eventual consistency lets writes and reads return quickly,
even when partitions and failures

• Version vectors allow some conflicts to be resolved
automatically; others left to application (similar to Bayou)

46

Dynamo: Take-away ideas

