
9/15/19

1

Caching and consistency:
Network Files Systems + the Web

COS 418/518: Distributed Systems
Lecture 3

Michael Freedman

• Local file systems
• Disks are terrible abstractions: low-level blocks, etc.
• Directories, files, links much better

• Distributed file systems
• Make a remote file system look local
• Today: NFS (Network File System)

• Developed by Sun in 1980s, still used today!

• Web servers
• Make remote content look local

Abstraction, abstraction, abstraction!

2

3 Goals: Make operations appear
•Local
•Consistent
•Fast

3

NFS: Naming indirection, abstraction

“Mount” remote FS (host:path) as local directories

jim jane joeann

usersstudents

usrvmuni x

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

4

9/15/19

2

fd = open(“path”, flags)

read(fd, buf, n)

write(fd, buf, n)

close(fd)

Computer maintains state that maps fd to inode, offset

Local FS / Virtual File System (VFS)

5

fd = open(“path”, flags)

read(“path”, buf, n)

write(“path”, buf, n)

close(fd)

Stateless NFS: Strawman 1

6

fd = open(“path”, flags)

read(“path”, offset, buf, n)

write(“path”, offset, buf, n)

close(fd)

Stateless NFS: Strawman 2

7

Embed pathnames in syscalls?

• Should read refer to current dir1/f or dir2/f ?
• In UNIX, it’s dir2/f. How do we preserve in NFS?

8

9/15/19

3

fh = lookup(“path”, flags)

read(fh, offset, buf, n)

write(fh, offset, buf, n)

getattr(fh)

Implemented as Remote Procedure Calls (RPCs)

Stateless NFS (for real)

9

NFS File Handles (fh)

• Opaque identifier provider to client from server
• Includes all info needed to identify file/object on server

volume ID | inode # | generation #

• It’s a trick: “store” server state at the client!

10

• With generation #’s, client 2 continues to interact with
“correct” file, even while client 1 has changed ”f”

• This versioning appears in many contexts,
e.g., MVCC (multiversion concurrency control) in DBs

11

NFS File Handles (and versioning) Are remote == local?

12

9/15/19

4

• With local FS, read sees data from “most recent” write,
even if performed by different process
• “Read/write coherence”, linearizability

• Achieve the same with NFS?
• Perform all reads & writes synchronously to server
• Huge cost: high latency, low scalability

• And what if the server doesn’t return?
• Options: hang indefinitely, return ERROR

TANSTANFL
(There ain’t no such thing as a free lunch)

13

Caching GOOD
Lower latency, better scalability

Consistency HARDER
No longer one single copy of data, to

which all operations are serialized

14

Caching options

• Read-ahead: Pre-fetch blocks before needed
• Write-through: All writes sent to server
• Write-behind: Writes locally buffered, send as batch

• Consistency challenges:
• When client writes, how do others caching data get

updated? (Callbacks, …)
• Two clients concurrently write? (Locking, overwrite, …)

• Stateless protocol
• Recovery easy: crashed == slow server
• Messages over UDP (unencrypted)

• Read from server, caching in NFS client

• NFSv2 was write-through (i.e., synchronous)

• NFSv3 added write-behind
• Delay writes until close or fsync from application

16

NFS

9/15/19

5

• Write-to-read semantics too expensive
• Give up caching, require server-side state, or …

• Close-to-open “session” semantics
• Ensure an ordering, but only between application
close and open, not all writes and reads.
• If B opens after A closes, will see A’s writes
• But if two clients open at same time? No guarantees

• And what gets written? “Last writer wins”

17

Exploring the consistency tradeoffs
• Recall challenge: Potential concurrent writers
• Cache validation:
• Get file’s last modification time from server: getattr(fh)
• Both when first open file, then poll every 3-60 seconds
• If server’s last modification time has changed,

flush dirty blocks and invalidate cache

• When reading a block
• Validate: (current time – last validation time < threshold)

• If valid, serve from cache. Otherwise, refresh from server
18

NFS Cache Consistency

• “Mixed reads” across version
• A reads block 1-10 from file, B replaces blocks 1-20,

A then keeps reading blocks 11-20.

• Assumes synchronized clocks. Not really correct.
• We’ll learn about the notion of logical clocks later

• Writes specified by offset
• Concurrent writes can change offset
• More on this later with techniques for conflict resolution

19

Some problems…

When statefulness helps
Callbacks
Locks + Leases

20

9/15/19

6

• A client can request a lock over a file / byte range
• Advisory: Well-behaved clients comply
• Mandatory: Server-enforced

• Client performs writes, then unlocks

• Problem: What if the client crashes?
• Solution: Keep-alive timer: Recover lock on timeout
• Problem: what if client alive but network route failed?

Client thinks has lock, server gives lock to other: “Split brain”

22

Locks Leases
• Client obtains lease on file for read or write
• “A lease is a ticket permitting an activity; the lease is valid until

some expiration time.”

• Read lease allows client to cache clean data
• Guarantee: no other client is modifying file

• Write lease allows safe delayed writes
• Client can locally modify than batch writes to server
• Guarantee: no other client has file cached

•Client requests a lease
• May be implicit, distinct from file locking
• Issued lease has file version number for cache coherence

•Server determines if lease can be granted
• Read leases may be granted concurrently
• Write leases are granted exclusively

• If conflict exists, server may send eviction notices
• Evicted write lease must write back
• Evicted read leases must flush/disable caching
• Client acknowledges when completed

24

Using leases Bounded lease term simplifies recovery
• Before lease expires, client must renew lease

• Client fails while holding a lease?
• Server waits until the lease expires, then unilaterally reclaims
• If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding? On recovery:
• Wait lease period + clock skew before issuing new leases
• Absorb renewal requests and/or writes for evicted leases

9/15/19

7

Statelessness: Web caching

26

HTTP Caching

• Clients (and proxies) cache documents
• When should origin be checked for changes?
• Every time? Every session? Date?

• HTTP includes caching information in headers
• HTTP 0.9/1.0 used: “Expires: <date>”; “Pragma: no-cache”
• HTTP/1.1 has “Cache-Control”
• “No-Cache”, “Max-age: <seconds>”
• “E-tag: <opaque value>

27

HTTP Caching
• If not expired: use cached copy
• If expired, use condition GET request to origin

• “If-Modified-Since: <date>”, “If-None-Match: <etag>”
• 304 (“Not Modified”) or 200 (“OK”) response

28

GET / HTTP/1.1
Host: sns.cs.princeton.edu
Connection: Keep-Alive
If-Modified-Since: Tue, 1 Feb 2011 …
If-None-Match: "7a11f-10ed-3a75ae4a"

HTTP/1.1 304 Not Modified
Date: Wed, 02 Feb 2011 ….
Server: Apache/2.2.3 (CentOS)
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes

Statefulness: Summary

29

9/15/19

8

Server maintain per-client state?
(which files open for reading/writing, what cached, …)

Stateful

• Pros
• Smaller requests
• Simpler req processing
• Better cache coherence,

file locking, etc.
• Cons
• Per-client state limits

scalability
• Fault-tolerance on state

required for correctness

Stateless

• Pros
• Easy server crash recovery
• No open/close needed
• Better scalability

• Cons
• Each request must be fully

self-describing
• Consistency is harder,

e.g., no simple file locking

• Hard state: Don’t lose data
• Durability: State not lost

• Write to disk, or cold remote backup
• Exact replica or recoverable (DB: checkpoint + op log)

• Availability (liveness): Maintain online replicas

• Soft state: Performance optimization
• Traditionally: Lose at will
• More recently: Yes for correctness (safety), but how

does recovery impact availability (liveness)?
31

It’s all about the state, ’bout the state, …

