
9/15/19

1

Network Communication and
Remote Procedure Calls (RPCs)

COS 418 + 518: (Advanced) Distributed Systems
Lecture 2

Mike Freedman & Wyatt Lloyd

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

• How can processes on different cooperating computers
communicate with each other over the network?

1. Network Communication

2. Remote Procedure Call (RPC)

3

Today’s outline The problem of communication
• Process on Host A wants to talk to process on Host B

• A and B must agree on the meaning of the bits being sent and
received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?

9/15/19

2

The problem of communication

• Re-implement every application for every new underlying
transmission medium?

• Change every application on any change to an underlying
transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Solution: Layering

• Intermediate layers provide a set of abstractions for
applications and media

• New applications or media need only implement for
intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

• Transport: Provide end-to-end
communication between processes on
different hosts

• Network: Deliver packets to destinations
on other (heterogeneous) networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two hosts
connected by a physical link

7

Layering in the Internet

Applications

Transport layer
Network layer

Link layer
Physical layer

Host

Logical communication between layers
• How to forge agreement on the meaning of the bits

exchanged between two hosts?

• Protocol: Rules that govern the format, contents, and
meaning of messages

• Each layer on a host interacts with its peer host’s corresponding
layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
8

9/15/19

3

Physical communication
• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
9

Communication between peers
• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer
• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

10

• Socket: The interface the OS provides to the network
• Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
• e.g.: put(key,value) à message

11

Network socket-based communication

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket
Process

Socket

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

12

9/15/19

4

Socket programming: still not great
• Lots for the programmer to deal with every time

• How to separate different requests on the same connection?

• How to write bytes to the network / read bytes from the network?
• What if Host A’s process is written in Go and Host B’s process is in C++?

• What to do with those bytes?

• Still pretty painful… have to worry a lot about the network

14

Solution: Another layer!

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

Socket
RPC Layer RPC Layer

1. Network Communication

2. Remote Procedure Call

15

Today’s outline
• The typical programmer is trained to write single-threaded

code that runs in one place

• Goal: Easy-to-program network communication that makes
client-server communication transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

16

Why RPC?

9/15/19

5

Everyone uses RPCs
• COS 418 programming assignments use RPC

• Google gRPC
• Facebook/Apache Thrift
• Twitter Finagle
• …

What’s the goal of RPC?
• Within a single program, running in a single process, recall

the well-known notion of a procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

18

RPC’s Goal: make communication appear like a local procedure call:
transparency for procedure calls – way less painful than sockets…

1. Heterogeneity
• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
• What if messages get dropped?
• What if client, server, or network fails?

3. Performance
• Procedure call takes ≈ 10 cycles ≈ 3 ns
• RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

19

RPC issues

• Not an issue for local procedure calls

• For a remote procedure call, a remote machine may:
• Run process written in a different language
• Represent data types using different sizes
• Use a different byte ordering (endianness)
• Represent floating point numbers differently
• Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary

20

Problem: Differences in data representation

9/15/19

6

• Mechanism to pass procedure parameters and return values in a
machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
• Code to marshal (convert) native data types into machine-independent byte streams

• And vice-versa, called unmarshaling

• Client stub: Forwards local procedure call as a request to server

• Server stub: Dispatches RPC to its implementation

21

Solution: Interface Description Language
1. Client calls stub function (pushes parameters onto stack)

22

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message

23

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

24

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS
proc: add | int: 3 | int: 5

9/15/19

7

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

25

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

26

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

27

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

28

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

9/15/19

8

7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

29

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

30

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

31

A day in the life of an RPC

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

1. Network Communication

2. Remote Procedure Call
• Heterogeneity – use IDL w/ compiler
• Failure

33

Today’s outline

9/15/19

9

1. Client may crash and reboot

2. Packets may be dropped
• Some individual packet loss in the Internet
• Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow
34

What could possibly go wrong?

All of these
may look
the same to
the client…

35

Failures, from client’s perspective

Client Server

Time ↓

✘

✘

The cause of the failure is hidden from the client!

• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
• Response is an acknowledgement message from the server stub

2. If no response arrives after a fixed timeout time period,
then client stub re-sends the request

• Repeat the above a few times
• Still no response? Return an error to the application

36

At-Least-Once scheme
• Client sends a “debit $10 from bank account” RPC

37

At-Least-Once and side effects

Client Server

✘

(debit $10)

(debit $10)

Time ↓

9/15/19

10

• put(x, value), then get(x): expect answer to be value

38

At-Least-Once and writes

Client

x=20

Server

put(x,10)
put(x,20)

xß10

xß20

Time ↓

• Consider a client storing key-value pairs in a database
• put(x, value), then get(x): expect answer to be value

39

At-Least-Once and writes

Client

Time ↓

x=20

Server

put(x,10)
put(x,20)

xß10

xß10

xß20

• Yes: If they are read-only operations with no side effects
• e.g., read a key’s value in a database

• Yes: If the application has its own functionality to cope with
duplication and reordering

• You will need this in Assignments 3 onwards

40

So is At-Least-Once ever okay?
• Idea: server RPC code detects duplicate requests

• Returns previous reply instead of re-running handler

• How to detect a duplicate request?
• Test: Server sees same function, same arguments twice

• No! Sometimes applications legitimately submit the same function with same
augments, twice in a row

41

At-Most-Once scheme

9/15/19

11

• How to detect a duplicate request?

• Client includes unique transaction ID (xid) with each RPC requests

• Client uses same xid for retransmitted requests

42

At-Most-Once scheme

At-Most-Once Server
if seen[xid]:

retval = old[xid]
else:

retval = handler()
old[xid] = retval
seen[xid] = true

return retval

1. Combine a unique client ID (e.g., IP address) with the
current time of day

2. Combine unique client ID with a sequence number
• Suppose client crashes and restarts. Can it reuse the same client ID?

3. Big random number (probabilistic, not certain guarantee)

43

At-Most-Once: Providing unique XIDs

• Problem: seen and old arrays will grow without bound

• Observation: By construction, when the client gets a response to
a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete it”
• Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests

44

At-Most-Once: Discarding server state

Significant overhead if many RPCs are in flight, in parallel

• Problem: seen and old arrays will grow without bound

• Suppose xid = ⟨unique client id, sequence no.⟩
• e.g. ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC
• Much like TCP sequence numbers, acks

• How does the client know that the server received the
information about retired RPCs?

• Each one of these is cumulative: later seen messages subsume
earlier ones

45

At-Most-Once: Discarding server state

9/15/19

12

• Problem: How to handle a duplicate request while the original
is still executing?

• Server doesn’t know reply yet. Also, we don’t want to run the
procedure twice

• Idea: Add a pending flag per executing RPC
• Server waits for the procedure to finish, or ignores

46

At-Most-Once: Concurrent requests
• Problem: Server may crash and restart

• Does server need to write its tables to disk?

• Yes! On server crash and restart:
• If old[], seen[] tables are only in memory:

• Server will forget, accept duplicate requests

47

At-Most-Once: Server crash and restart

• Need retransmission of at least once scheme

• Plus the duplicate filtering of at most once scheme
• To survive client crashes, client needs to record pending RPCs

on disk
• So it can replay them with the same unique identifier

• Plus story for making server reliable
• Even if server fails, it needs to continue with full state
• To survive server crashes, server should log to disk results of

completed RPCs (to suppress duplicates)

50

Exactly-once?
• Imagine that the remote operation triggers an external

physical thing
• e.g., dispense $100 from an ATM

• The ATM could crash immediately before or after dispensing
and lose its state

• Don’t know which one happened
• Can, however, make this window very small

• So can’t achieve exactly-once in general, in the presence of
external actions

Exactly-once for external actions?

9/15/19

13

52

Summary: RPCs and Network Comm.
Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer

• Layers are our friends!
• RPCs are everywhere
• Necessary issues surrounding

machine heterogeneity
• Subtle issues around failures

• At-least-once w/ retransmission
• At-most-once w/ duplicate filtering

• Discard server state w/ cumulative acks
• Exactly-once with:

• at-least-once + at-most-once
+ fault tolerance + no external actions

