Vector Clocks

COS 418 + 518: (Advanced) Distributed Systems Lecture 5

Mike Freedman & Wyatt Lloyd

Lamport Clocks Review

Q: $a \rightarrow b$ => LC(a) < LC(b)

Q: LC(a) < LC(b) => b -/-> a (a \rightarrow b or a || b)

Q: $a \parallel b$ => nothing

Lamport Clocks and Causality

- · Lamport clock timestamps do not capture causality
- Given two timestamps C(a) and C(z), want to know whether there's a chain of events linking them:

$$a \rightarrow b \rightarrow ... \rightarrow y \rightarrow z$$

Vector clock: Introduction

- · One integer can't order events in more than one process
- So, a Vector Clock (VC) is a vector of integers, one entry for each process in the entire distributed system
 - Label event e with VC(e) = $[c_1, c_2 ..., c_n]$
 - ullet Each entry c_k is a count of events in process k that causally precede e

4

Vector clock: Update rules

- Initially, all vectors are [0, 0, ..., 0]
- Two update rules:
- 1. For each local event on process i, increment local entry ci
- 2. If process j receives message with vector $[d_1, d_2, ..., d_n]$:
 - Set each local entry c_k = max{c_k, d_k}
 - · Increment local entry ci

Vector clock: Example

- All processes' VCs start at [0, 0, 0]
- · Applying local update rule
- Applying message rule
 - Local vector clock piggybacks on inter-process messages

Comparing vector timestamps

- Rule for comparing vector timestamps:
 - V(a) = V(b) when $a_k = b_k$ for all k
 - V(a) < V(b) when $a_k \le b_k$ for all k and $V(a) \ne V(b)$
- Concurrency:
 - V(a) \parallel V(b) if $a_i < b_i$ and $a_i > b_i$, some i, j

Vector clocks capture causality

- V(w) < V(z) then there is a chain of events linked by Happens-Before (→) between a and z
- V(a) || V(w) then there is no such chain of events between a and w

Comparing vector timestamps

- Rule for comparing vector timestamps:
 - V(a) = V(b) when $a_k = b_k$ for all k
 - They are the same event
 - V(a) < V(b) when a_k ≤ b_k for all k and V(a) ≠ V(b)
 a → b
- Concurrency:
 - V(a) || V(b) if a_i < b_i and a_j > b_j, some i, j • a || b

Two events a, z

Lamport clocks: C(a) < C(z)

Conclusion: z -/-> a, i.e., either $a \rightarrow z$ or $a \parallel z$

Vector clocks: V(a) < V(z)Conclusion: $a \rightarrow z$

Vector clock timestamps precisely capture happens-before relation (potential causality)

10