
10/1/19

1

Eventual Consistency & Bayou

COS 418: Distributed Systems
Lecture 7

Mike Freedman & Wyatt Lloyd

Slides adapted from Kyle Jamison, Brad Karp, Robert Morris

Swap complete databases?

• Suppose two users are in Bluetooth range
• Each sends entire calendar database to other
• Possibly expend lots of network bandwidth

•What if the calendars conflict, e.g., the two calendars have
concurrent meetings in a room?
• iPhone sync keeps both meetings

• Want to do better: automatic conflict resolution
2

Availability versus Consistency

• Later topic: Distributed consensus algorithms

• Strong consistency (ops in same order everywhere)

• But, strong reachability/availability requirements

3

If the network fails (common case), can we provide
any consistency when we replicate?

Eventual consistency
• Eventual consistency: If no new updates to the object, eventually

all reads will return the last updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

•Why do people like eventual consistency?
• Fast read/write of local copy of data
• Disconnected operation

4

Issue: Conflicting writes to different copies
How to reconcile them when discovered?

10/1/19

2

Bayou: A Weakly Connected Replicated Storage System

•Meeting room calendar application as case study in ordering
and conflicts in a distributed system with poor connectivity

• Each calendar entry = room, time, set of participants

•Want everyone to see the same set of entries, eventually
• Else users may double-book room
• or avoid using an empty room

5

Paper context
• Early ’90s: Dawn of PDAs, laptops
• H/W clunky but showing clear potential
• Commercial devices did not have wireless.

• This problem has not gone away!
• Devices might be off, not have network access
• Mainly outside the context of datacenters

• Local write/reads still really fast
• Even in datacenters when replicas are far away (geo-replicated)

6

Why not just a central server?
•Want my calendar on a disconnected mobile phone
• i.e., each user wants database replicated on their mobile device
• Not just a single copy

• But phone has only intermittent connectivity
• Mobile data expensive, Wi-Fi not everywhere, all the time
• Bluetooth useful for direct contact with other calendar users’

devices, but very short range

7

Automatic conflict resolution:
Granularity of “conflicts”

• Can’t just view the calendar database as abstract bits:

• Too little information to resolve conflicts:

1. “Both files have changed” can falsely conclude calendar conflict

• e.g., Monday 10am meeting in room 3 and Tuesday 11am meeting in room 4

2. “Distinct record in each db changed” can falsely conclude no conflict

• e.g., Monday 10–11am meeting in room 3 Doug attending, Monday 10-11am
meeting in room 4 Doug attending, …

8

10/1/19

3

Application-specific conflict resolution

• Intelligence that can identify and resolve conflicts

•More like users’ updates: read database, think, change
request to eliminate conflict

•Must ensure all nodes resolve conflicts in the same way to
keep replicas consistent

9

Application-specific update functions

• Suppose calendar write takes form:
• “10 AM meeting, Room=302, COS-418 staff”
• How would this handle conflicts?

•Better: write is an update function for the app
• “1-hour meeting at 10 AM if room is free, else

11 AM, Room=302, COS-418 staff”

10

Potential Problem:
Permanently inconsistent replicas

• Node A asks for meeting M1 at 10 AM, else 11 AM
• Node B asks for meeting M2 at 10 AM, else 11 AM

• Node X syncs with A, then B
• Node Y syncs with B, then A

• X will put meeting M1 at 10:00
• Y will put meeting M1 at 11:00

11
Can’t just apply update functions when replicas sync

Totally Order the Updates!
•Maintain an ordered list of updates at each node

• Make sure every node holds same updates
• And applies updates in the same order

• Make sure updates are a deterministic function of db contents

• If we obey above, “sync” is simple merge of two ordered lists
12

Write log

10/1/19

4

Agreeing on the update order
• Timestamp: 〈local timestamp T, originating node ID〉

• Ordering updates a and b:
• a < b if a.T < b.T or (a.T = b.T and a.ID < b.ID)

13

Write log example
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Pre-sync database state:
• A has M1 at 10 AM
• B has M2 at 10 AM

• What's the correct eventual outcome?
• The result of executing update functions in timestamp order: M1

at 10 AM, M2 at 11 AM 14

Timestamp

Write log example: Sync problem
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Now A and B sync with each other. Then:
• Each sorts new entries into its own log

• Ordering by timestamp
• Both now know the full set of updates

• A can just run B’s update function
• But B has already run B’s operation, too soon!

15

Solution: Roll back and replay
• B needs to “roll back” the DB, and re-run both ops in the

correct order

• Bayou User Interface: Displayed meeting room calendar
entries are “Tentative” at first
• B’s user saw M2 at 10 AM, then it moved to 11 AM

16

Big point: The log at each node holds the truth;
the DB is just an optimization

10/1/19

5

Does update order respect causality?

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• Possible if B’s clock is slow, and using real-time timestamps

• Result: delete will be ordered before add
• (Delete never has an effect.)

• Q: How can we assign timestamp to respect causality?

17

Lamport clocks respect causality

•Want event timestamps so that if a node observes E1
then generates E2, then TS(E1) < TS(E2)

•Use lamport clocks!
• If E1 à E2 then TS(E1) < TS(E2)

18

Lamport clocks respect causality
• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• 〈706, B〉: Delete update 〈701, A〉

• With Lamport clocks:
• When A sends 〈701, A〉, it includes its clock, T (> 701)
• When B receives 〈701, A〉, it updates its clock to T’ > T
• When B creates the delete, it timestamps it with its clock, T’’ > T’
• T’’ > T’ > T > 701 (e.g., T’’ is 706)

• Q: What if A and B are concurrent? 19

Timestamps for write ordering: Limitations

• Never know whether some write from “the past”
may yet reach your node…

• So all entries in log must be tentative forever

• And you must store entire log forever

20

Want to commit a tentative entry, so we
can trim logs and have meetings

10/1/19

6

Fully decentralized commit
• Strawman: Update 〈10, A〉 committed when all nodes have seen all

updates with TS ≤ 10

• Have sync always send in log order
• If you have seen updates with TS > 10 from every node then you’ll

never again see one < 〈10, A〉
• So 〈10, A〉 is committed

•Why doesn’t Bayou do this?
• A node that remains disconnected prevents commiting

• So many writes may be rolled back on re-connect 21

How Bayou commits writes
• Bayou uses a primary commit scheme
• One designated node (the primary) commits updates

• Primary marks each write it receives with a
permanent CSN (commit sequence number)
• That write is committed
• Complete timestamp = 〈CSN, local TS, node-id〉

22

Advantage: Can pick a primary node
close to locus of update activity

How Bayou commits writes (2)

•Nodes exchange CSNs when they sync

•CSNs define a total order for committed writes
• All nodes eventually agree on the total order
• Tentative writes come after all committed writes

23

Committed vs. tentative writes
• Suppose a node has seen every CSN up to a write, as

guaranteed by propagation protocol

• Can then show user the write has committed
• Mark calendar entry “Confirmed”

• Slow/disconnected node cannot prevent commits!
• Primary replica allocates CSNs

24

10/1/19

7

Tentative writes

•What about tentative writes, though? How do they behave,
as seen by users?

• Two nodes may disagree on meaning of tentative writes
• Even if those two nodes have synced with each other!
• Only CSNs from primary replica can resolve disagreements permanently

25

Ex: Disagreement on tentative writes

26

Time

Logs

A B C

〈2, A〉 〈1, B〉 〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈local TS, node-id〉

Ex: Disagreement on tentative writes

27

Time

Logs

A B C

〈2, A〉
〈1, B〉 〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈1, B〉
〈2, A〉

sync

〈local TS, node-id〉

Ex: Disagreement on tentative writes

28

Time

Logs

A B C

〈2, A〉 〈1, B〉
〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈1, B〉

〈2, A〉

sync

〈2, A〉
〈1, B〉

〈0, C〉

〈local TS, node-id〉

10/1/19

8

Ex: Disagreement on tentative writes

29

Time

Logs

A B C

〈2, A〉 〈1, B〉
〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉

sync

〈1, B〉

〈2, A〉

sync

〈2, A〉
〈1, B〉

〈0, C〉

〈local TS, node-id〉

Tentative order ≠ commit order

30

Time

Logs

A B Pri

〈-,10, A〉 〈-,10, A〉

W 〈-,20, B〉W 〈-,10, A〉

sync

C

sync

〈-,20, B〉
〈-,20, B〉

〈CSN, local TS, node-id〉

Tentative order ≠ commit order

31

Time

Logs

A B Pri

〈-,10, A〉 〈-,10, A〉

C

〈-,20, B〉
〈-,20, B〉

sync

〈5,20, B〉 〈5,20, B〉

sync

〈6,10, A〉
〈6,10, A〉

〈5,20, B〉
〈6,10, A〉

sync

〈CSN, local TS, node-id〉

Trimming the log
•When nodes receive new CSNs, can discard all committed log

entries seen up to that point
• Sync protocol à CSNs received in order

• Keep copy of whole database as of highest CSN

• Result: No need to keep years of log data

32

10/1/19

9

Primary commit order constraint

• Suppose user creates meeting, then deletes or changes it
• What CSN order must these ops have?
• Create first, then delete or modify
• Must be true in every node’s view of tentative log entries, too

• Rule: Primary’s total write order must preserve causal order
of writes. (But how?)

33

Primary preserves causal order

• Rule: Primary’s total write order must preserve causal order
of writes

• How?
• Nodes sync full logs
• If Aà B then A is in all logs before B

• Primary orders newly synced writes in tentative order
• Primary will commit A and then commit B

34

Let’s step back

• Is eventual consistency a useful idea?
• Yes: we want fast writes to local copies iPhone sync,

Dropbox, Dynamo, …

• Are update conflicts a real problem?
• Yes—all systems have some more or less awkward solution

35

Is Bayou’s complexity warranted?

• update functions, tentative ops, …

• Only critical if you want peer-to-peer sync
• i.e. disconnected operation AND ad-hoc connectivity

• Only tolerable if humans are main consumers
• Otherwise you can sync through a central server
• Or read locally but send updates through a master

36

10/1/19

10

What are Bayou’s take-away ideas?

1. Eventual consistency: if updates stop, all replicas eventually same

2. Update functions for automatic app-driven conflict resolution

3. Ordered update log is the real truth, not the DB

4. Use Lamport clocks: eventual consistency that respects causality

37

